首页

> 学术论文知识库

首页 学术论文知识库 问题

镀镍耐盐雾研究论文

发布时间:

镀镍耐盐雾研究论文

过电解封孔+油性封孔,基本上可以过8H盐雾的。

首先你确定你电镀的单位是U?我觉得是M吧!否则不可能那么厚的。再次你所指的是铁材镀镍工艺,属于阴极性镀层,镀层是从内部(即从铁的基材开始腐烂的),所以盐雾特别差。做8H的话如果是滚镀的话有一定的危险性(虽然有些保护剂厂家对他们的保护剂会吹的天花乱坠),吊镀的话则基本能达到要求,如果一定要增加盐雾效果的话就得在中间镀层高硫镍。那才是从根本上解决问题的方法。电镀的后处理剂也很多但最终取决于你的工件,如果是做电子件的话则应该认真考虑电导率的问题了。

你现在用的单位是:麦,这个厚度太薄了,根本过不了的。建议:Cu 20-25um, Ni 8-10um, 注意单位。要镀厚一点,才能过!

您好,请问您是要增加镀镍材料的耐盐雾能力吗?最好提高工艺水平,加厚镀层,然后进行喷漆处理,可以很好地通过盐雾试验。

化学镀镍研究目的论文

镀镍是通过电解或化学方法在金属或某些非金属上镀上一层镍的方法,称为镀镍。镀镍分电镀镍和化学镀镍。电镀镍是在由镍盐(称主盐)、导电盐、pH缓冲剂、润湿剂组成的电解液中,阳极用金属镍,阴极为镀件,通以直流电,在阴极(镀件)上沉积上一层均匀、致密的镍镀层。从加有光亮剂的镀液中获得的是亮镍,而在没有加入光亮剂的电解液中获得的是暗镍。化学镀又称为无电解镀(Electrolessplating),也可以称为自催化电镀(Autocatalyticplating)。具体过程是指:在一定条件下,水溶液中的金属离子被还原剂还原,并且沉淀到固态基体表面上的过程。ASTMB374(ASTM,美国材料与试验协会)中定义为Autocatalyticplatingis“depositionofametalliccoatingbyacontrolledchemicalreductionthatiscatalyzedbythemetaloralloybeingdeposited”。这一过程与置换镀不同,其镀层是可以不断增厚的,且施镀金属本身也具有催化能力。镀镍溶液的历史与电镀相比,比较短暂,在国外其真正应用到工业仅仅是70年代末80年代初的事。1844年,发现金属镍可以从金属镍盐的水溶液中被次磷酸盐还原而沉积出来。化学镀镍技术的真正发现并使它应用至今是在1944年,美国国家标准局的和的发现,弄清楚了形成涂层的催化特性,发现了沉积非粉末状镍的方法,使化学镀镍技术工业应用有了可能性。但那时的化学镀镍溶液极不稳定,因此严格意义上讲没有实际价值。化学镀镍工艺的应用比实验室研究成果晚了近十年。第二次世界大战以后,美国通用运输公司对这种工艺发生了兴趣,他们想在运输烧碱筒的内表面镀镍,而普通的电镀方法无法实现,五年后他们研究了发展了化学镀镍磷合金的技术、公布了许多专利。1955年造成了他们的第一条试验生产线,并制成了商业性有用的化学镀镍溶液,这种化学镀镍溶液的商业名称为“Kanigen”。国外,特别是美国、日本、德国化学镀镍已经成为十分成熟的高新技术,在各个工业部门得到了广泛的应用。我国的化学镀镍工业化生产起步较晚,但近几年的发展十分迅速,不仅有大量的论文发表,还举行了全国性的化学镀会议,据第五届化学镀年会发表文章的统计就已经有300多家厂家,但这一数字在当时应是极为保守的。据推测国内每年的化学镀镍市场总规模应在300亿元左右,并且以每年10%~15%的速度发展。

