首页

> 学术论文知识库

首页 学术论文知识库 问题

全国数学建模一等奖论文

发布时间:

全国数学建模一等奖论文

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立的全过程就称为。目录背景数学的意义数学建模应用准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入大学在中国大学生章程(2008年)第四届数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模的意义 数学建模 模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入大学 在中国大学生 全国大学生 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学近半个多世纪以来,随着的迅速发展,数学的应用不仅在工程技术、等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代的重要组成部分。数学建模数学模型(Mathematical Model)是一种模拟,是用、数学式子、程序、图形等对实际课题的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用在科技和解决哪类实际问题,还是与其它学科相结合形成,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和在的作用可谓是。数学是研究和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从以来,随着的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在这个,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生的意识和能力已经成为的一个重要方面。编辑本段数学建模的意义数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用描述实际现象的过程。这里的实际现象既包涵具体的比如现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让家(指只懂数学不懂数学在实际中的应用的)变成,,甚至等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。模型应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立的过程,是把的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的,建立起反映实际问题的,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的,敏锐的和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学转化的主要途径,数学建模在发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为的教学改革和培养高层次的的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模和培养面向的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用及当代高新的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生的精神、形成一个生动活泼的环境和气氛,的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如、最优化、、、计算方法、、、,包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至等。

你可以去赛才网上去看看,那里有1992-2008的优秀论文,很不错

这是07年数模比赛获奖的:乘公交 看奥运二 符号说明 :第i条公汽线路标号,i=1,2 …10400,当 时, 表示上行公汽路线, 当 时, 表示与上行路线 相对应的下行公汽路线; :经过第i条公汽路线的第g个公汽站点标号; :第j条地铁路线标号, j=1,2; :经过第j条地铁线路的第h个地铁站点标号; :转乘n次的路线; :选择第k种路线的总时间; :选择第k种路线公汽换乘公汽的换乘次数; :选择第k种路线地铁换乘地铁的换乘次数; :选择第k种路线地铁换乘公汽的换乘次数; :选择第k种路线公汽换乘地铁的换乘次数; :第k种路线、乘坐第m辆公汽的计费方式,其中: 表示实行单一票价, 表示实行分段计价; :第k种路线,乘坐第m辆公汽的费用; :选择第k种路线的总费用; :选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数; :选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数; :表示对于第k种路线的第m路公汽的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行; :对于第k种路线的第n路地铁的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;三 模型假设基本假设1、相邻公汽站平均行驶时间(包括停站时间): 3分钟2、相邻地铁站平均行驶时间(包括停站时间): 分钟3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)4、地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)7、公汽票价:分为单一票价与分段计价两种;单一票价:1元其中分段计价的票价为:0 ~20站:1元21~40站:2元40站以上:3元8、地铁票价:3元(无论地铁线路间是否换乘)9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四 问题的分析在北京举行奥运会期间,公众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。不同的路线查询需求用图表示如下: 图 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。五 建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。5.1数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:L009: L529: L529为L009所对应的下行线路。如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001: 3914 0128 0710L521: 如果是环线的情况(如图所示),则可以等效为两条线路:顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。 经过分析,此两条”单行路线”线路的作用等同于原环形路线 图 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 1212 812 171 172 1585 1215 2606 1212 812 171 172 1585 1215 2606L673: 3513 172 2600 811 170 2355 649 534 2606 1215 3513 172 2600 811 170 2355 649在这里,L153被看作成上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。5.2搜寻经过每个站点的公交路线处理所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:经过S0001的线路有:L421经过S0002的线路有:L027 L152 L365 L395 L4855.3统计任意两条公交线路的相交(相近)站点依次统计出任意两条公交线路之间相交(相近)的站点,将其存入1040×1040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。例如:公交线路L001与公交线路L025相交的站点为A[1][25]={S0619,S1914,S0388,S0348}。六 模型的建立与求解6.1模型一的建立 该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点 与 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。6.1.1 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。 图 公汽路线图对于任意两个公汽站点 与 ,经过 的公汽线路表示为 ,有 ;经过 的公汽线路表示为 ,有 ;1)直达的路线 (如图(a)所示)表示为: 2)转乘一次的路线 (如图(b)所示)表示为: 其中:SC为 , 的一个交点;3)转乘两次的路线 (如图(c)所示)表示为: 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。6.1.2最优路线模型的建立 找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间 等于乘车时间与转车时间之和。 (式)其中,第k路线是以上转乘路线中的一种或几种。2)以转乘次数最少作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。3)以费用最少作为最优路线的模型: (式)其中, (式)6.1.3模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图叙述如下:(该图中的 、 、 、 、 表示公汽站点, 、 、 、 、 、 表示公汽线路。其中(a)、(b)、(c)图分别表示了从点 到点 直达、转乘一次、转乘两次的情况) 图 公交直达、转乘图(1)首先输入需要查询的两个站点 与 (假设 为起始站, 为终点站);(2)搜索出经过 的公汽线路 (i=1,2,…,m)和经过 的公汽线路 ( =1,2, …,n),存入数据文件;判断是 与 是否存在相同路线,若有则站点 与 之间有直达路线(如图中的 ),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;(3)找出经过 的公汽线路 (如图中的 )中的另一站点 和经过 的公汽线路 中的另一站点 。判断 与 中是否存在相同的点,若存在(如图中的 )则站点 与 间有一次换乘的路线(如图中的 与 ),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;(4)再搜索出经过 (如图中的 )线路上除了站点 的另一站点 (如图中的 )的公汽线路 (如图中的 ),找出公汽线路 上的其他站点 ;判断,如果 与经过 的公汽线路 中的其他站点 存在相同的点(如图中的 ),则 与 间有二次换乘的路线(如图中的 、 、 ),该相同点和点 是换乘站点;将此二次换乘的路线存入数据文件中;(5)对上述存储的经过两个站点 与 的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。6. 1. 4模型一的求解根据以上算法和前面建立的模型一,用VC++进行编程(程序见附录)就可以得出不同目标下的最优路线。1) 以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为106 min,耗时最少的最优路线有2条;起始站S0971到终到站S0485耗时最少为106 min,耗时最少的最优路线有2条;起始站S0008到终到站S0073耗时最少为67 min,耗时最少的最优路线有2条;起始站S0148到终到站S0485耗时最少为106 min,耗时最少的最优路线有3条;起始站S0087到终到站S3676耗时最少为46 min,耗时最少的最优路线有12条;其耗时最少的最优路线如表所示。