首页

> 学术论文知识库

首页 学术论文知识库 问题

初中数学论文全国一等奖

发布时间:

初中数学论文全国一等奖

中国数学教育杂志论文评选奖一等奖含金量高。《中国数学教育杂志》是一本数学教学类理论期刊,提供学术指导服务,中国数学教育是中国教育学会中学数学教学专业委员会会刊,正式创刊于2003年1月,由中国教育学会中学数学教学专业委员会和辽宁北方教育报刊出版有限公司共同主办。

第九次全国中学数学教育优秀论文获奖名单一等奖(共28篇,排名不分先后)参评单位 题目 单位 作者北京 中学数学概念教学研究 北京市西城区教育研修学院 李 梁北京 样例呈现方式对数学归纳法学习的影响 北京大峪中学 武春波天津 促进“学、思、知、行”有机结合的数学课堂教学 天津市中小学教育教学研究室 刘金英辽宁 小组合作学习改进策略:话语权再分配 辽宁省基础教育教研培训中心 景 敏上海 PISA数学素养测试研究对上海数学教学、 上海市教委教研室 黄 华评价及学业质量监测体系建设的启示上海 理想与现实的桥梁:数学教师PCK的发展 上海市杨浦区教师进修学院 翟立安孙 晖上海 初中数学练习订正及自我反馈习惯培养的实践研究 上海市明珠中学 陈晓娟浙江 “情知性”教学的特征与操作策略 浙江省杭州市上城区教育学院 余功蔚安徽 为藏生的数学思维插上翅膀 安徽省芜湖市田家炳实验中学 刘 丽——培养内地藏生数学思维的尝试福建 精心创设教学情境提高课堂探究成效 福建省永春华侨中学 谢雅礼江西 创设情境在高中数学教学中的实践探索 江西省上高二中 刘功骚山东 关于导学案培养学生数学自主学习能力的调查报告山东师范大学附属中学 李知屹王俊亮河南 高中数学反思性教学的实践研究 河南省商丘市实验中学 杜志国湖北 问渠哪得清如许 唯有活水源头来 湖北省教学研究室等 数学课题组——湖北省新课程高中数学教学现状调查分析报告湖北对学生解代数证明题困难的调查分析及对策研究 湖北省武汉六中 袁泉润湖南导学模式的高效课堂初探 湖南省常德市第十一中学 徐 进广东 对一种全新的选拔性考试量分法的实证研究 深圳外国语学校 袁智斌、郭梦绮、 袁可馨、肖桐桐广东 初中数学大规模考试的命题研究与实践广东省佛山市南海区教育发展研究中心教研室 郑喜中广东 构建优效课堂,促进学生发展 广东省东莞市长安实验中学 蔡映红重庆 初高中数学知识衔接简议 重庆市育才中学 宋飞达 四川 加强数学阅读 提升数学素养 四川省成都市教科院 段小龙 ——谈新课程背景下的高中数学阅读教学 四川省成都七中 何毅章云南 加拿大数学课程标准研究与对比 云南省教育科学研究院 黄邦杰新疆 怎样建立和利用初中数学纠错本 乌鲁木齐市第十三中学 王 茸新疆兵团高中数学新旧教材对比研究 新疆兵团第二中学 徐 波编辑部 数学课堂教学的“准”、“实”、“活” 浙江省义乌中学 朱恒元 编辑部 数学课堂生成资源中的技术因素 浙江省黄岩中学 金克勤编辑部初中学生数学学习的出声思考 浙江省杭州市上城区教育学院 张娟萍编辑部 新技术背景下数学教学的新视角、新启示 福建省福州第三中学 林 风——例谈图形计算器的应用二等奖(共118篇,排名不分先后)北京 北京市东城区教师研修中心 许云尧 北师大二附中 高雪松北京密云二中 张德广 北京十二中 蔡春晖 天津天津市第五十四中学 李桂英 天津市红桥区教师进修学校 哈 欣天津市西青区教育教学研究室 严 安 天津市津南区咸水沽第三中学 张宗玲天津市静海县中旺镇大庄子中学 王德权 河北河北邯郸市邱县第一中学 杜 建 河北省石家庄市教育科学研究所 刘 璐河北省石家庄市教育科学研究所张立山/卢艳华 河北省邯郸市魏县车往镇中 张海英河北省秦皇岛市卢龙县木井乡中学 刘 朋 山西山西省大同一中 董 凯 山西省太原市第十五中学校 梁 婕 内蒙古内蒙古包头市第三十三中学 万文俊 内蒙古呼和浩特市实验中学 魏 莉内蒙古包头市共青中学 黄丽兰 辽宁辽宁省大连市第三中学 贾 萍 沈阳市教育研究院 周善富辽宁省大连二中 马志华 辽宁省大连教育学院初中教师教育中心王冰 黑龙江黑龙江省哈尔滨市第一二二中学 刘志刚 黑龙江省大庆实验中学 戈冉舟黑龙江省齐齐哈尔市第三十四中学 马静微 黑龙江省大庆一中初中部 林晓颖 上海上海市行知中学 赵传义 上海市普陀区教育学院 刘 达/徐炜蓉上海市崇明县教师进修学校 朱伟达/茅晓明 浙江浙江省嵊州市第二中学 周继明 浙江省义乌中学 方 治浙江省温州市第二十二中学 高洪武 浙江省杭州市第十五中学教育集团 李春梅浙江省杭州普通教育研究室 李学军 安徽安徽省青阳中学 章义华 安徽省亳州市谯城区教研室 汪春杰安徽省马鞍山市成功中学 汪宗兴 安徽省六安市教研室 贾兵/安徽省六安市第一中学 王锐 福建福建省福州第一中学 陈德燕 福建省南安第一中学 洪丽敏福建省南平市光泽二中 曾峰涛 江西江西省崇仁一中 陈永华 江西省赣州市第一中学 肖淑如山东山东省寿光世纪学校 孙友方 山东烟台第二中学 孙雪钰山东省平度市麻兰镇中学 王同义 山东省实验中学 潘洪艳 河南河南省洛阳市洛龙区教育局教学研究室 周召峰 河南省平顶山市教研室 许晓慧河南省三门峡市渑池县教体局教研室 赵群峰 薛振明/河南省三门峡市渑池县西阳中学刘红霞河南省商丘市基础教育教学研究室 王素珍 河南省许昌高中 赵小强湖北湖北省孝感高中 幸 芹 湖北省宜昌市教研中心陈作民/湖北省宜昌市八中 史艳华湖北省天门市教研室 刘兵华 湖南湖南师大附中 谢美丽/彭荣宏 湖南师大附中 曾 辉湖南省长沙市明德中学 龚 玲 广东广东省佛山市南海区大沥镇黄岐初级中学 钟婷文 华南师范大学附属中学 郝保国广东省韶关市教育局教研室 罗开初 广西广西师大附中 刘晓荣 广西南宁三中 陈华曲/黄河清广西南宁三中 黎承忠/黄河清 广西南宁三中 李春阳/黄河清广西南宁三中 陈康/黄河清 广西师范大学第一附属中学张小雄/广西师范大学数学科学学院 欧慧谋 海南中国热带农业科学院附属中学 谢学方 海南省琼海市龙江华侨中学 卢燕海南省保亭思源实验中学 陈祖艳 重庆重庆市铜梁县巴川中学 官正伟 重庆市育才中学 余彪重庆市巴南区大江中学 叶国民 四川四川省宜宾市教科所 郭青初 四川省乐山市实验中学 左 谦四川省达州市宣汉县中小学教研室 赵绪昌 贵州贵州省盘县第六中学 郭炫伶 贵州省六盘水市第一实验中学 王兰 云南云南省曲靖市教育科学研究所 王吉标 云南省昆明第八中学 王学先 青海青海湟川中学 解占寿 宁夏宁夏银川市第三中学 马惠芳 宁夏银川市第二十四中学 马自国 宁夏回族自治区银川市第二十四中学 刘建国 宁夏银川市第二十四中学 丁永海 新疆新疆玛纳斯县教育局教研室 潘庆昕 新疆巴音郭楞蒙古自治州库尔勒市第四中学 丁志明乌鲁木齐市天山区教研室 徐健 新疆乌鲁木齐市第九中学 张 燕新疆实验中学 曹湘江/陈娟 新疆兵团新疆兵团农一师十二团中学 郭 玺 新疆兵团农五师中学 卢新源 编辑部上海市松江二中 卫福山 浙江省龙游县模环初中 徐伟建江苏省南京市雨花台中学 周礼寅 浙江省台州市路桥实验中学 王万丰浙江省绍兴柯桥中学 余继光 湖北省钟祥市第五中学 杨 辉/孙红强湖北省枣阳市第二中学 龚 兵 广东省东莞市寮步镇香市中学 孙树德广西蒙山县第一中学 谢光亚 浙江省仙居实验中学 齐秀华浙江省台州市仙居安洲中学 郑燕红 江苏省盐城中学教育集团 张卫明广东省广州市玉岩中学吴和贵 杭州市江干区教师进修学校 易良斌安徽省合肥一中 张中发 浙江省衢州高级中学 孙向东浙江省湖州市吴兴高级中学 刘晓东 湖北省武汉市第十一中学 田祥高浙江省义乌市大成中学 赵明越 浙江省杭州市萧山区第十一高级中学 沈灿江广东省佛山市南海区九江中学高伟洪 江西省赣州市会昌县会昌中学 刘荣锋北京市第二中学 唐绍友 北师大二附中 王先芳江苏省盐城中学教育集团 王良军