在催化剂Fe的催化作用下,溶液中的次磷酸根在催化表面催化脱氢,形成活性氢化物,并被氧化成亚磷酸根;活性氢化物与溶液中的镍离子进行还原反应而沉积镍,其本身氧化成氢气。即:2H2PO2-+2H2O+Ni2+→Ni0+H2↑+4H++2HPO32-。与此同时,溶液中的部分次磷酸根被氢化物还原成单质磷进入镀层。即:H2PO2-+[H+](催化表面)→P+H2O+OH-,所形成的化学镀层是NiP合金,呈非晶态簿片结构。 不用外来电流,借氧化还原作用在金属制件的表面上沉积一层镍的方法。用于提高抗蚀性和耐磨性,增加光泽和美观。适合于管状或外形复杂的小零件的光亮镀镍,不必再经抛光。一般将被镀制件浸入以硫酸镍、次磷酸二氢钠、乙酸钠和硼酸所配成的混合溶液内,在一定酸度和温度下发生变化,溶液中的镍离子被次磷酸二氢钠还原为原子而沉积于制件表面上,形成细致光亮的镍镀层。钢铁制件可直接镀镍。锡、铜和铜合金制件要先用铝片接触于其表面上1-3分钟,以加速化学镀镍。化学镀就是在不通电的情况下,利用氧化还原反应在具有催化表面的镀件上,获得金属合金的方法。它是新近发展起来的一门新技术。 化学镀镍的历史与电镀相比,比较短暂,在国外其真正应用到工业仅仅是70年代末80年代初的事。 1844年,发现金属镍可以从金属镍盐的水溶液中被次磷酸盐还原而沉积出来。化学镀镍技术的真正发现并使它应用至今是在1944年,美国国家标准局的和的发现,弄清楚了形成涂层的催化特性,发现了沉积非粉末状镍的方法,使化学镀镍技术工业应用有了可能性。但那时的化学镀镍溶液极不稳定,因此严格意义上讲没有实际价值。化学镀镍工艺的应用比实验室研究成果晚了近十年。第二次世界大战以后,美国通用运输公司对这种工艺发生了兴趣,他们想在运输烧碱筒的内表面镀镍,而普通的电镀方法无法实现,五年后他们研究了发展了化学镀镍磷合金的技术、公布了许多专利。1955年造成了他们的第一条试验生产线,并制成了商业性有用的化学镀镍溶液,这种化学镀镍溶液的商业名称为“Kanigen”。在国外,特别是美国、日本、德国化学镀镍已经成为十分成熟的高新技术,在各个工业部门得到了广泛的应用。中国的化学镀镍工业化生产起步较晚,但近几年的发展十分迅速,不仅有大量的论文发表,还举行了全国性的化学镀会议,据第五届化学镀年会发表文章的统计就已经有300多家厂家,但这一数字在当时应是极为保守的。据推测国内每年的化学镀镍市场总规模应在300亿元左右,并且以每年10%~15%的速度发展。

在化学镀镍前,金属制品表面前处理包括:研磨抛光、除油、除锈、活化等过程,化学镀镍中经常使用的金属前处理方法与电镀工艺中的类似。研磨、抛光等物理方法, fgr磁盘阵列作为独立系统在主机外直连或通过网络与主机相连。磁盘阵列有多个端口可以被不同主机或不同端口连接。一个主机连接阵列的不同端口可提升传输速度。和当时PC用单磁盘内部集成缓存一样,在磁盘阵列内部为加快与主机交互速度,都带有一定量的缓冲存储器。主机与磁盘阵列的缓存交互,缓存与具体的磁盘交互数据。在应用中,有部分常用的数据是需要经常读取的,磁盘阵列根据内部的算法,查找出这些经常读取的数据,存储在缓存中,加快主机读取这些数据的速度,而对于其他缓存中没有的数据,主机要读取,则由阵列从磁盘上直接读取传输给主机。对于主机写入的数据,只写在缓存中,主机可以立即完成写操作。然后由缓存再慢慢写入磁盘。