表 耗时最少的最优路线表起始站 公汽线路 中转站 公汽线路 中转站 公汽线路 终到站 转乘次数 所需费用S3359 L0535 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0535 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0687 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0737 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0687 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0737 S1828 2 3S1557 L0604 S1919 L0709 S3186 L0980 S0481 2 3S1557 L0883 S1919 L0709 S3186 L0980 S0481 2 3S0971 L0533 S2517 L0810 S2480 L0937 S0485 2 3S0971 L0533 S2517 L0296 S2480 L0937 S0485 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0148 L0308 S0036 L0156 S2210 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3332 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3351 L0937 S0485 2 3S0087 L0541 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0982 S3676 2 32) 以转乘次数最少为目标的最优路线起始站S3359到终到站S1828的最少转乘次数为1次,转乘次数最少的最优路线(所需时间较短,费用较省的路线)有2条;起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有2条与耗时最少的最优路线相同(表示在表中,下同);起始站S0971到终到站S0485的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有9条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有3条与耗时最少的最优路线相同;起始站S0087到终到站S3676的最少转乘次数为2次,转乘次数最少的最优路线有6条与耗时最少的最优路线相同;其余转乘次数最少的最优路线路线如表所示。表 转乘次数最少的最优路线表起始站 公汽线路 中转站 公汽线路 终到站 耗时 所需费用S3359 L0956 S1784 L0687 S1828 101 3S3359 L0956 S1784 L0737 S1828 101 3S0971 L0533 S2184 L0937 S0485 128 3S0008 L0679 S0291 L0578 S0073 83 2S0008 L0679 S0491 L0578 S0073 83 2S0008 L0679 S2559 L0578 S0073 83 2S0008 L0679 S2683 L0578 S0073 83 2S0008 L0679 S3614 L0578 S0073 83 2S0008 L0875 S2263 L0345 S0073 83 2S0008 L0875 S2303 L0345 S0073 83 2S0008 L0875 S3917 L0345 S0073 83 2S0008 L0983 S2083 L0057 S0073 83 23)以费用最少为目标的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有30条,其中28条路线所需时间为64 min,转乘次数为2次,另外两条路线所需时间为101 min,转乘次数为1次;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有2条,所需时间为106 min,转乘次数为2次;起始站S0971到终到站S0485的最少费用为3元,最少费用的最优路线有3条,其中两条所需时间为106 min,转乘次数为2次,另外一条所需时间为128 min,转乘次数为1次;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有9条,所需时间为83 min,转乘次数为1次;起始站S0148到终到站S0485的最少费用为3元,最少费用的最优路线有3条,所需时间为106min,转乘次数为2次;起始站S0087到终到站S3676的最少费用为3元,最少费用的最优路线有12条,所需时间为46 min,转乘次数为2次;最少费用的最优路线表示在表和表中。 6.2.1模型二的建立 该模型针对问题二,将公汽与地铁同时考虑,找出可行路线,然后寻找最优路线。对于地铁线路,也可以将其作为公交线路,本质上没有什么区别,只不过乘车费用、时间,换乘时间不一样罢了。因此地铁站可等效为公交站,地铁和公交的转乘站即可作为两者的交汇点。因此该模型的公交换乘路线模型与模型一中的基本相同。现建立模型二下的最优路线模型。1)以时间最短的路线作为最优路线的模型:可行路线的总时间为乘公交(公汽和地铁)时间与公汽与地铁换乘、公汽间、地铁间换乘时间之和。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型:可行路线的费用为乘公交和地铁费用的总和。 (式)其中, 仍满足(式)。6.2.2模型二的求解 不难发现,问题一是问题二解的一部分。在问题二中,新产生的最优解主要源于在通过换乘地铁、换乘附近相近站点的路线上,如下图所示: 从点A到B,图(a)表示的是通过两公交线路上相邻公汽站S1,S2进行一次转乘;图(b)表示利用地铁站进行二次转乘;图(c)表示利用另一条公汽路线为中介进行二次转乘。铁路线路引入给题目的求解增加了难度,为了形象了解为数不多的两条铁路间的交叉关系,我们通过matlab编程(程序见附录)作出了两条铁路的位置关系图,如图所示。 图 T1与T2铁路位置关系图注:图四中的直线表示T1铁路线,圆表示T2铁路线,数值表示站点,例如1表示T1铁路线上的D1铁路站,26表示T2铁路线上的D26铁路站。此图与网上查询到的北京地铁示意图(如图所示)相吻合。 图 北京地铁示意图同样将地铁线路等效为公交线路得出任意两个站点间的可行线路,再将目标函数分别用模型二建立的模型表达式表达,用VC++进行编程(程序见附录)求得出考虑地铁情况的最优路线。1)以转乘次数最少为目标的最优路线起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0087到终到站S3676的最少转乘次数为0次,即有直达路线,直达下的最优路线有1条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有10条;起始站S0971到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有20条(注表中罗列其中10条);起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有17条(注表中罗列其中10条);起始站S3359到终到站S1828的最少转乘次数为2次,转乘次数最少的最优路线有2条。2)以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为109 min,耗时最少的最优路线有17条与转乘次数最少的最优路线相同;起始站S0971到终到站S0485耗时最少为96 min,耗时最少的最优路线有20条与转乘次数最少的最优路线相同;起始站S0008到终到站S0073耗时最少为55 min,耗时最少的最优路线有3条;起始站S0148到终到站S0485耗时最少为 min,耗时最少的最优路线有10条与转乘次数最少的最优路线相同;起始站S0087到终到站S3676耗时最少为33 min,耗时最少的最优路线有1条与转乘次数最少的最优路线相同;3) 最少费用的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有2条;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有17条;起始站S0971到终到站S0485的最少费用为5元,最少费用的最优路线有20条;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有1条;起始站S0148到终到站S0485的最少费用为5元,最少费用的最优路线有10条;起始站S0087到终到站S3676的最少费用为2元,最少费用的最优路线有1条;在此种情况下,我们就只考虑可以通过地铁站换乘的情况,不通过地铁站的情况即为模型1的求解结果。模型2的求解结果见附件1。6.3.1模型三的建立 该模型针对问题三,将步行方式考虑在了出行方式当中,更符合实际。因为当出发点与换乘点、终点站或转乘站与转乘站之间只相隔几个站时,当然该段选择步行方式更优。因此作出如下假设:一、如果存在某段路线,其两端点站之间相隔站点数小等于2(即至多经过4个站点),则该段线路选择步行方式到达目的地。其他的情况用模型二来处理。其中路线的两端点站之间相隔站点数是根据公交直达换乘路线来确定的。二、相邻公交站点(包括地铁站)间平均步行时间为5分钟。三、如果在公汽线路上选择步行,则公汽间换乘次数减少1;如果在地铁线路上选择步行,则地铁间换乘次数减少1,直达线路除外。直达和转乘一次、两次的路线需要步行的路段示意图如图所示。图中(a)表示出发点A与终点站B间能直达,相隔的站点数等于2所以选择步行;图中(b)表示出发点A与终点站B间通过一次换乘能到达,其中路段AC的站点数等于2所以选择步行,同样如果CB路段的站点数小等于2,则也采取步行的方式;图中(c)选择步行方式的依据类似。 图 步行示意图是否选择步行方式的函数: (式)其中 表示第m路公交路线是否步行, 表示第n路地铁线路是否步行; 对于直达路线,如果出发点与终点站之间相隔站点数小等于2则步行,否则乘车。对于需要转乘的路线的最优路线模型讨论如下:1)以时间最短的路线作为最优路线的模型:路线总时间等于乘车时间加上步行时间,再加上转乘时间。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型:每步行一次就少换乘一次车。 (式)此模型等效为以上转乘路线按直达、转乘一次、两次、三次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型: (式)其中, 仍满足(式)。七 模型的优缺点及改进模型的评价 模型优点1、模型是由简单到复杂一步步建立的,使得更贴近实际。2、本文的模型简单,其算法直观,容易编程实现。3、本文模型比较注重数据的处理和存储方式,大大提高了查询效率。4、本文模型注重效率的提高,通过大量的特征信息的提取,并结合有效的算法,使其完全可以满足实时系统的要求。 模型缺点在建模与编程过程中,使用的数据只是现实数据的一种近似,因而得出的结果可能与现实情况有一定的差距。 模型的改进以上模型主要是从公交线路出发,寻找公交线路的交叉站作为换乘站点,进而找出经过任意两个站点的可能乘车路线。我们也可以从公交站点的角度出发,用图论的方法建立有向赋权图(如图所示),此向赋权图是针对问题三建立的图论模型,问题一、问题二只是此模型的简化。图中 表示公汽线路标号,该线路是公汽线路 的上行线或下行线, 、 、 、 、 、 是公汽线路 上的站点标号; 表示地铁线路标号,该地铁线路是双向行驶的, 、 、 、 、 是地铁线路 上的站点标号;公汽 与地铁 可以在公汽站 和地铁站 间换乘。如果图中的地铁线路替换成公汽线路,为了表示公汽间换乘所需的时间或者费用,应将同一个换乘站点用两个站点来表示。 图 公交线路的有向赋权图根据不同的目标,给不同的站点间的边赋上不同的权值。然后利用图论的相关算法,找出相应的最短路径。1)当以时间最短为目标时,给每条边赋上时间的权值。给同一线路上任意两个站点间的边赋值时,其权值等于站点间的公交线路段数与平均时间的乘积。当某段线路的两段点间间隔站点数小等于3时,选择步行,该线路的权值等于步行时间。不同公汽和地铁间进行换乘时需要赋给不同的权值,以表示换乘时间。例如(如图):当j>4时, 到 的边权值 ;, 从 到 不需要的转车,但根据假设应选择步行,其边权值 ;,从 到 要么乘公交,然后转车,要么步行,根据步行的假设条件, 到 的站点间隔数小于2,因此选择步行,其边权值 ;,当g>4时, 与 之间的边权值 ;, 到 的边权值 ; 到 的边权值 ;当j>4、g>4时, 到 的路径长度为: ;当 、g>4时,则从 到 选择步行,再乘地铁到 ,其路径长度为; ;找出任意两点间可行路线的路径长度后,再搜索出其中的最短路径的的可行路线作为时间的最优路线。2)当以费用最省为目标时,则给每条边赋上费用的权值。公汽站点间的边权按(式)赋值。当公汽线路 按单一票价计费,对于 上任意两个公汽站点 和 间,若 ,则选择步行 ;若 ,则 ;当公汽线路 按分段计价,若 ,则 ;若 ,则 ;若 ,则 ;若 ,则 ;地铁线路 上任意两个站点 和 间,若 ,则选择步行 ;若 ,则 ;换乘站点 与 间的边权值均为0,即 ;则从 通过站点 换乘 到 的一条可行路线的路径长度为:若 , ,则从 到 选择步行, ;若 , ,则 ;同样可以找出任意两点间可行路线的路径长度,然后再搜索出最短路径作为费用的最优路线。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