第九次全国中学数学教育优秀论文评比结果(2011-11-30 11:49:43)转载▼标签: 杂谈 分类: 论文评比 关于我会第九次全国中学数学教育优秀论文评比结果的通 知各会员单位: 我会于2011年5月5日发出“关于召开第十五届学术年会暨第九次全国中学数学教育优秀论文征集、评比活动的预备通知”后,北京、天津、河北、山西、内蒙古、辽宁、黑龙江、上海、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、广西、海南、重庆、四川、云南、陕西、宁夏、青海、新疆等26个省(自治区、直辖市)和新疆生产建设兵团共27个会员单位认真落实,积极做好论文的征集工作,并按要求,提交了201篇参评论文;部分一线中学数学教师、中学数学教研人员还提交了自行投稿的参评论文,经我会会刊编辑部初评,提交了52篇参评论文,共计253篇。由我会学术委员组成的评委会分三个小组对上述253篇论文进行审阅、初评。期间,评委之间进行了情况沟通、交流,并于2011年10月25日举行评委会全体会议,提出了评审结果的建议名单。经我会理事长会议审议通过,确定了一等奖获奖论文28篇、二等奖获奖论文118篇、三等奖获奖论文96篇(名单附后)。中国教育学会中学数学教学专业委员会2011年 11月29日报:中国教育学会发:各团体会员单位,各位理事、咨询委员第九次全国中学数学教育优秀论文获奖名单一等奖(共28篇,排名不分先后)参评单位 题目 单位 作者北京 中学数学概念教学研究 北京市西城区教育研修学院 李 梁北京 样例呈现方式对数学归纳法学习的影响 北京大峪中学 武春波天津 促进“学、思、知、行”有机结合的数学课堂教学 天津市中小学教育教学研究室 刘金英辽宁 小组合作学习改进策略:话语权再分配 辽宁省基础教育教研培训中心 景 敏上海 PISA数学素养测试研究对上海数学教学、 上海市教委教研室 黄 华评价及学业质量监测体系建设的启示上海 理想与现实的桥梁:数学教师PCK的发展 上海市杨浦区教师进修学院 翟立安孙 晖上海 初中数学练习订正及自我反馈习惯培养的实践研究 上海市明珠中学 陈晓娟浙江 “情知性”教学的特征与操作策略 浙江省杭州市上城区教育学院 余功蔚安徽 为藏生的数学思维插上翅膀 安徽省芜湖市田家炳实验中学 刘 丽——培养内地藏生数学思维的尝试福建 精心创设教学情境提高课堂探究成效 福建省永春华侨中学 谢雅礼江西 创设情境在高中数学教学中的实践探索 江西省上高二中 刘功骚山东 关于导学案培养学生数学自主学习能力的调查报告山东师范大学附属中学 李知屹王俊亮河南 高中数学反思性教学的实践研究 河南省商丘市实验中学 杜志国湖北 问渠哪得清如许 唯有活水源头来 湖北省教学研究室等 数学课题组——湖北省新课程高中数学教学现状调查分析报告湖北对学生解代数证明题困难的调查分析及对策研究 湖北省武汉六中 袁泉润湖南导学模式的高效课堂初探 湖南省常德市第十一中学 徐 进广东 对一种全新的选拔性考试量分法的实证研究 深圳外国语学校 袁智斌、郭梦绮、 袁可馨、肖桐桐广东 初中数学大规模考试的命题研究与实践广东省佛山市南海区教育发展研究中心教研室 郑喜中广东 构建优效课堂,促进学生发展 广东省东莞市长安实验中学 蔡映红重庆 初高中数学知识衔接简议 重庆市育才中学 宋飞达 四川 加强数学阅读 提升数学素养 四川省成都市教科院 段小龙 ——谈新课程背景下的高中数学阅读教学 四川省成都七中 何毅章云南 加拿大数学课程标准研究与对比 云南省教育科学研究院 黄邦杰新疆 怎样建立和利用初中数学纠错本 乌鲁木齐市第十三中学 王 茸新疆兵团高中数学新旧教材对比研究 新疆兵团第二中学 徐 波编辑部 数学课堂教学的“准”、“实”、“活” 浙江省义乌中学 朱恒元 编辑部 数学课堂生成资源中的技术因素 浙江省黄岩中学 金克勤编辑部初中学生数学学习的出声思考 浙江省杭州市上城区教育学院 张娟萍编辑部 新技术背景下数学教学的新视角、新启示 福建省福州第三中学 林 风——例谈图形计算器的应用二等奖(共118篇,排名不分先后)北京 北京市东城区教师研修中心 许云尧 北师大二附中 高雪松北京密云二中 张德广 北京十二中 蔡春晖 天津天津市第五十四中学 李桂英 天津市红桥区教师进修学校 哈 欣天津市西青区教育教学研究室 严 安 天津市津南区咸水沽第三中学 