你把原文发我邮箱,石英光纤的电镀无非是前处理或化镍,前处理可能使用含氟化合物作为腐蚀,化镍根据实际情况使用合适的有机酸做络合剂,一般是苹果酸、丁二酸等。扣扣1472208044

sic耐磨镀层的研究论文下载

在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。

玉米耐盐碱研究进展论文

会的。土壤非常的重要,会影响玉米的成长,也会影响玉米的生长发育,后果非常的严重。

玉米的根为须根系,除胚根外,还从茎节上长出节根:从地下节根长出的称为地下节根,一般4~7层;从地上茎节长出的节根又称支持根、气生根,一般2~3层。株高1~米,秆呈圆筒形。全株一般有叶15~22片,叶身宽而长,叶缘常呈波浪形。花为单性,雌雄同株。雄花生於植株的顶端,为圆锥花序;雌花生於植株中部的叶腋内,为肉穗花序。雄穗开花一般比雌花吐丝早3~5天。一年生,草本,禾本科植物。原产於中美洲,是印地安人培育的主要粮食作物,喜高温,17世纪时传入中国,玉米属禾本科玉米属。全世界玉米播种面积仅次于小麦、水稻而居第三位。在我国玉米的播种面积很大,分布也很广,是我国北方和西南山区及其它旱谷地区人民的主要粮食之一。 山东省莱西市为玉米的重要产区之一.开鲁县的玉米质量非常高中国的玉米产量居世界第2位。玉米喜温,种子发芽的最适温度为25~30℃。拔节期日均18℃以上。从抽雄到开花日均26~27℃。灌浆和成熟需保持在20~24℃;低于16℃或高于25℃,淀粉酶活动受影响,导致子粒灌浆不良。玉米为短日照作物,日照时数在12小时内,成熟提早。长日照则开花延迟,甚至不能结穗。玉米在砂壤、壤土、粘土上均可生长。玉米适宜的土壤pH为5~8,以~最适。耐盐碱能力差,特别是氯离子对玉米为害大。玉米是谷实类饲料的主体,也是我国主要的能量饲料。玉米的适口性好,没有使用限制。其营养特性如下:1.可利用能量高。玉米的代谢能为/kg,高者可达/kg,是谷实类饲料中最高的。这主要由于玉米中粗纤维很少,仅2%;而无氮浸出物高达72%,且消化率可达90%;另一方面,玉米的粗脂肪含量高,在至之间。玉米为一年生禾本科植物,又名苞谷、棒子、六谷等。据研究测定,每100克玉米含热量196千卡,粗纤维克,蛋白质克,脂肪克,碳水化合物克,另含矿物质元素和维生素等。玉米中含有较多的粗纤维,比精米、精面高4-10倍。玉米中还含有大量镁,镁可加强肠壁蠕动,促进机体废物的排泄。玉米上述的成份与功能,对于减肥非常有利。玉米成熟时的花穗玉米须,有利尿作用,也对减肥有利。 玉米可煮汤代茶饮,也可粉碎后制作成玉米粉、玉米糕饼等。