数学建模优秀论文范文全国一等奖

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关,数学建模是培养学生运用数学工具解决实际问题的最好表现。下文是我为大家搜集整理的关于2017年全国大学生数学建模竞赛优秀论文的内容,欢迎大家阅读参考!

浅析数学建模课程改革及其 教学 方法

论文关键词:数学课程;数学建模;课程设置;课程改革

论文摘要:数学建模教学和竞赛的开展,是培养学生创新能力的重要途径。对数学建模竞赛中出现的问题进行分析,找出问题产生的根源与必修课和专业课设置不合理有关,应对高校数学课程的设置、教学方式等进行改革,并提出具体改革建议。

1. 前言

数学建模,从宏观上讲是人们借助数学改造自然、征服自然的过程,从微观上讲是把数学作为一种工具并应用它解决实际问题的教学活动方式。数学建模 教育 本身是一种素质教育,数学建模的教学与竞赛是实施素质教育的有效途径,它既增强了学生的数学应用意识,又提高了学生运用数学知识和计算机技术分析和解决问题的能力。因而加强数学建模教育,培养学生的数学应用意识与能力已成为我国高校数学建模课程改革的重要目标之一。虽然目前我国许多高校在数学建模方面取得了一些成绩,但大学生们在竞赛中也暴露出了许多问题,引发出对传统的课程设置和教学方法的思考。

2. 数学建模的现状和所存在问题与原因分析

建模竞赛的现状

根据竞赛时间(九月中下旬),我国大部分高校每年一般在七月中旬便开始组织学生的报名培训工作。培训内容分为两个部分:首先集中讲解一些基础知识,主要包括常微分方程、概率与数理统计、运筹学、数学实验、建模基础等课程;然后进行建模的模拟训练,以往届国内外普通组和大专组的部分竞赛题为选题,让学生自愿结组,在规定时间内完成,并自愿为同学讲解各自的解题思路和方法。

参赛学生首先要参加培训,他们一般是先关注校园网上的通知,再到各院系自愿报名而组成,经培训后选拔出参赛队员。事实上,一般参赛的学生并没有选拔的过程,基本上是学生在培训阶段就自动减员,所剩人数就是参赛人数。几年来,参加培训、竞赛的学生构成基本类似。报名学生数量不多,而且他们大多是来看看是怎么回事,听了一、两次课就不见踪影或自动退出。

数学建模课程的教学内容是以问题为中心,块状编排;开设数学建模课程的时间较短,缺乏应有的教学 经验 来借鉴,大多数教师都是采用模型的机械讲解。至于问题的形成背景,建模过程中可能用到的多种数学思想和方法很少顾及,更谈不上让学生在课堂进行讨论、交流与合作,使得学生难以掌握数学建模的思想和方法。

所存在的问题及原因分析

由以上可以看出,我国大部分高校在建模的工作中存在着一定的问题。第一,没有把数学建模工作纳入日常的教学工作中,临时抱佛脚,突击应对,学生对数学建模兴趣不浓,积极性不高。第二,参加培训竞赛的学生专业比较单一,数学建模活动没有全面展开,这虽然与宣传的力度有关,更主要是缺少必要的教学环节。第三,高年级学生参赛的较少,获奖的比例却较大。特别是大四年级的学生,由于他们面临 毕业 ,就业压力、 考研 压力很大,尽管他们有较深厚的数学基础,却无心顾及竞赛;低年级学生参加培训竞赛的人数较多,积极性很高,但却不出成绩。这表明数学建模与知识的掌握、积累密切相关,是理论与实际应用相结合、知识整合与释放相结合的过程,低年级课程设置不合理,一些相关课程开设太晚。第四,不少人认为应该把课程的重点放在具有复杂背景的实际问题的解决上,持这种观点的人主要是忽视了数学教育专业的特点和培养目标。我们认为,数学教育专业数学建模课程重点应放在树立信念、培养意识和能力上。

另外,数学建模课程开设及教材使用也存在诸多不足之处。据了解,绝大部分高校数学教育专业教学建模课程照搬理工类专业数学建模教材,这些教材主要存在以下问题:第一,教材主要涵盖大量难度较大的现成的数学模型,而这些模型应用了大量的非数学领域的知识和方法,要理解这些问题,对于数学教育专业的学生来说缺乏应有的基础,学习起来只能依靠模仿和机械记忆;第二,教材主要是采用以问题为主线的块状编排体系,重点是问题的罗列,过分突出问题解决。照搬这类教材给数学教育专业数学建模教学带来了较大的负面影响,学生接受难,教师驾驭难。更重要的是难以落实数学教育专业数学建模课程应使学生树立“数学具有广泛应用性”的信念,培养学生数学应用的意识和能力,使学生掌握一套数学建模方法等目标,难以适应高等学校数学教育改革的需要。

综上所述,我们认为,解决数学教育专业开设数学建模课程工作中所出现的问题是课程建设与改革的重中之重,建构符合数学教育专业实际和特色的教材以及形成一套与数学教育专业特点相适应的、科学的教学方法是当务之急。

3. 以数学建模活动为载体开展数学建模教学的途径与方法

目前,开展数学建模教学的途径与方法很多,其中比较常用且很奏效的途径和方法就是以数学建模活动为载体开展数学建模教学,其途径和方法可以描述如下:

精心设计教学案例,开展案例教学法

所谓案例教学法就是在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模示例,介绍建模的思想方法。课堂上的活动一部分是老师讲授,另一部分是让学生进行课堂讨论,即由学生发言,提出对问题的理解和所建立的数学模型的认识,并提出新的数学模型,对其求解、分析、讨论,进行比较检验。实施案例教学要把握好以下环节:

(1)教学案例的选取。要使案例教学达到最佳效果,最重要的就是选好教学案例。选取案例时应该遵循以下的原则:①代表性。案例避免涉及过多的专业知识,又要考虑到科学的发展,学科之间的联系,同时可以拓宽学生的知识面。②原始性。来自广播电视、报刊的信息,政府机关、企事业单位的 报告 、计划、统计资料等等,都是数学建模问题原始资料的重要来源;也可以引导学生亲自到一线调查研究,注意积累课题资料。③趣味性。在具体选取案例时,应该选择既有趣味性又能充分体现数学建模思想的案例,如人口问题、七桥问题、人狼羊过河问题、三级火箭发射卫星问题、森林灭火问题等等。从培养兴趣入手,让学生逐步体会到建模的思想方法和建模的重要性。④创新性。编制建模例题时,必须考虑培养学生的创新精神和创造能力。为此,应注重一题多模或多题一模、统计图表等例题的编拟,密切关注现代科学技术的发展,使学生创新和高新技术密切结合,融入当代科学发展的主流。