张宗玲天津市静海县中旺镇大庄子中学 王德权 河北河北邯郸市邱县第一中学 杜 建 河北省石家庄市教育科学研究所 刘 璐河北省石家庄市教育科学研究所张立山/卢艳华 河北省邯郸市魏县车往镇中 张海英河北省秦皇岛市卢龙县木井乡中学 刘 朋 山西山西省大同一中 董 凯 山西省太原市第十五中学校 梁 婕 内蒙古内蒙古包头市第三十三中学 万文俊 内蒙古呼和浩特市实验中学 魏 莉内蒙古包头市共青中学 黄丽兰 辽宁辽宁省大连市第三中学 贾 萍 沈阳市教育研究院 周善富辽宁省大连二中 马志华 辽宁省大连教育学院初中教师教育中心王冰 黑龙江黑龙江省哈尔滨市第一二二中学 刘志刚 黑龙江省大庆实验中学 戈冉舟黑龙江省齐齐哈尔市第三十四中学 马静微 黑龙江省大庆一中初中部 林晓颖 上海上海市行知中学 赵传义 上海市普陀区教育学院 刘 达/徐炜蓉上海市崇明县教师进修学校 朱伟达/茅晓明 浙江浙江省嵊州市第二中学 周继明 浙江省义乌中学 方 治浙江省温州市第二十二中学 高洪武 浙江省杭州市第十五中学教育集团 李春梅浙江省杭州普通教育研究室 李学军 安徽安徽省青阳中学 章义华 安徽省亳州市谯城区教研室 汪春杰安徽省马鞍山市成功中学 汪宗兴 安徽省六安市教研室 贾兵/安徽省六安市第一中学 王锐 福建福建省福州第一中学 陈德燕 福建省南安第一中学 洪丽敏福建省南平市光泽二中 曾峰涛 江西江西省崇仁一中 陈永华 江西省赣州市第一中学 肖淑如山东山东省寿光世纪学校 孙友方 山东烟台第二中学 孙雪钰山东省平度市麻兰镇中学 王同义 山东省实验中学 潘洪艳 河南河南省洛阳市洛龙区教育局教学研究室 周召峰 河南省平顶山市教研室 许晓慧河南省三门峡市渑池县教体局教研室 赵群峰 薛振明/河南省三门峡市渑池县西阳中学刘红霞河南省商丘市基础教育教学研究室 王素珍 河南省许昌高中 赵小强湖北湖北省孝感高中 幸 芹 湖北省宜昌市教研中心陈作民/湖北省宜昌市八中 史艳华湖北省天门市教研室 刘兵华 湖南湖南师大附中 谢美丽/彭荣宏 湖南师大附中 曾 辉湖南省长沙市明德中学 龚 玲 广东广东省佛山市南海区大沥镇黄岐初级中学 钟婷文 华南师范大学附属中学 郝保国广东省韶关市教育局教研室 罗开初 广西广西师大附中 刘晓荣 广西南宁三中 陈华曲/黄河清广西南宁三中 黎承忠/黄河清 广西南宁三中 李春阳/黄河清广西南宁三中 陈康/黄河清 广西师范大学第一附属中学张小雄/广西师范大学数学科学学院 欧慧谋 海南中国热带农业科学院附属中学 谢学方 海南省琼海市龙江华侨中学 卢燕海南省保亭思源实验中学 陈祖艳 重庆重庆市铜梁县巴川中学 官正伟 重庆市育才中学 余彪重庆市巴南区大江中学 叶国民 四川四川省宜宾市教科所 郭青初 四川省乐山市实验中学 左 谦四川省达州市宣汉县中小学教研室 赵绪昌 贵州贵州省盘县第六中学 郭炫伶 贵州省六盘水市第一实验中学 王兰 云南云南省曲靖市教育科学研究所 王吉标 云南省昆明第八中学 王学先 青海青海湟川中学 解占寿 宁夏宁夏银川市第三中学 马惠芳 宁夏银川市第二十四中学 马自国 宁夏回族自治区银川市第二十四中学 刘建国 宁夏银川市第二十四中学 丁永海 新疆新疆玛纳斯县教育局教研室 潘庆昕 新疆巴音郭楞蒙古自治州库尔勒市第四中学 丁志明乌鲁木齐市天山区教研室 徐健 新疆乌鲁木齐市第九中学 张 燕新疆实验中学 曹湘江/陈娟 新疆兵团新疆兵团农一师十二团中学 郭 玺 新疆兵团农五师中学 卢新源 编辑部上海市松江二中 卫福山 浙江省龙游县模环初中 徐伟建江苏省南京市雨花台中学 周礼寅 浙江省台州市路桥实验中学 王万丰浙江省绍兴柯桥中学 余继光 湖北省钟祥市第五中学 杨 辉/孙红强湖北省枣阳市第二中学 龚 兵 广东省东莞市寮步镇香市中学 孙树德广西蒙山县第一中学 谢光亚 浙江省仙居实验中学 齐秀华浙江省台州市仙居安洲中学 郑燕红 江苏省盐城中学教育集团 张卫明广东省广州市玉岩中学吴和贵 杭州市江干区教师进修学校 易良斌安徽省合肥一中 张中发 浙江省衢州高级中学 孙向东浙江省湖州市吴兴高级中学 刘晓东 湖北省武汉市第十一中学 田祥高浙江省义乌市大成中学 赵明越 浙江省杭州市萧山区第十一高级中学 沈灿江广东省佛山市南海区九江中学高伟洪 江西省赣州市会昌县会昌中学 刘荣锋北京市第二中学 唐绍友 北师大二附中 王先芳江苏省盐城中学教育集团 王良军