膨化后的玉米花体积很大,食后可消除肥胖人的饥饿感,但食后含热量很低,也是减肥的代用品之一。2.亚油酸含量较高。玉米的亚油酸含量达到2%,是谷实类饲料中含量最高者。如果玉米在日粮中的配比达50%以上,仅玉米即可满足猪、鸡对亚油酸的需要量(1%)。3.蛋白质含量偏低,且品质欠佳。玉米的蛋白质含量约为左右,且氨基酸不平衡,赖氨酸、色氨酸和蛋氨酸的含量不足。4.矿物质 矿物质约80%存在于胚部,钙含量很少,约;磷约含,但其中约有63%的磷以植酸磷的形式存在,单胃动物的利用率很低。其它矿物元素的含量也较低。5.维生素 脂溶性维生素中维生素E较多,约为20mg/kg,黄玉米中含有较多的胡萝卜素,维生素D和K几乎没有。水溶性维生素中含硫胺素较多,核黄素和烟酸的含量较少,且烟酸是以结合型存在。6.叶黄素 黄玉米中所含叶黄素平均为22mg/kg,这是黄玉米的特点之一,它对蛋黄、胫、爪等部位着色有重要意义。最近,德国营养保健协会的一项研究表明,在所有主食中,玉米的营养价值和保健作用是最高的。 可预防心脏病和癌症 在这项持续1年的研究中,专家们对玉米、稻米、小麦等多种主食,进行了营养价值和保健作用的各项指标对比。结果发现,玉米中的维生素含量非常高,为稻米、小麦的5-10倍。 同时,玉米中含有大量的营养保健物质也让专家们感到惊喜。除了含有碳水化合物、蛋白质、脂肪、胡萝卜素外,玉米中还含有核黄素、维生素等营养物质。这些物质对预防心脏病、癌症等疾病有很大的好处。 研究还显示,特种玉米的营养价值要高于普通玉米。比如,甜玉米的蛋白质、植物油及维生素含量就比普通玉米高1-2倍;“生命元素”硒的含量则高8-10倍;其所含有的17种氨基酸中,有13种高于普通玉米。此外,鲜玉米的水分、活性物、维生素等各种营养成分也比老熟玉米高很多,因为在贮存过程中,玉米的营养物质含量会快速下降。 含有7种“抗衰剂” 负责这项研究的德国著名营养学家拉赫曼教授指出,在当今被证实的最有效的50多种营养保健物质中,玉米含有7种———钙、谷胱甘肽、维生素、镁、硒、维生素E和脂肪酸。 经测定,每100克玉米能提供近300毫克的钙,几乎与乳制品中所含的钙差不多。丰富的钙可起到降血压的功效。如果每天摄入1克钙,6周后血压能降低9%。此外,玉米中所含的胡萝卜素,被人体吸收后能转化为维生素A,它具有防癌作用;植物纤维素能加速致癌物质和其他毒物的排出;天然维生素E则有促进细胞分裂、延缓衰老、降低血清胆固醇、防止皮肤病变的功能,还能减轻动脉硬化和脑功能衰退。研究人员指出,玉米含有的黄体素、玉米黄质可以对抗眼睛老化。此外,多吃玉米还能抑制抗癌药物对人体的副作用,刺激大脑细胞,增强人的脑力和记忆力