(2)案例的课堂教学。教师在讲授具体的建模案例时,应注重两个方面。第一个方面要从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,如何通过合理的假设和简化分析建立优化的数学模型。还要强调如何用求解结果去解释实际现象,检验模型。这种方法既突出了教学的重点,又给学生留下了进一步思考的空间。例如讲授传染病模型时,不同的假设会导致建立不同的模型,只有从实际出发,不断地修正才能使之成为一个成功的模型。除此,还可以给学生提供一些改进的方向,让学生自己课外独立探索和钻研。另外一个方面是教师的讲授必须和学生的讨论相结合。在教师先讲清楚案例的背景、关键的因素、所运用的数学工具等情况下,运用怎样的数学知识和数学思想、建立怎样的数学模型可以让学生各抒己见,进行讨论式教学。这样一方面可以避免教师的“满堂灌”,另一方面可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的。

把好课后建模实践训练关,巩固和深化课堂教学

为了巩固和深化课堂教学的内容,使学生进一步地提高建模能力,建模实践训练也是数学建模教学的重要环节。主要有以下的形式:一是布置课后训练题。第一种类型的训练题可以是用课堂上讲过的数学建模方法建模或者是对课上某个问题做进一步的讨论,这是为了达到巩固课堂教学的目的。

另一种类型是为了达到深化课堂教学的目的,在学完有关数学知识单元后,布置该单元知识的训练题,在特定的时间内,让学生在数学建模实验室进行建模强化训练。对每次的训练题要完整地完成,从提出问题、分析问题、建立模型、求解模型到模型的分析、检验、推广的全过程,并在规定时间内完成一篇思路清晰、条理有序的数学论文。通过此过程的强化训练,使学生的认模、建模、用模的能力得到充分地锻炼和提高。每次训练题做完后第一个环节就是教师对训练论文认真批阅审定,对论文中出现的问题及时提出指正意见;第二个环节是组织全班成员对训练论文进行专题讨论,让同学们讲述论文构思、建模思想与方法。通过整体交流,让大家互 相学 习、取长补短,达到共同提高的目的。二是系统讲授数学软件,并让学生上机实习。随着计算机技术的发展,一些高性能的、应用性强的数学软件应运而生,如Matlab、Mathematica、Mapple、SAS、Lindo、Lingo等。有了这些数学软件的出现,教材中复杂的数据计算和处理不再是难题。教师在系统讲授这些数学软件的具体使用技能后,让学生亲自上机操作,掌握这些软件在实际数学运算的应用。例如,如何利用软件进行求导、求积分、求极限等运算;如何利用软件解方程、方程组,解线性规划;如何利用数学软件研究函数变化规律,画出曲线、曲面的图形等等。

不断提高数学教师自身的水平来促进数学建模教学

在数学建模教学中,教师是关键。教师水平的高低直接决定着数学建模教学能否达到预期的培养学生能力的目的。讲授数学建模教学的教师不仅要求具备较高的专业水平,还必须具备丰富的实践经验和很强的解决实际问题的能力。因此,为了提高教师的水平,一方面可以多派教师走出去进行专业培训学习和学术交流,比如多参加各种学术会议、到名校去做访问学者等等。另一方面可以多请着名的专家教授走进来做建模学术报告,使师生增长知识,拓宽视野,了解科学发展前沿的新趋势、新动态。另外,数学教师还必须更新教育理念,不断积累和更新专业知识,其中包括较宽广的人文和科学素养。数学教师只有不断创新,努力提高自身素质,才能适应新的形势,符合时代发展的要求。

总之,数学建模内容具有实用价值,数学建模课程授课可以生动有趣,数学建模可能有知识创新的产品和成果。特别是促进相关数学课程的教学,应该在学生学习了相关课程后或者学习相关课程中开设数学建模,至少应该在现有教学内容中安排一定的数学实验。

参考文献:

[1]李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,1998.

[2]安淑华.中国数学教育改革的几点思考[J].数学教育学报,2004.

[3]黄泰安.数学教师的数学观和数学教育观[J].数学教育学报,2004.

[4]王茂之.数学建模培训课程体系设计探讨[J].数学教育学报,2005.

论数学建模思想教学

1在线性代数教学中融入数学建模思想的意义

激发学生的学习兴趣,培养学生的创新能力

教育的本质是让学生在掌握知识的同时可以学以致用。但是目前的线性代数教学重理论轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不仅可以激发学生学习线性代数的兴趣,而且可以调动学生使用线性代数的知识解决实际问题的积极性,使学生认识到线性代数的真正价值,从而改变线性代数无用的观念,同时还可以培养学生的创新能力。

提高线性代数课程的吸引力,增加学生的受益面

数学建模是培养学生运用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这可以大大改善线性代数课堂乏味沉闷的现状,从而提高线性代数课程的吸引力。由数学建模的教学现状可以看到学生的受益面很小,然而任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。

促进线性代数任课教师的自我提升

要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不仅要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的能力,这就迫使线性代数任课教师要不断学习新知识和新技术,促进自身知识的不断更新,进而达到提高教学和科研能力的效果。

2在线性代数教学中融入数学建模

思想的途径虽然线性代数课程本身的内容多,课时不够,但我们将数学建模的思想融入线性代数课程中,并不是用“数学建模”课的内容抢占线性代数课程的课时,在此,笔者仅从下面2个方面着手将建模的思想逐步渗透到线性代数的教学中。

在线性代数的概念中融入数学建模的思想

从广义上说,线性代数教材中的行列式、矩阵、矩阵乘法、向量、线性方程组等复杂抽象的概念都来源于实际。因此在讲授这些概念时可以恰当选取一些生动的实例来吸引学生的注意力,同时将概念模型自然地建立起来,使学生充分感受到实际问题向数学的转化。例如矩阵是线性代数中的一个重要概念,在引入矩阵的概念时,可以从一个简单的投入产出问题出发,将这个问题中的数据用矩形表来表示,这种简化思想即是建模抽象化思想的很好体现,而这样的矩形表就称为矩阵。

在线性代数的课外作业中融入数学建模的思想

课外作业是对课堂教学内容的消化和巩固,然而目前线性代数的教材以及相关参考书中的习题都没有涉及到线性代数中定义、定理在实际中的应用问题,为了弥补这一点,我们可以在习题中补充一些线性代数建模问题,具体的做法如下。1)在学完1~2个单元后,针对所学的内容开展1次大型作业,学生可以3人一组通过合作的方式来完成该作业(即完成1篇小论文)。学生在完成作业的过程中,不仅可以加强和巩固线性代数的课堂教学内容,还可以提高自学能力和论文写作能力以及培养他们的团队合作精神。同时通过完成大型作业可以使学生尽早地接触科研方法,这与目前鼓励大学生进行科研创新的宗旨是一致的。2)在所有学生的大型作业完成之后,可以组织学生讲解完成作业的思路以及遇到的问题,而教师则针对不同的 文章 做出相应的点评并指出改进的方向。这种学生讲教师听的换位教学模式不仅可以督促学生更好地完成作业,还可以提高学生的语言表达能力以及促进师生的关系,从而大大提高了教学效果。

3在线性代数教学中融入数学建模

思想的案例案例1:投入产出问题[4]。某地有一座煤矿,一个发电厂和一条铁路。经成本核算,每生产价值1元钱的煤需消耗元的电;为了把这1元钱的煤运出去需花费元的运费;每生产1元的电需元的煤作燃料;为了运行电厂的辅助设备需消耗元的电,还需要花费元的运费;作为铁路局,每提供1元运费的运输需消耗元的煤,辅助设备要消耗元的电。现该煤矿接到外地6万元煤的订货,电厂有10万元电的外地需求,问:煤矿和电厂各生产多少才能满足需求?模型假设:假设不考虑价格变动等其他因素。

4结束语

在线性代数教学中融入数学建模思想,培养学生的建模能力,是符合当代人才培养要求的,是可行的。同时也要认识到数学类主干课程的原有体系是经过多年历史积累和考验的产物,若没有充分的根据不宜轻易彻底变动[6]。因此数学建模思想的融入要采用渐进的方式,尽量与已有的教学内容进行有机的结合。实践证明,通过在线性代数教学中融入数学建模思想,不仅激发了学生的学习兴趣,培养了学生的创新能力,还可以促进教师进行自我提升。但如何在线性代数教学中很好地融入数学建模思想目前还处于探索阶段,仍需要广大数学教师的共同努力。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