如果是评职称用,还是公开发表的论文好用,论文获奖证书大多数地方基本不承认了。专业发表各类职称论文,非诚勿扰。

初中数学一等奖论文题目

想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1

《谈课堂上的互动、合作学习》、《发掘教材潜能,开拓学生思维》、《浅谈教学设计对课堂成效性的影响》

1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值

全国数学建模一等奖论文

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立的全过程就称为。目录背景数学的意义数学建模应用准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入大学在中国大学生章程(2008年)第四届数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模的意义 数学建模 模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入大学 在中国大学生 全国大学生 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学近半个多世纪以来,随着的迅速发展,数学的应用不仅在工程技术、等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代的重要组成部分。数学建模数学模型(Mathematical Model)是一种模拟,是用、数学式子、程序、图形等对实际课题的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用在科技和解决哪类实际问题,还是与其它学科相结合形成,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和在的作用可谓是。数学是研究和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从以来,随着的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在这个,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生的意识和能力已经成为的一个重要方面。编辑本段数学建模的意义数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用描述实际现象的过程。这里的实际现象既包涵具体的比如现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让家(指只懂数学不懂数学在实际中的应用的)变成,,甚至等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。模型应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立的过程,是把的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的,建立起反映实际问题的,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的,敏锐的和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学转化的主要途径,数学建模在发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为的教学改革和培养高层次的的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模和培养面向的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用及当代高新的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生的精神、形成一个生动活泼的环境和气氛,的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如、最优化、、、计算方法、、、,包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至等。