是的,会影响。在种植玉米的时候,就应该选择一些适合玉米的土壤,也应该选择一些排水性比较好的土壤,才会让玉米有一个很好的种植。

玉米基本知识及合约 最近,德国营养保健协会的一项研究表明,在所有主食中,玉米的营养价值和保健作用是最高的。 可预防心脏病和癌症 在这项持续1年的研究中,专家们对玉米、稻米、小麦等多种主食,进行了营养价值和保健作用的各项指标对比。结果发现,玉米中的维生素含量非常高,为稻米、小麦的5-10倍。 同时,玉米中含有大量的营养保健物质也让专家们感到惊喜。除了含有碳水化合物、蛋白质、脂肪、胡萝卜素外,玉米中还含有核黄素、维生素等营养物质。这些物质对预防心脏病、癌症等疾病有很大的好处。 研究还显示,特种玉米的营养价值要高于普通玉米。比如,甜玉米的蛋白质、植物油及维生素含量就比普通玉米高1-2倍;“生命元素”硒的含量则高8-10倍;其所含有的17种氨基酸中,有13种高于普通玉米。此外,鲜玉米的水分、活性物、维生素等各种营养成分也比老熟玉米高很多,因为在贮存过程中,玉米的营养物质含量会快速下降。 含有7种“抗衰剂” 负责这项研究的德国著名营养学家拉赫曼教授指出,在当今被证实的最有效的50多种营养保健物质中,玉米含有7种———钙、谷胱甘肽、维生素、镁、硒、维生素E和脂肪酸。 经测定,每100克玉米能提供近300毫克的钙,几乎与乳制品中所含的钙差不多。丰富的钙可起到降血压的功效。如果每天摄入1克钙,6周后血压能降低9%。此外,玉米中所含的胡萝卜素,被人体吸收后能转化为维生素A,它具有防癌作用;植物纤维素能加速致癌物质和其他毒物的排出;天然维生素E则有促进细胞分裂、延缓衰老、降低血清胆固醇、防止皮肤病变的功能,还能减轻动脉硬化和脑功能衰退。研究人员指出,玉米含有的黄体素、玉米黄质可以对抗眼睛老化。此外,多吃玉米还能抑制抗癌药物对人体的副作用,刺激大脑细胞,增强人的脑力和记忆力 基本知识 一、玉米的常识禾本科玉米属一年生草本植物,学名Zea mays L.(又称玉蜀黍)株形高大,叶片宽长,雌雄花同株异位,雄花序长在植株的顶部,雌花序(穗)着生在中上部叶腋间,为异花(株)授粉的一年生作物。有苞米、棒子、玉茭、苞谷珍珠米等俗称,起源于南美洲。7000年前美洲的印第安人就已经开始种植玉米。哥伦布发现新大陆后,把玉米带到了西班牙,随着世界航海业的发展,玉米逐渐传到了世界各地,并成为最重要的粮食作物之一。大约在16世纪中期,中国开始引进玉米,18世纪又传到印度。到目前为止,世界各大洲均有玉米种植,玉米成为最主要的饲料作物。在世界范围内,尽管还有大麦、燕麦、高粱等饲料作物,但其产量与玉米相比,实在是冰山之一角。玉米占世界粗粮产量的65%以上,占我国粗粮产量的90%。玉米是制造复合饲料的最主要原料,一般占80%,其余20%为豆粕或鱼粉等高蛋白添加物。在世界谷类作物中,玉米的种植面积和总产量仅次于小麦、水稻而居第3位,平均单产则居首位。从北纬58°到南纬42°,从低于海平面的中国新疆吐鲁番盆地到3600米以上的高海拔地区,都能栽种。以北美洲最多,其次为亚洲、拉丁美洲、欧洲等。中国的玉米栽培面积和总产量均居世界第2位。集中分布在从东北经华北走向西南这一斜长形地带内,其种植面积约占全国玉米面积85%。玉米籽粒中含有70-75%的淀粉,10%左右的蛋白质,4-5%的脂肪,2%左右的多种维生素。籽粒中的蛋白质、脂肪、维生素A、维生素B1、维生素B2含量均比稻米多。以玉米为原料制成的加工产品有500种以上。玉米的种子包括果皮、种皮、胚和胚乳,但果皮和种皮紧密连结,不易分开。