数学建模国赛一等奖论文格式

数学建模论文行间距一般是单倍行距。

数学建模竞赛论文格式细节如下:

摘要:

“摘要”作为一级标题但不参加编号;

全国赛摘要中应包含关键词,“关键词”三字应该用黑体; 美国赛不用写关键词;

摘要后面用分页符来与后面正文分开,而非使用空行。

各级标题:

各级标题后面不可跟标点符号;

标题的标号:全国赛论文建议采用学术论文的标号,即1、2、3、、、等,标号后面可以再跟小圆点,亦可不跟,另外再用相同数量的空格隔开:亦可使用一、二、三等标号一级标题。美国赛论文中通常未使用标号,直接使用不同的字号与字体加以区分;

美国赛特等奖论文中通常不使用标号,直接使用不同的字号与字体加以区分;

一级标题居中显示,其它标题左对齐;

低一级的标题不宜比高一级的标题更大:

一级标题上下可留对称的更多间距;

二级标题段后间距宜明显小于段前间距;

标题通常无左右缩进;

标题段后间距不宜比段前间距大;

各级标题均是名词性短语;

标题应尽可能包含更多信息。

正文:

正文样式为众多样式的基础,其修改将影响相关样式发生变化,因此通常不宜直接修改该样式;

字号等整篇论文统一要求的格式可以在正文样式中进行修改。

数学建模论文具体的格式要求如下:

1、论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。

2、论文第一页为承诺书,具体内容和格式见本规范第二页。

3、论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

4、论文题目和摘要写在论文第三页上,从第四页开始是论文正文。

5、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

6、论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

7、论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。

8、摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

9、引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

10、参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。

11、参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

12、参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

扩展资料:

电子版论文格式规范

1、参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

2、参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

3、支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。

所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);

如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

参考资料:惠州学院-全国大学生数学建模竞赛论文格式规范

参考资料:湖南人文科技学院-全国大学生数学建模竞赛论文格式规范

数学建模论文格式字体

在平时的学习、工作中,大家肯定对论文都不陌生吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。还是对论文一筹莫展吗?下面是我帮大家整理的数学建模论文格式字体,欢迎大家分享。

数学建模论文格式字体

●题名。字体为常规,黑体,二号。题名一般不超过20个汉字,必要时可加副标题。

●摘要。文稿必须有不超过300字的内容摘要,摘要内容字体为常规,仿宋,五号。摘要应具备独立性和自含性,应是文章主要观点的浓缩。摘要前加“[摘要]”作标识,字体为加粗,黑体,五号。

●正文。用五号宋体,倍间距。文稿以10000字以下为宜。

●文内标题。力求简短、明确,题末不用标点符号(问号、叹号、省略号除外)。层次不宜超过5级。第1级标题字体为常规,楷体,小四;第2级标题字体为加粗,宋体,五号;次级递减。层次序号可采用一.(一).1.(1).1),不宜用①,以与注释号区别。文内内容字体为常规,宋体,五号。

●数字使用。数字用法及计量单位按GBT15835—1995《出版物上数字用法的规定》和1984年12月27日国务院发布的《中华人民共和国法定计量单位》执行。4位以上数字采用3位分节法。5位以上数字尾数零多的,可以“万”、“亿”作单位。标点符号按GBT15835—1995《标点符号用法》执行。

●附表与插图。附表应有表序、表题、一般采用三线表;插图应有图序和图题。序号用阿拉伯数字标注。常规,楷体,五号。图序和图题的字体为加粗,宋体,五号。

●引用。引用原文必须核对准确,注明准确出处;凡涉及数字模型和公式的,务请认真核算。

●参考文献。论文应附有参考文献并遵循相应的格式。参考文献放在文末。“[参考文献]”字体为加粗,黑体,五号;其内容的汉字字体为常规,仿宋,小五。

参考文献中书籍的表述方式为:

序号作者书名版本(第1版不标注)出版地出版社出版年页码

参考文献中期刊杂志论文的表述方式为:

序号作者论文名杂志名卷期号出版年页码

参考文献中网上资源的表述方式为:

序号作者资源标题网址访问时间(年月日)

●页眉,页脚。团队序号位于论文每页页眉的左端。页码位于每页页脚的中部,用阿拉伯数字从“1”开始连续编号。

●论文用A4纸打印出来,并将论文首页和论文装订到一起,一齐上交。

数学建模论文格式

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景。

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值,有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础,对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色,思路创新,有别于传统研究的新思路;方法创新,针对具体问题的`特点,对传统方法的改进和创新;结果创新,要有新的,更深层次的结果。

问题可行,适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

( 三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(五)论文格式:符合规范,内容齐全,排版美观

1.标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2.摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3.关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3—5各为宜,不要过于生僻。

(六).正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值,指出应用前景,提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5.参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

数学建模竞赛论文格式细节

一、摘要

1. “摘要”作为一级标题但不参加编号;

2. 全国赛摘要中应包含关键词,“关键词”三字应该用黑体; 美国赛不用写关键词;

3. 摘要后面用分页符来与后面正文分开,而非使用空行;

二、各级标题

1. 各级标题后面不可跟标点符号;

2. 标题的标号:全国赛论文建议采用学术论文的标号,即1、2、3、、、等,标号后面可以再跟小园点,亦可不跟,另外再用相同数量的空格隔开:亦可使用一、二、三等标号一级标题。美国赛论文中通常未使用标号,直接使用不同的字号与字体加以区分;

3. 美国赛特等奖论文中通常不使用标号,直接使用不同的字号与字体加以区分;

4. 一级标题居中显示,其它标题左对齐;

5. 低一级的标题不宜比高一级的标题更大:

6. 一级标题上下可留对称的更多间距;

7. 二级标题段后间距宜明显小于段前间距;

8. 标题通常无左右缩进:

9. 标题段后间距不宜比段前间距大:

10. 各级标题均是名词性短语;

11. 标题应尽可能包含更多信息;

三、正文

1. 正文样式为众多样式的基础,其修改将影响相关样式发生变化,因此通常不宜直接修改该样式;

2. 字号等整篇论文统一要求的格式可以在正文样式中进行修改;

无缩进正文

1. 独立显示的数学公式如果并未结束所在段落,则紧跟其后的段落应该使用无缩进正文样式(可在正文样式的基础上自己定义);

2. 建议设置段前和段后间距(比如前后均为行)来适当加大段间距以增加论文可读性;

3. 不宜有左右缩进;

4. 不宜对任何可能多处使用的样式的某部分内容的格式进行直接修改;

四、缩进正文

1. 缩进量不宜使用磅为单位,而应使用字符数为单位(通常是2个汉字),以免字号改变时缩进效果不理想;

2. 缩进不可以手动设置而应在样式中设置;

3. 建议设置段前和段后间距(比如前后均为行)来适当加大段间距以便增加论文可读性;

4. 正文中任何地方不可用空行来增加间隔;

5. 尽量避免使用空格来实现对齐,但并不禁止这样做;

五、表格

1. 除摘要中表格外均应自动添加题注对其进行自动编号并托运添加适当表题;表格题注应在表格上方;

2. 题注样式(也会影响图形的题注)通常设置为无左右缩进的居中显示;

3. 表格编号与表题间可用冒号或空格隔开;

4. 可以修改题注样式(也会影响图形的题注)的前后间距;

5. 为不同的表格设置不同的样式( 如三线表、四线表等),需要时直接应用即可,应用表格样式时如首行、末行有特别格式则需钩选相应选项;

6. 在表格样式中而不是直接在表格中对其各部分格式进行修改以便统一;

7. 表格内容通常应该左右上下居中,部分可以例外,以美观为准;

8. 表格内容不宜设置前后问距,因此应为其设定义区别于正常正文的样式;

9. 带小数点、负号的数据可以保留相同的小数位后设置右缩进量的方式来右对齐;