你可以去赛才网上去看看,那里有1992-2008的优秀论文,很不错

这是07年数模比赛获奖的:乘公交 看奥运二 符号说明 :第i条公汽线路标号,i=1,2 …10400,当 时, 表示上行公汽路线, 当 时, 表示与上行路线 相对应的下行公汽路线; :经过第i条公汽路线的第g个公汽站点标号; :第j条地铁路线标号, j=1,2; :经过第j条地铁线路的第h个地铁站点标号; :转乘n次的路线; :选择第k种路线的总时间; :选择第k种路线公汽换乘公汽的换乘次数; :选择第k种路线地铁换乘地铁的换乘次数; :选择第k种路线地铁换乘公汽的换乘次数; :选择第k种路线公汽换乘地铁的换乘次数; :第k种路线、乘坐第m辆公汽的计费方式,其中: 表示实行单一票价, 表示实行分段计价; :第k种路线,乘坐第m辆公汽的费用; :选择第k种路线的总费用; :选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数; :选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数; :表示对于第k种路线的第m路公汽的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行; :对于第k种路线的第n路地铁的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;三 模型假设基本假设1、相邻公汽站平均行驶时间(包括停站时间): 3分钟2、相邻地铁站平均行驶时间(包括停站时间): 分钟3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)4、地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)7、公汽票价:分为单一票价与分段计价两种;单一票价:1元其中分段计价的票价为:0 ~20站:1元21~40站:2元40站以上:3元8、地铁票价:3元(无论地铁线路间是否换乘)9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四 问题的分析在北京举行奥运会期间,公众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。不同的路线查询需求用图表示如下: 图 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。五 建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。5.1数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:L009: L529: L529为L009所对应的下行线路。如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001: 3914 0128 0710L521: 如果是环线的情况(如图所示),则可以等效为两条线路:顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。 经过分析,此两条”单行路线”线路的作用等同于原环形路线 图 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 1212 812 171 172 1585 1215 2606 1212 812 171 172 1585 1215 2606L673: 3513 172 2600 811 170 2355 649 534 2606 1215 3513 172 2600 811 170 2355 649在这里,L153被看作成上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。5.2搜寻经过每个站点的公交路线处理所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:经过S0001的线路有:L421经过S0002的线路有:L027 L152 L365 L395 L4855.3统计任意两条公交线路的相交(相近)站点依次统计出任意两条公交线路之间相交(相近)的站点,将其存入1040×1040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。例如:公交线路L001与公交线路L025相交的站点为A[1][25]={S0619,S1914,S0388,S0348}。六 模型的建立与求解6.1模型一的建立 该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点 与 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。6.1.1 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。 图 公汽路线图对于任意两个公汽站点 与 ,经过 的公汽线路表示为 ,有 ;经过 的公汽线路表示为 ,有 ;1)直达的路线 (如图(a)所示)表示为: 2)转乘一次的路线 (如图(b)所示)表示为: 其中:SC为 , 的一个交点;3)转乘两次的路线 (如图(c)所示)表示为: 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。6.1.2最优路线模型的建立 找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间 等于乘车时间与转车时间之和。 (式)其中,第k路线是以上转乘路线中的一种或几种。2)以转乘次数最少作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。3)以费用最少作为最优路线的模型: (式)其中, (式)6.1.3模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图叙述如下:(该图中的 、 、 、 、 表示公汽站点, 、 、 、 、 、 表示公汽线路。其中(a)、(b)、(c)图分别表示了从点 到点 直达、转乘一次、转乘两次的情况) 图 公交直达、转乘图(1)首先输入需要查询的两个站点 与 (假设 为起始站, 为终点站);(2)搜索出经过 的公汽线路 (i=1,2,…,m)和经过 的公汽线路 ( =1,2, …,n),存入数据文件;判断是 与 是否存在相同路线,若有则站点 与 之间有直达路线(如图中的 ),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;(3)找出经过 的公汽线路 (如图中的 )中的另一站点 和经过 的公汽线路 中的另一站点 。判断 与 中是否存在相同的点,若存在(如图中的 )则站点 与 间有一次换乘的路线(如图中的 与 ),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;(4)再搜索出经过 (如图中的 )线路上除了站点 的另一站点 (如图中的 )的公汽线路 (如图中的 ),找出公汽线路 上的其他站点 ;判断,如果 与经过 的公汽线路 中的其他站点 存在相同的点(如图中的 ),则 与 间有二次换乘的路线(如图中的 、 、 ),该相同点和点 是换乘站点;将此二次换乘的路线存入数据文件中;(5)对上述存储的经过两个站点 与 的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。