胚乳分糊粉层和淀粉层。籽粒因品种不同有黄、白、紫红、条斑等色,最外一层果皮通常是透明无色的,只有少数品种是紫红或条斑色。胚位于籽粒基部一侧,占籽粒总重的10-15%,胚乳占80-85%,果皮和种皮占6-8%。籽粒形状、大小和透明度等随品种类型而不同,如马齿型品种粒大,扁平近长方形;硬粒型品种粒小,近于圆形,透明度好。玉米是喜温短日照作物。从种子萌动发芽到新种子成熟,全生育期需90-150天。一般晚熟品种,因播种期早,生长前期温度偏低,生育期偏长;反之则短。中国的早熟品种生育期90-100天,多春播。光照长短和光谱成分,对玉米生长发育有密切关系。全生育期可分为苗期(播种至拔节)、穗期(拔节至抽穗)、花粒期(抽穗至成熟)3个生育时期。从发芽开始,经出苗,生根,茎叶形成等过程。中国北部地区4月中下旬至5月上旬播种的春玉米,需12-15天出苗,约有6月上中旬拔节。夏播玉米5月下旬至6月中下旬播种,一般5-6天后出苗,至7月上中旬拔节。生长特点是以根系生长为主,根的生长量比地上部茎叶大。根的干物重增长量比茎叶的干物重多倍。苗期茎和叶相比,叶的生长比茎快。春播玉米抽穗期在7月中下旬,夏播玉米在8月中下旬,依品种、地区、播种期和栽培条件的不同而异。这时期的生育特点是既有根、茎、叶的旺盛生长,又有内部雌、雄穗的快速分化,是营养器官与生殖器官同时旺长时期。二、玉米的用途 由于玉米籽粒和植株在组成成分方面的许多特点,决定了玉米的广泛利用价值。世界玉米总产量中直接用作食粮的只占三分之一,大部分用于其他方面。1.食用玉米是世界上最重要的食粮之一,特别是一些非洲、拉丁美洲国家。现今全世界约有三分之一的人以玉米籽粒作为主要食粮,其中亚洲人的食物组成中玉米占50%,多者达90%以上,非洲占25%,拉丁美洲占 40%。玉米的营养成分优于稻米、薯类等,缺点是颗粒大、食味差、粘性小。随着玉米加工工业的发展,玉米的食用品质不断改善。形成了种类多样的玉米食品。(1)特制玉米粉和胚粉:玉米籽粒脂肪含量较高,在贮藏过程中会因脂肪氧化作用产生不良味道。经加工而成的特制玉米粉,含油量降低到1%以下,可改善食用品质,粒度较细。适于与小麦面粉掺和作各种面食。由于富含蛋白质和较多的维生素,添加制成的食品营养价值高,是儿童和老年人的食用佳品。 (2)膨化食品:玉米膨化食品是70年代以来兴起而迅速盛行的方便食品,具有疏松多孔、结构均匀、质地柔软的特点,不仅色、香、味俱佳,而且提高了营养价值和食品消化率。 (3)玉米片:是一种快餐食品,便于携带,保存时间长,既可直接食用,又可制作其他食品,还可采用不同佐料制成各种风味的方便食品,用水、奶、汤冲泡即可食用。 (4)甜玉米:可用来充当蔬菜或鲜食,加工产品包括整穗速冻、籽粒速冻、罐头三种。 (5)玉米啤酒:因玉米蛋白质含量与稻米接近而低于大麦、淀粉含量与稻米接近而高于大麦,故为比较理想的啤酒生产原料。 2.饲用 世界上大约65%的玉米都用作饲料,发达国家高达80%,是畜牧业赖以发展的重要基础。 (1)玉米籽粒:玉米籽粒,特别是黄粒玉米是良好的饲料,可直接作为猪、牛、马、鸡、鹅等畜禽饲料;特别适用于肥猪、肉牛、奶牛、肉鸡。随着饲料工业的发展,浓缩饲料和配合饲料广泛应用,单纯用玉米作饲料的量已大为减少。 (2)玉米秸秆:也是良好饲料,特别是牛的高能饲料,可以代替部分玉米籽粒。玉米秸秆的缺点是含蛋白质和钙少,因此需要加以补充。秸秆青贮不仅可以保持茎叶鲜嫩多汁,而且在青贮过程中经微生物作用产生乳酸等物质,增强了适口性。 (3)玉米加工副产品的饲料应用:玉米湿磨、干磨、淀粉、啤酒、糊精、糖等加工过程中生产的胚、麸皮、浆液等副产品,也是重要的饲料资源,在美国占饲料加工原料的5%以上。 3.工业加工 玉米籽粒是重要的工业原料,初加工和深加工可生产二、三百种产品。初加工产品和副产品可作为基础原料进一步加工利用,在食品、化工、发酵、医药、纺织、造纸等工业生产中制造种类繁多的产品,穗轴可生产糠醛。 另外,玉米秸秆和穗轴可以培养生产食用菌,苞叶可编织提篮、地毯、坐毯等手工艺品,行销国内外。 (1)玉米淀粉:玉米在淀粉生产中占有重要位置,世界上大部分淀粉是用玉米生产的。美国等一些国家则完全以玉米为原料。为适应对玉米淀粉量与质的要求,玉米淀粉的加工工艺已取得了引人注目的发展。特别是在发达国家,玉米淀粉加工已形成重要的工业生产行业。 (2)玉米的发酵加工:玉米为发酵工业提供了丰富而经济的碳水化合物。通过酶解生成的葡萄糖,是发酵工业的良好原料。加工的副产品,如玉米浸泡液、粉浆等都可用于发酵工业生产酒精、啤酒等许多种产品。 (3)玉米制糖:随着科技发展,以淀粉为原料的制糖工业正在兴起,品种、产量和应用范围大大增加,其中以玉米为原料的制糖工业尤为引人注目。专家预计,未来玉米糖将占甜味市场的 50%,玉米在下一世纪将成为主要的制糖原料。 (4)玉米油:是由玉米胚加工制得的植物油脂,主要由不饱和脂肪酸组成。其中亚油酸是人体必需脂肪酸,是构成人体细胞的组成部分,在人体内可与胆固醇相结合,呈流动性和正常代谢,有防治动脉粥样硬化等心血管疾病的功效玉米油中的谷固醇具有降低胆固醇的功效,富含维生素E,有抗氧化作用,可防治干眼病、夜盲症、皮炎、支气管扩张等多种功能,并具有一定的抗癌作用。由于玉米油的上述特点,且还因其营养价值高,味觉好,不易变质,因而深受人们欢迎。三、玉米的生产分布(一)、世界玉米生产分布情况玉米是世界上分布最广的作物之一,从北纬58度到南纬35—40度的地区均有大量栽培。北美洲种植面积最大,亚洲、非洲和拉丁美洲次之。种植面积最大、总产量最多的国家依次是美国、中国、巴西、墨西哥。从栽培面积和总产量看,玉米仅次于小麦和水稻居第三位。表1 世界各主要玉米生产国产量 单位:百万吨世界 美国 中国 巴西 欧盟 墨西哥 120 43 东南亚 阿根廷 加拿大 埃及 南非 其它 资料来源:04年USDA9月报告。近年来玉米生产发展很快。这主要得益于杂交种的采用、品种更新、生产条件改善与栽培技术的提高。美国的Hallauer等研究指出,美国玉米增产总值的60%源于遗传改进即品种更新,我国也有类似的报道。玉米杂交种秸秆质量的改善及紧凑型品种的出现,使密植栽培成为可能,也使得玉米产量稳步增加。化肥投入的增加、水利设施的兴建等,都是玉米生产发展的原因。(二) 、我国玉米生产分布情况中国的玉米种植面积有3亿亩左右,分为六个种植区:*北方春播玉米区,以东北3省、内蒙古和宁夏为主,种植面积稳定在650多万公顷,占全国36%左右;总产2700多万吨,占全国的40%左右。*黄淮海平原夏播玉米区,以山东和河南为主,种植面积约600多万公顷,约占全国32%,总产约2200万吨,占全国34%左右。*西南山地玉米区,以四川、云南和贵州为主,面积约占全国的22%,总产占18%左右。*南方丘陵玉米区,以广东、福建、台湾、浙江和江西为主。种植面积为全国的6%,总产不足5%。*西北灌溉玉米区,新疆维吾尔自治区和甘肃省一部分地区。种植面积约占全国的,总产约占3%。*青藏高原玉米区,青海省和西藏自治区海拔高,种植面积及总产,都不足全国的百分之一。