10. 整个表格宜居中显示(在其样式中设定);

11. 表格中相似内容间可以不用表格线间隔;

12. 表格首行首列可以使用易于理解的文字说明,亦可文字说明与符号并用;

13. 表格中明显有区别的两部分间可以使用粗线隔开;

14. 表格前或后需对表格内容加以解释,还需说明从中能得出的结论;

15. 可在添加题注中选择自动添加选项;

16. 表头不宜使用不能立即明白的缩写;

17. 跨页表格通常应设置标题行的自动重复(选定标题行后点击菜单项“表格一标题行重复”);

18. 部分较大的表格可以只给出其中一部分重要的内容,而将完整内容放入附录中;

19. 表格边框可以全用细线但不宜全用粗线;

20. 表格外框、不同内容之间的分隔线可以用粗线;

21. 表格、图形的引用应该通过“插入一交叉引用”的方式来实现自动维护引用,引用时应选定只包含编号而不包含表题、图题;

六、公式

1. 公式有自己专门的样式,不宜使用正文样式;

2. 公式的编号不宜事后插入,而应该使用插入编号公式的方式输入以便自动对齐编号;

3. 不是每个方程都需要编号的,只有需要引用或者比较重要的方程才需要编号,其它的方程编号没有意见,反而会使重点不突出;

4. 公式样式通常应居中显示;

5. 公式样式通常应无左右缩进的居中显示;

6. 公式编号常应放在右侧页边缘( 插入右侧编号公式时自动设置);

7. 一个重要的模型,一方面用编号来突出,另一方面可为其取一个名字来突出;

8. 重要模型下方应说明其各个符号的意义以方便读者阅读;

9. 有花括号括起来的模型中的各个方程不宜居中对齐,而应沿括号对齐:

10. 部分独立显示公式并非前一个段落的结束,因此其后的文字不是一个新的段落,当然也就不能出现首行缩进;

11. 不是按节来对公式进行编号就不应该包括节编号在其中,可以通过菜单MathType-Format Equation Numbers进行修改;

七、图形

1. 图形亦应自动添加题注对其进行自动编号并手动添加图题;

2. 图形题注通常位于图形下方;

3. 整个图形宜无左右缩进的居中显示;

4. 有多条曲线的图应该包含图例(Legend);

5. 图形编号与图题之间可以用冒号或空格来间隔;

6. 可在添加题注中选择自动添加选项;

7. 不应在图形中再包含图题;

8. 表格、图形的引用应该通过“插入一交叉引用”的方式来实现自动维护引用,引用时应只包含编号而不包含表题、图题;假设

1. 宜使用项目符号或编号的格式;

2. 可单独定义假设样式,该样式亦可用于结论等其它相似格式的内容;

符号说明

1. 可以使用不带边框或带边框的表格来说明符号;

2. 如果不带边框,符号栏宜左上角对齐(后面可加冒号,或另增加一列放等号或破折号),说明栏应左上角对齐;

3. 如有单位,可设置第三列;

4. 由于多数为单行显示,因此段前后的间距不宜过大甚至取消段间距;

5. 建议专门设计符号说明专用的表格样式,在符号说明节和各重要模型后均直接应用该样式(这尤其适用于美国赛);

6. 下标取值范围的说明可放在说明后面,且使用到下标的每一行都应加以说明而非只做一次性说明: .

7. 如不使用表格方式说明,应使用悬挂缩进的格式;

8. 不管是否使用表格都应专门定义专用样式;

八、参考文献

1. 参考文献虽是一级标题,但不应参加正文一级标题的编号;

2. 各条目应采用悬挂缩进的方式,同一条目中上下两行的内容应对齐;

3. 参考文献的编号与后面内容之间应有适当空格;

4. 参考文献的编号建议使用自动编号,这样可以任意删除和插入,还可以自动实现恰当的悬挂缩进。使用编号后,如果编号格式不符合要求可以右键点击编号项,然后去修改编号格式;

5. 参考文献的条目应专门定义样式;

6. 书籍、论文、网页有不同的表示方式,同一类型的文献应统一( 参考全国组委会要求);

数学建模全国一等论文模板

我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我………………全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。求采纳为满意回答。

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。

初中数学论文全国一等奖

中国数学教育杂志论文评选奖一等奖含金量高。《中国数学教育杂志》是一本数学教学类理论期刊,提供学术指导服务,中国数学教育是中国教育学会中学数学教学专业委员会会刊,正式创刊于2003年1月,由中国教育学会中学数学教学专业委员会和辽宁北方教育报刊出版有限公司共同主办。