6. 1. 4模型一的求解根据以上算法和前面建立的模型一,用VC++进行编程(程序见附录)就可以得出不同目标下的最优路线。1) 以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为106 min,耗时最少的最优路线有2条;起始站S0971到终到站S0485耗时最少为106 min,耗时最少的最优路线有2条;起始站S0008到终到站S0073耗时最少为67 min,耗时最少的最优路线有2条;起始站S0148到终到站S0485耗时最少为106 min,耗时最少的最优路线有3条;起始站S0087到终到站S3676耗时最少为46 min,耗时最少的最优路线有12条;其耗时最少的最优路线如表所示。表 耗时最少的最优路线表起始站 公汽线路 中转站 公汽线路 中转站 公汽线路 终到站 转乘次数 所需费用S3359 L0535 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0535 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0687 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0737 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0687 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0737 S1828 2 3S1557 L0604 S1919 L0709 S3186 L0980 S0481 2 3S1557 L0883 S1919 L0709 S3186 L0980 S0481 2 3S0971 L0533 S2517 L0810 S2480 L0937 S0485 2 3S0971 L0533 S2517 L0296 S2480 L0937 S0485 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0148 L0308 S0036 L0156 S2210 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3332 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3351 L0937 S0485 2 3S0087 L0541 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0982 S3676 2 32) 以转乘次数最少为目标的最优路线起始站S3359到终到站S1828的最少转乘次数为1次,转乘次数最少的最优路线(所需时间较短,费用较省的路线)有2条;起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有2条与耗时最少的最优路线相同(表示在表中,下同);起始站S0971到终到站S0485的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有9条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有3条与耗时最少的最优路线相同;起始站S0087到终到站S3676的最少转乘次数为2次,转乘次数最少的最优路线有6条与耗时最少的最优路线相同;其余转乘次数最少的最优路线路线如表所示。表 转乘次数最少的最优路线表起始站 公汽线路 中转站 公汽线路 终到站 耗时 所需费用S3359 L0956 S1784 L0687 S1828 101 3S3359 L0956 S1784 L0737 S1828 101 3S0971 L0533 S2184 L0937 S0485 128 3S0008 L0679 S0291 L0578 S0073 83 2S0008 L0679 S0491 L0578 S0073 83 2S0008 L0679 S2559 L0578 S0073 83 2S0008 L0679 S2683 L0578 S0073 83 2S0008 L0679 S3614 L0578 S0073 83 2S0008 L0875 S2263 L0345 S0073 83 2S0008 L0875 S2303 L0345 S0073 83 2S0008 L0875 S3917 L0345 S0073 83 2S0008 L0983 S2083 L0057 S0073 83 23)以费用最少为目标的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有30条,其中28条路线所需时间为64 min,转乘次数为2次,另外两条路线所需时间为101 min,转乘次数为1次;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有2条,所需时间为106 min,转乘次数为2次;起始站S0971到终到站S0485的最少费用为3元,最少费用的最优路线有3条,其中两条所需时间为106 min,转乘次数为2次,另外一条所需时间为128 min,转乘次数为1次;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有9条,所需时间为83 min,转乘次数为1次;起始站S0148到终到站S0485的最少费用为3元,最少费用的最优路线有3条,所需时间为106min,转乘次数为2次;起始站S0087到终到站S3676的最少费用为3元,最少费用的最优路线有12条,所需时间为46 min,转乘次数为2次;最少费用的最优路线表示在表和表中。 6.2.1模型二的建立 该模型针对问题二,将公汽与地铁同时考虑,找出可行路线,然后寻找最优路线。对于地铁线路,也可以将其作为公交线路,本质上没有什么区别,只不过乘车费用、时间,换乘时间不一样罢了。因此地铁站可等效为公交站,地铁和公交的转乘站即可作为两者的交汇点。因此该模型的公交换乘路线模型与模型一中的基本相同。现建立模型二下的最优路线模型。1)以时间最短的路线作为最优路线的模型:可行路线的总时间为乘公交(公汽和地铁)时间与公汽与地铁换乘、公汽间、地铁间换乘时间之和。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型:可行路线的费用为乘公交和地铁费用的总和。 (式)其中, 仍满足(式)。6.2.2模型二的求解 不难发现,问题一是问题二解的一部分。在问题二中,新产生的最优解主要源于在通过换乘地铁、换乘附近相近站点的路线上,如下图所示: 从点A到B,图(a)表示的是通过两公交线路上相邻公汽站S1,S2进行一次转乘;图(b)表示利用地铁站进行二次转乘;图(c)表示利用另一条公汽路线为中介进行二次转乘。铁路线路引入给题目的求解增加了难度,为了形象了解为数不多的两条铁路间的交叉关系,我们通过matlab编程(程序见附录)作出了两条铁路的位置关系图,如图所示。 图 T1与T2铁路位置关系图注:图四中的直线表示T1铁路线,圆表示T2铁路线,数值表示站点,例如1表示T1铁路线上的D1铁路站,26表示T2铁路线上的D26铁路站。