化学退镍镀层的毕业论文

您好,退镍水的主要程份是表面活性剂,非离子型有机酸/碱,湿润剂,水等。广州市贻顺化工的退镍液主要应用于退除铁底材、铜底材、PC、PMMA(亚克力)、PET、电路板、光学玻璃、塑胶产品的金属镀镍层。本退镀液能快速退镀,退镀后的基材无斑点、光亮透明,是适用于手工退镀和机械退镀的高效退镀液。酸性退镀液,环保安全无毒,通过ROHS环保检测;退镍速度快、彻底、无残留,有效降低废品率;安全稳定、对基材无伤害。处理后的产品无斑点、光亮;常温使用,操作方便。使用方法:1、本品为原液使用先用耐腐蚀塑料容器装好,常温使用加入添加剂20-40克/公斤。2、本品在使用过程中,应根据退镀产品的数量、班次来进行不断添加。3、当退镀效果不好时,重新进行彻底的更换以便清除沉淀物达到最佳效果。4、原液使用,不要加水。5、工件要完全浸没在退镍液中,并翻动工件,不能使工件露出液面。6、本产品不太适应铁底材有镀铜层和镀镍层两种镀层,否则容易伤到基体。

不同的金属件,退镀的方法都是不同的。

1、合金退镀的方法(不需加水.工件不允许有水带入):

硝酸450ml/L 硫酸35ml/L 磷酸250ml/l

2、铝件退镀的方法:

硝酸550ml/L 硫酸300ml/L 氢酸150ml/L

3、铁件退镀的方法:

盐酸550ml/L 硝酸550ml/L

4、铜件退镀的方法:

浓盐酸电解,即可退镀。

扩展资料

电化学法退除镀层是利用某些基体金属在碱性溶液或含有铬化合物的溶液里阳极钝化,溶液的钝化条件或缓蚀使金属基体免受腐蚀。或在酸性溶液中加入缓蚀剂等物质,使得只有镀层金属发生阳极氧化而溶解。

一般对挂具上镀层的退镀,都采用电化学法,挂具作为阳极,不锈钢板作阴极,在一定条件下,在退镀液中对挂具镀层进行退除,仅需1~ 3 min 即可退除干净。

退镀液:电镀领域中不可避免的一环。其方法有两种,一种是将退镀零件浸泡在退镀溶液中,其原理是利用化学溶解法将电镀层除去,另一种方法是将退镀零件放在退镀溶液中进行电解,其原理是利用电化学法将电镀层除去。

参考资料来源:百度百科-退镀

参考资料来源:百度百科-退镀液

不同的金属件.退镀的方法都是不同的1.合金退镀的方法(不需加水.工件不允许有水带入)硝酸450ml/L 硫酸35ml/L 磷酸250ml/l2. 铝件退镀的方法硝酸550ml/L 硫酸300ml/L 氢酸150ml/L3.铁件退镀的方法盐酸550ml/L 硝酸550ml/L4.铜件退镀的方法浓盐酸电解.即可退镀

化学退镀法:化学退镀法不使工件受腐蚀,适用几何形状复杂的工件,且可做到退镀均匀。配方1:浓hno3,20~60℃。本液成本低,速度快(30~40μm/h),毒性小。适用尺寸精密要求不高的工件退镀,防止带入水、退镀完毕迅速入盐酸中清洗后再用流动水清洗。配方2:hno3(1∶1),20~40℃,退速快(10μm/5~6min),适用不锈钢。配方3:浓hno31000ml/l,nacl20g/l,尿素10g/l(抑制nox气体的生成),六次甲基四胺5g/l,室温,退速20μm/h。配方4:间硝基苯磺酸钠60~70g/l,硫酸100~120g/l,硫氰酸钾~1g/l,80~90。c,适用铜及铜合金工件的退镀,退镀表面为深棕色时,取出后充分清洗,再除棕色膜(nacn30g/l,naoh30g/l,室温)。配方5:hno3∶hf=4∶1(体积比),冬天适当加温,退速快,铁基体不腐蚀。但hf一定要用分析纯(用工业级hf配槽,易发生爆炸)。配方6:硝酸铵100g/l,氨三乙酸40g/l,六次甲基四胺20g/l,ph=6,室温,成本低。配方7:间硝基苯磺酸钠110~130g/l,氰化钠100~120g/l,氢氧化钠8~10g/l,柠檬酸三钠20~30g/l,80~90℃,适用精密钢铁件化学镀镍层的退除。配方8:间硝基苯磺酸钠100g/l,naoh100g/l,乙二胺120ml/l,十二烷基硫酸钠,60~80℃。调整时补加间硝基磺酸钠,可使退速恢复到最高退速的80%。(2)电解退镀法配方为:nano3100g/l,氨三乙酸15g/l,柠檬酸20g/l,硫脲2g/l,葡萄糖酸钠1g/l,十二烷基硫酸钠,ph=4,室温,da=2~10a/dm2,阴极10#钢,sk∶sa=2~3∶1。

相关百科

热门百科

首页
发表服务