第九次全国中学数学教育优秀论文获奖名单一等奖(共28篇,排名不分先后)参评单位 题目 单位 作者北京 中学数学概念教学研究 北京市西城区教育研修学院 李 梁北京 样例呈现方式对数学归纳法学习的影响 北京大峪中学 武春波天津 促进“学、思、知、行”有机结合的数学课堂教学 天津市中小学教育教学研究室 刘金英辽宁 小组合作学习改进策略:话语权再分配 辽宁省基础教育教研培训中心 景 敏上海 PISA数学素养测试研究对上海数学教学、 上海市教委教研室 黄 华评价及学业质量监测体系建设的启示上海 理想与现实的桥梁:数学教师PCK的发展 上海市杨浦区教师进修学院 翟立安孙 晖上海 初中数学练习订正及自我反馈习惯培养的实践研究 上海市明珠中学 陈晓娟浙江 “情知性”教学的特征与操作策略 浙江省杭州市上城区教育学院 余功蔚安徽 为藏生的数学思维插上翅膀 安徽省芜湖市田家炳实验中学 刘 丽——培养内地藏生数学思维的尝试福建 精心创设教学情境提高课堂探究成效 福建省永春华侨中学 谢雅礼江西 创设情境在高中数学教学中的实践探索 江西省上高二中 刘功骚山东 关于导学案培养学生数学自主学习能力的调查报告山东师范大学附属中学 李知屹王俊亮河南 高中数学反思性教学的实践研究 河南省商丘市实验中学 杜志国湖北 问渠哪得清如许 唯有活水源头来 湖北省教学研究室等 数学课题组——湖北省新课程高中数学教学现状调查分析报告湖北对学生解代数证明题困难的调查分析及对策研究 湖北省武汉六中 袁泉润湖南导学模式的高效课堂初探 湖南省常德市第十一中学 徐 进广东 对一种全新的选拔性考试量分法的实证研究 深圳外国语学校 袁智斌、郭梦绮、 袁可馨、肖桐桐广东 初中数学大规模考试的命题研究与实践广东省佛山市南海区教育发展研究中心教研室 郑喜中广东 构建优效课堂,促进学生发展 广东省东莞市长安实验中学 蔡映红重庆 初高中数学知识衔接简议 重庆市育才中学 宋飞达 四川 加强数学阅读 提升数学素养 四川省成都市教科院 段小龙 ——谈新课程背景下的高中数学阅读教学 四川省成都七中 何毅章云南 加拿大数学课程标准研究与对比 云南省教育科学研究院 黄邦杰新疆 怎样建立和利用初中数学纠错本 乌鲁木齐市第十三中学 王 茸新疆兵团高中数学新旧教材对比研究 新疆兵团第二中学 徐 波编辑部 数学课堂教学的“准”、“实”、“活” 浙江省义乌中学 朱恒元 编辑部 数学课堂生成资源中的技术因素 浙江省黄岩中学 金克勤编辑部初中学生数学学习的出声思考 浙江省杭州市上城区教育学院 张娟萍编辑部 新技术背景下数学教学的新视角、新启示 福建省福州第三中学 林 风——例谈图形计算器的应用二等奖(共118篇,排名不分先后)北京 北京市东城区教师研修中心 许云尧 北师大二附中 高雪松北京密云二中 张德广 北京十二中 蔡春晖 天津天津市第五十四中学 李桂英 天津市红桥区教师进修学校 哈 欣天津市西青区教育教学研究室 严 安 天津市津南区咸水沽第三中学 张宗玲天津市静海县中旺镇大庄子中学 王德权 河北河北邯郸市邱县第一中学 杜 建 河北省石家庄市教育科学研究所 刘 璐河北省石家庄市教育科学研究所张立山/卢艳华 河北省邯郸市魏县车往镇中 张海英河北省秦皇岛市卢龙县木井乡中学 刘 朋 山西山西省大同一中 董 凯 山西省太原市第十五中学校 梁 婕 内蒙古内蒙古包头市第三十三中学 万文俊 内蒙古呼和浩特市实验中学 魏 莉内蒙古包头市共青中学 黄丽兰 辽宁辽宁省大连市第三中学 贾 萍 沈阳市教育研究院 周善富辽宁省大连二中 马志华 辽宁省大连教育学院初中教师教育中心王冰 黑龙江黑龙江省哈尔滨市第一二二中学 刘志刚 黑龙江省大庆实验中学 戈冉舟黑龙江省齐齐哈尔市第三十四中学 马静微 黑龙江省大庆一中初中部 林晓颖 上海上海市行知中学 赵传义 上海市普陀区教育学院 刘 达/徐炜蓉上海市崇明县教师进修学校 朱伟达/茅晓明 浙江浙江省嵊州市第二中学 周继明 浙江省义乌中学 方 治浙江省温州市第二十二中学 高洪武 浙江省杭州市第十五中学教育集团 李春梅浙江省杭州普通教育研究室 李学军 安徽安徽省青阳中学 章义华 安徽省亳州市谯城区教研室 汪春杰安徽省马鞍山市成功中学 汪宗兴 安徽省六安市教研室 贾兵/安徽省六安市第一中学 王锐 福建福建省福州第一中学 陈德燕 福建省南安第一中学 洪丽敏福建省南平市光泽二中 曾峰涛 江西江西省崇仁一中 陈永华 江西省赣州市第一中学 肖淑如山东山东省寿光世纪学校 孙友方 山东烟台第二中学 孙雪钰山东省平度市麻兰镇中学 王同义 山东省实验中学 潘洪艳 河南河南省洛阳市洛龙区教育局教学研究室 周召峰 河南省平顶山市教研室 许晓慧河南省三门峡市渑池县教体局教研室 赵群峰 薛振明/河南省三门峡市渑池县西阳中学刘红霞河南省商丘市基础教育教学研究室 王素珍 河南省许昌高中 赵小强湖北湖北省孝感高中 幸 芹 湖北省宜昌市教研中心陈作民/湖北省宜昌市八中 史艳华湖北省天门市教研室 刘兵华 湖南湖南师大附中 谢美丽/彭荣宏 湖南师大附中 曾 辉湖南省长沙市明德中学 龚 玲 广东广东省佛山市南海区大沥镇黄岐初级中学 钟婷文 华南师范大学附属中学 郝保国广东省韶关市教育局教研室 罗开初 广西广西师大附中 刘晓荣 广西南宁三中 陈华曲/黄河清广西南宁三中 黎承忠/黄河清 广西南宁三中 李春阳/黄河清广西南宁三中 陈康/黄河清 广西师范大学第一附属中学张小雄/广西师范大学数学科学学院 欧慧谋 海南中国热带农业科学院附属中学 谢学方 海南省琼海市龙江华侨中学 卢燕海南省保亭思源实验中学 陈祖艳 重庆重庆市铜梁县巴川中学 官正伟 重庆市育才中学 余彪重庆市巴南区大江中学 叶国民 四川四川省宜宾市教科所 郭青初 四川省乐山市实验中学 左 谦四川省达州市宣汉县中小学教研室 赵绪昌 贵州贵州省盘县第六中学 郭炫伶 贵州省六盘水市第一实验中学 王兰 云南云南省曲靖市教育科学研究所 王吉标 云南省昆明第八中学 王学先 青海青海湟川中学 解占寿 宁夏宁夏银川市第三中学 马惠芳 宁夏银川市第二十四中学 马自国 宁夏回族自治区银川市第二十四中学 刘建国 宁夏银川市第二十四中学 丁永海 新疆新疆玛纳斯县教育局教研室 潘庆昕 新疆巴音郭楞蒙古自治州库尔勒市第四中学 丁志明乌鲁木齐市天山区教研室 徐健 新疆乌鲁木齐市第九中学 张 燕新疆实验中学 曹湘江/陈娟 新疆兵团新疆兵团农一师十二团中学 郭 玺 新疆兵团农五师中学 卢新源 编辑部上海市松江二中 卫福山 浙江省龙游县模环初中 徐伟建江苏省南京市雨花台中学 周礼寅 浙江省台州市路桥实验中学 王万丰浙江省绍兴柯桥中学 余继光 湖北省钟祥市第五中学 杨 辉/孙红强湖北省枣阳市第二中学 龚 兵 广东省东莞市寮步镇香市中学 孙树德广西蒙山县第一中学 谢光亚 浙江省仙居实验中学 齐秀华浙江省台州市仙居安洲中学 郑燕红 江苏省盐城中学教育集团 张卫明广东省广州市玉岩中学吴和贵 杭州市江干区教师进修学校 易良斌安徽省合肥一中 张中发 浙江省衢州高级中学 孙向东浙江省湖州市吴兴高级中学 刘晓东 湖北省武汉市第十一中学 田祥高浙江省义乌市大成中学 赵明越 浙江省杭州市萧山区第十一高级中学 沈灿江广东省佛山市南海区九江中学高伟洪 江西省赣州市会昌县会昌中学 刘荣锋北京市第二中学 唐绍友 北师大二附中 王先芳江苏省盐城中学教育集团 王良军