此图与网上查询到的北京地铁示意图(如图所示)相吻合。 图 北京地铁示意图同样将地铁线路等效为公交线路得出任意两个站点间的可行线路,再将目标函数分别用模型二建立的模型表达式表达,用VC++进行编程(程序见附录)求得出考虑地铁情况的最优路线。1)以转乘次数最少为目标的最优路线起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0087到终到站S3676的最少转乘次数为0次,即有直达路线,直达下的最优路线有1条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有10条;起始站S0971到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有20条(注表中罗列其中10条);起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有17条(注表中罗列其中10条);起始站S3359到终到站S1828的最少转乘次数为2次,转乘次数最少的最优路线有2条。2)以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为109 min,耗时最少的最优路线有17条与转乘次数最少的最优路线相同;起始站S0971到终到站S0485耗时最少为96 min,耗时最少的最优路线有20条与转乘次数最少的最优路线相同;起始站S0008到终到站S0073耗时最少为55 min,耗时最少的最优路线有3条;起始站S0148到终到站S0485耗时最少为 min,耗时最少的最优路线有10条与转乘次数最少的最优路线相同;起始站S0087到终到站S3676耗时最少为33 min,耗时最少的最优路线有1条与转乘次数最少的最优路线相同;3) 最少费用的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有2条;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有17条;起始站S0971到终到站S0485的最少费用为5元,最少费用的最优路线有20条;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有1条;起始站S0148到终到站S0485的最少费用为5元,最少费用的最优路线有10条;起始站S0087到终到站S3676的最少费用为2元,最少费用的最优路线有1条;在此种情况下,我们就只考虑可以通过地铁站换乘的情况,不通过地铁站的情况即为模型1的求解结果。模型2的求解结果见附件1。6.3.1模型三的建立 该模型针对问题三,将步行方式考虑在了出行方式当中,更符合实际。因为当出发点与换乘点、终点站或转乘站与转乘站之间只相隔几个站时,当然该段选择步行方式更优。因此作出如下假设:一、如果存在某段路线,其两端点站之间相隔站点数小等于2(即至多经过4个站点),则该段线路选择步行方式到达目的地。其他的情况用模型二来处理。其中路线的两端点站之间相隔站点数是根据公交直达换乘路线来确定的。二、相邻公交站点(包括地铁站)间平均步行时间为5分钟。三、如果在公汽线路上选择步行,则公汽间换乘次数减少1;如果在地铁线路上选择步行,则地铁间换乘次数减少1,直达线路除外。直达和转乘一次、两次的路线需要步行的路段示意图如图所示。图中(a)表示出发点A与终点站B间能直达,相隔的站点数等于2所以选择步行;图中(b)表示出发点A与终点站B间通过一次换乘能到达,其中路段AC的站点数等于2所以选择步行,同样如果CB路段的站点数小等于2,则也采取步行的方式;图中(c)选择步行方式的依据类似。 图 步行示意图是否选择步行方式的函数: (式)其中 表示第m路公交路线是否步行, 表示第n路地铁线路是否步行; 对于直达路线,如果出发点与终点站之间相隔站点数小等于2则步行,否则乘车。对于需要转乘的路线的最优路线模型讨论如下:1)以时间最短的路线作为最优路线的模型:路线总时间等于乘车时间加上步行时间,再加上转乘时间。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型:每步行一次就少换乘一次车。 (式)此模型等效为以上转乘路线按直达、转乘一次、两次、三次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型: (式)其中, 仍满足(式)。七 模型的优缺点及改进模型的评价 模型优点1、模型是由简单到复杂一步步建立的,使得更贴近实际。2、本文的模型简单,其算法直观,容易编程实现。3、本文模型比较注重数据的处理和存储方式,大大提高了查询效率。4、本文模型注重效率的提高,通过大量的特征信息的提取,并结合有效的算法,使其完全可以满足实时系统的要求。 模型缺点在建模与编程过程中,使用的数据只是现实数据的一种近似,因而得出的结果可能与现实情况有一定的差距。 模型的改进以上模型主要是从公交线路出发,寻找公交线路的交叉站作为换乘站点,进而找出经过任意两个站点的可能乘车路线。我们也可以从公交站点的角度出发,用图论的方法建立有向赋权图(如图所示),此向赋权图是针对问题三建立的图论模型,问题一、问题二只是此模型的简化。图中 表示公汽线路标号,该线路是公汽线路 的上行线或下行线, 、 、 、 、 、 是公汽线路 上的站点标号; 表示地铁线路标号,该地铁线路是双向行驶的, 、 、 、 、 是地铁线路 上的站点标号;公汽 与地铁 可以在公汽站 和地铁站 间换乘。如果图中的地铁线路替换成公汽线路,为了表示公汽间换乘所需的时间或者费用,应将同一个换乘站点用两个站点来表示。 图 公交线路的有向赋权图根据不同的目标,给不同的站点间的边赋上不同的权值。然后利用图论的相关算法,找出相应的最短路径。1)当以时间最短为目标时,给每条边赋上时间的权值。给同一线路上任意两个站点间的边赋值时,其权值等于站点间的公交线路段数与平均时间的乘积。当某段线路的两段点间间隔站点数小等于3时,选择步行,该线路的权值等于步行时间。不同公汽和地铁间进行换乘时需要赋给不同的权值,以表示换乘时间。例如(如图):当j>4时, 到 的边权值 ;, 从 到 不需要的转车,但根据假设应选择步行,其边权值 ;,从 到 要么乘公交,然后转车,要么步行,根据步行的假设条件, 到 的站点间隔数小于2,因此选择步行,其边权值 ;,当g>4时, 与 之间的边权值 ;, 到 的边权值 ; 到 的边权值 ;当j>4、g>4时, 到 的路径长度为: ;当 、g>4时,则从 到 选择步行,再乘地铁到 ,其路径长度为; ;找出任意两点间可行路线的路径长度后,再搜索出其中的最短路径的的可行路线作为时间的最优路线。2)当以费用最省为目标时,则给每条边赋上费用的权值。公汽站点间的边权按(式)赋值。当公汽线路 按单一票价计费,对于 上任意两个公汽站点 和 间,若 ,则选择步行 ;若 ,则 ;当公汽线路 按分段计价,若 ,则 ;若 ,则 ;若 ,则 ;若 ,则 ;地铁线路 上任意两个站点 和 间,若 ,则选择步行 ;若 ,则 ;换乘站点 与 间的边权值均为0,即 ;则从 通过站点 换乘 到 的一条可行路线的路径长度为:若 , ,则从 到 选择步行, ;若 , ,则 ;同样可以找出任意两点间可行路线的路径长度,然后再搜索出最短路径作为费用的最优路线。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