第九次全国中学数学教育优秀论文评比结果(2011-11-30 11:49:43)转载▼标签: 杂谈 分类: 论文评比 关于我会第九次全国中学数学教育优秀论文评比结果的通 知各会员单位: 我会于2011年5月5日发出“关于召开第十五届学术年会暨第九次全国中学数学教育优秀论文征集、评比活动的预备通知”后,北京、天津、河北、山西、内蒙古、辽宁、黑龙江、上海、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、广西、海南、重庆、四川、云南、陕西、宁夏、青海、新疆等26个省(自治区、直辖市)和新疆生产建设兵团共27个会员单位认真落实,积极做好论文的征集工作,并按要求,提交了201篇参评论文;部分一线中学数学教师、中学数学教研人员还提交了自行投稿的参评论文,经我会会刊编辑部初评,提交了52篇参评论文,共计253篇。由我会学术委员组成的评委会分三个小组对上述253篇论文进行审阅、初评。期间,评委之间进行了情况沟通、交流,并于2011年10月25日举行评委会全体会议,提出了评审结果的建议名单。经我会理事长会议审议通过,确定了一等奖获奖论文28篇、二等奖获奖论文118篇、三等奖获奖论文96篇(名单附后)。中国教育学会中学数学教学专业委员会2011年 11月29日报:中国教育学会发:各团体会员单位,各位理事、咨询委员第九次全国中学数学教育优秀论文获奖名单一等奖(共28篇,排名不分先后)参评单位 题目 单位 作者北京 中学数学概念教学研究 北京市西城区教育研修学院 李 梁北京 样例呈现方式对数学归纳法学习的影响 北京大峪中学 武春波天津 促进“学、思、知、行”有机结合的数学课堂教学 天津市中小学教育教学研究室 刘金英辽宁 小组合作学习改进策略:话语权再分配 辽宁省基础教育教研培训中心 景 敏上海 PISA数学素养测试研究对上海数学教学、 上海市教委教研室 黄 华评价及学业质量监测体系建设的启示上海 理想与现实的桥梁:数学教师PCK的发展 上海市杨浦区教师进修学院 翟立安孙 晖上海 初中数学练习订正及自我反馈习惯培养的实践研究 上海市明珠中学 陈晓娟浙江 “情知性”教学的特征与操作策略 浙江省杭州市上城区教育学院 余功蔚安徽 为藏生的数学思维插上翅膀 安徽省芜湖市田家炳实验中学 刘 丽——培养内地藏生数学思维的尝试福建 精心创设教学情境提高课堂探究成效 福建省永春华侨中学 谢雅礼江西 创设情境在高中数学教学中的实践探索 江西省上高二中 刘功骚山东 关于导学案培养学生数学自主学习能力的调查报告山东师范大学附属中学 李知屹王俊亮河南 高中数学反思性教学的实践研究 河南省商丘市实验中学 杜志国湖北 问渠哪得清如许 唯有活水源头来 湖北省教学研究室等 数学课题组——湖北省新课程高中数学教学现状调查分析报告湖北对学生解代数证明题困难的调查分析及对策研究 湖北省武汉六中 袁泉润湖南导学模式的高效课堂初探 湖南省常德市第十一中学 徐 进广东 对一种全新的选拔性考试量分法的实证研究 深圳外国语学校 袁智斌、郭梦绮、 袁可馨、肖桐桐广东 初中数学大规模考试的命题研究与实践广东省佛山市南海区教育发展研究中心教研室 郑喜中广东 构建优效课堂,促进学生发展 广东省东莞市长安实验中学 蔡映红重庆 初高中数学知识衔接简议 重庆市育才中学 宋飞达 四川 加强数学阅读 提升数学素养 四川省成都市教科院 段小龙 ——谈新课程背景下的高中数学阅读教学 四川省成都七中 何毅章云南 加拿大数学课程标准研究与对比 云南省教育科学研究院 黄邦杰新疆 怎样建立和利用初中数学纠错本 乌鲁木齐市第十三中学 王 茸新疆兵团高中数学新旧教材对比研究 新疆兵团第二中学 徐 波编辑部 数学课堂教学的“准”、“实”、“活” 浙江省义乌中学 朱恒元 编辑部 数学课堂生成资源中的技术因素 浙江省黄岩中学 金克勤编辑部初中学生数学学习的出声思考 浙江省杭州市上城区教育学院 张娟萍编辑部 新技术背景下数学教学的新视角、新启示 福建省福州第三中学 林 风——例谈图形计算器的应用二等奖(共118篇,排名不分先后)北京 北京市东城区教师研修中心 许云尧 北师大二附中 高雪松北京密云二中 张德广 北京十二中 蔡春晖 天津天津市第五十四中学 李桂英 天津市红桥区教师进修学校 哈 欣天津市西青区教育教学研究室 严 安 天津市津南区咸水沽第三中学 张宗玲天津市静海县中旺镇大庄子中学 王德权 河北河北邯郸市邱县第一中学 杜 建 河北省石家庄市教育科学研究所 刘 璐河北省石家庄市教育科学研究所张立山/卢艳华 河北省邯郸市魏县车往镇中 张海英河北省秦皇岛市卢龙县木井乡中学 刘 朋 山西山西省大同一中 董 凯 山西省太原市第十五中学校 梁 婕 内蒙古内蒙古包头市第三十三中学 万文俊 内蒙古呼和浩特市实验中学 魏 莉内蒙古包头市共青中学 黄丽兰 辽宁辽宁省大连市第三中学 贾 萍 沈阳市教育研究院 周善富辽宁省大连二中 马志华 辽宁省大连教育学院初中教师教育中心王冰 黑龙江黑龙江省哈尔滨市第一二二中学 刘志刚 黑龙江省大庆实验中学 戈冉舟黑龙江省齐齐哈尔市第三十四中学 马静微 黑龙江省大庆一中初中部 林晓颖 上海上海市行知中学 赵传义 上海市普陀区教育学院 刘 达/徐炜蓉上海市崇明县教师进修学校 朱伟达/茅晓明 浙江浙江省嵊州市第二中学 周继明 浙江省义乌中学 方 治浙江省温州市第二十二中学 高洪武 浙江省杭州市第十五中学教育集团 李春梅浙江省杭州普通教育研究室 李学军 安徽安徽省青阳中学 章义华 安徽省亳州市谯城区教研室 汪春杰安徽省马鞍山市成功中学 汪宗兴 安徽省六安市教研室 贾兵/安徽省六安市第一中学 王锐 福建福建省福州第一中学 陈德燕 福建省南安第一中学 洪丽敏福建省南平市光泽二中 曾峰涛 江西江西省崇仁一中 陈永华 江西省赣州市第一中学 肖淑如山东山东省寿光世纪学校 孙友方 山东烟台第二中学 孙雪钰山东省平度市麻兰镇中学 王同义 山东省实验中学 潘洪艳 河南河南省洛阳市洛龙区教育局教学研究室 周召峰 河南省平顶山市教研室 许晓慧河南省三门峡市渑池县教体局教研室 赵群峰 薛振明/河南省三门峡市渑池县西阳中学刘红霞河南省商丘市基础教育教学研究室 王素珍 河南省许昌高中 赵小强湖北湖北省孝感高中 幸 芹 湖北省宜昌市教研中心陈作民/湖北省宜昌市八中 史艳华湖北省天门市教研室 刘兵华 湖南湖南师大附中 谢美丽/彭荣宏 湖南师大附中 曾 辉湖南省长沙市明德中学 龚 玲 广东广东省佛山市南海区大沥镇黄岐初级中学 钟婷文 华南师范大学附属中学 郝保国广东省韶关市教育局教研室 罗开初 广西广西师大附中 刘晓荣 广西南宁三中 陈华曲/黄河清广西南宁三中 黎承忠/黄河清 广西南宁三中 李春阳/黄河清广西南宁三中 陈康/黄河清 广西师范大学第一附属中学张小雄/广西师范大学数学科学学院 欧慧谋 海南中国热带农业科学院附属中学 谢学方 海南省琼海市龙江华侨中学 卢燕海南省保亭思源实验中学 陈祖艳 重庆重庆市铜梁县巴川中学 官正伟 重庆市育才中学 余彪重庆市巴南区大江中学 叶国民 四川四川省宜宾市教科所 郭青初 四川省乐山市实验中学 左 谦四川省达州市宣汉县中小学教研室 赵绪昌 贵州贵州省盘县第六中学 郭炫伶 贵州省六盘水市第一实验中学 王兰 云南云南省曲靖市教育科学研究所 王吉标 云南省昆明第八中学 王学先 青海青海湟川中学 解占寿 宁夏宁夏银川市第三中学 马惠芳 宁夏银川市第二十四中学 马自国 宁夏回族自治区银川市第二十四中学 刘建国 宁夏银川市第二十四中学 丁永海 新疆新疆玛纳斯县教育局教研室 潘庆昕 新疆巴音郭楞蒙古自治州库尔勒市第四中学 丁志明乌鲁木齐市天山区教研室 徐健 新疆乌鲁木齐市第九中学 张 燕新疆实验中学 曹湘江/陈娟 新疆兵团新疆兵团农一师十二团中学 郭 玺 新疆兵团农五师中学 卢新源 编辑部上海市松江二中 卫福山 浙江省龙游县模环初中 徐伟建江苏省南京市雨花台中学 周礼寅 浙江省台州市路桥实验中学 王万丰浙江省绍兴柯桥中学 余继光 湖北省钟祥市第五中学 杨 辉/孙红强湖北省枣阳市第二中学 龚 兵 广东省东莞市寮步镇香市中学 孙树德广西蒙山县第一中学 谢光亚 浙江省仙居实验中学 齐秀华浙江省台州市仙居安洲中学 郑燕红 江苏省盐城中学教育集团 张卫明广东省广州市玉岩中学吴和贵 杭州市江干区教师进修学校 易良斌安徽省合肥一中 张中发 浙江省衢州高级中学 孙向东浙江省湖州市吴兴高级中学 刘晓东 湖北省武汉市第十一中学 田祥高浙江省义乌市大成中学 赵明越 浙江省杭州市萧山区第十一高级中学 沈灿江广东省佛山市南海区九江中学高伟洪 江西省赣州市会昌县会昌中学 刘荣锋北京市第二中学 唐绍友 北师大二附中 王先芳江苏省盐城中学教育集团 王良军

如果是评职称用,还是公开发表的论文好用,论文获奖证书大多数地方基本不承认了。专业发表各类职称论文,非诚勿扰。

相关百科

热门百科

首页
发表服务