初中数学获一等奖论文范例

数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读! 初中数学教学论文范文篇一:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 初中数学教学论文范文篇二:初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的 方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 初中数学教学论文范文篇三:初中数学教学课堂小结研究 一、进行课堂小结的方式 1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中. 2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下. 3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰. 4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化. 二、进行课堂小结的注意点 课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果. 1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够. 2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆. 3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.

由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。

【关键词】七年级新生 数学教学解决 方法

学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。

一、提升学生的数学学习能力

初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。

例如,在几何教学中,培养学生将文字语言转化为数学语言的 逻辑思维 。

师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?

生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。

师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。

师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。

学生根据对条件的理解画出图形,如图1。

师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?

生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。

教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。

二、把握教学内容的衔接

与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。

例如,在“有理数”的教学中,我的教学过程如下:

师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。

学生从书上找到有理数的概念,师引入负数,并举例说明其用法。

师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?

生:用负数,就像零上几度和零下几度一样。

师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。

生:也就是说,有理数相比小学的算术数只是多了符号的变化。

师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。

生:答案是(-5)+(-3)=-(5+3)=-8。

在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。

三、培养学生良好的学习习惯

良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。

1.重视预习

进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。

2.正确把握复习的节奏和掌握复习的方法

复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。

复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节, 总结 失败的教训,从中得到成长与进步。

以上观点均是结合自身的教学 经验 所谈,教师应根据所教班级学生的特点因材施教,切勿生搬硬套。

摘要:学习数学对七年级的学生来说,首先是获得适应初中数学学习的能力,以缩短小学学习向初中学习的过渡期。要使数学教学更有效地帮助学生获取数学知识和适应能力,有些问题应在我们的数学教学中应予以重视。

关键词:七年级;数学;重视

1.重视“小练习”,以体现数学思想 教育

进行数学思想方法教学应遵循的几个原则:一是化隐为现原则。就是有意识地让学生将数学思想方法作为明确的学习对象,教学应当以知识为载体,把隐藏在知识中的思想方法揭露出来。二是循序渐进原则。必须结合教学内容和学生认知水平,反复孕育结论发展形成的过程,采用“小步走”、“多层次”的方式,以体现数学思想方法的教学。三是学生参与原则。应当认识到学生参与教学,是数学活动过程的教学,具有动态性、重思辨的特点,要求有学生积极参与其中,使学生逐步领悟、形成和掌握数学思想方法。

我们应当按照这些原则教学。例如,应用题对七年级学生来说是一个数学学习的难点。这个阶段的应用题,尽管在很大程度上还没有真正涉及到实际的应用题,即使这样,也有一些学生对此感到头痛。为了处理好这个问题,我们应按上述原则,在教学中重视设置一些与讲授问题相关、简单且有层次的小练习,让学生通过这些小练习,逐渐体会如何分析问题以及解决问题的方法或思路。例如:

甲、乙两站相距450km,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km。(1)两车同时开出,相向而行,多少小时相遇?(2)快车先开出30分钟后慢车开出,两车相向而行,慢车行驶了多少小时与快车相遇?

讲解该问题前,我们可按解题思路先让学生想想两种车在具体时间内各走了多少路程,并推出x小时内所走路程的表达式;再让学生想想两车“相遇”在时间上有何特点,各自所走路程与两站间距离有何关系;然后让学生想想“快车先开出30分钟”对各自所走路程以及与两站间距离的关系会产生的影响等问题。通过这类小练习让学生沿着正确的解题方法做一遍,以理解解题的思想。

这类小练习应具有由浅入深、由简单到复杂、每步过渡都有铺垫等特点,若再加上适当的图示,学生做起来就不会感觉有太大困难。显然,小练习是在教师引导下由学生自己完成,符合“学生参与原则”;围绕原问题,小练习按“小步走”的方式依次提问题,难度由浅入深,符合“循序渐进原则”;小练习将原问题的基本面目逐步展现出来,让学生看到解决原问题的方法与自己熟悉的方法之间的关系,符合“化隐为显原则”。

2.要关注学生的个体差别

在曾经的教学中,学生常常是被动地学习,没有机会主动地学习和自主地选择决策,这样学生就失去了作为学习主人的创造力创新精神。新一轮基础教育课程改革十分重视尊重学生的个体差别,尊重学生的各式性,激发勉励学生各个方面进行发展,采用不一样的教育方法和评估标准,为每个学生的发展创造条件。作为初中数学老师需要在教育思想、教育观念上创新,要树立适应时代发展必要的新的教育观、人才观和质量观,在全面落实素质教育的基础上,不停改革 教学方法 ,提升教育教学质量,创建符合学生身心发展规律的班级课程授教体系,刺激引发学生学习的主动性和创造性,应对学生有充实的信心和支持带领学生在各个方面进行发展的基础上寻找本性突破(意为打开缺口突破难关)。值得注意的是,个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)的课程和教学条件正在逐步形成。信息技术的发展,多媒体计算机和网络(网络就是用物理链路将各个孤立的工作站或主机相连在一起,组成数据链路,从而达到资源共享和通信的目的)技术在学校教学整个过程中应用范围日益扩大,给个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)教学和对学习的人的志趣、能力等具体情况进行不同教育带来新的机遇,也给初中数学老师带来了新的挑战。

3.数学教师应正确认识数学教学的本质

树立正确的数学教学观教学曾被简述为“教师教、学生学的活动”。但这样说过于简单,不利于对数学教学的全面理解。苏联教育学家斯卡特金认为:教学是一种传授社会经验的手段,通过教学传授的是社会活动中各种关系的模式、图式、总的原则和标准。这是一种侧重于传授内容的总体叙述。美国心理学家布鲁纳认为:教学是通过引导学生对问题或知识体系循序渐进的学习来提高学生正在学习中的理解、转换和迁移能力。这是侧重于学生获得发展的叙述。不论是从认识心理学的角度构筑的数学教学理论,还是着眼于未来,注重 学习方法 的掌握与创造精神发挥的数学教学理论,都必须研究数学教学过程的本质、数学教学的原则和教学方式及方法的开拓,探讨数学教学的科学性与艺术性及其统一。特别地,要与信息社会发展的总体趋势相适应,着眼于促进学生全面、持续、和谐地发展。“义务教育阶段国家数学课程标准(实验稿)”第四部分“课程实施建议”中指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”。这里,强调了数学教学是一种活动,是教师和学生的共同活动,这对广大教师树立正确的数学教学观具有重大的意义。在新课程中,教师将由传统的知识传授者转变为课堂教学的组织者、引导者和合作者。教学工作越来越找不到一套放之四海而皆准的模式。因此,教师必须在教学工作中随时进行 反思 和研究,在实践中学习和创造,这样才能得到发展。另外,数学教学过程不再是机械地执行教材的过程,而是师生从实际出发,利用更广泛的课程资源,共同开发课程和丰富课程的过程,教学真正成为师生富有个性化的创造过程。新的课程呼唤着创造型的教师,新的时代也将造就优秀的教师。

摘 要: 新世纪需要的是高素质人才,兴趣是各种素质培养的前提条件,培养学生的兴趣是数学教学的关键。数学兴趣的培养要从入门抓起,要从课堂教学抓起,要从学习习惯抓起。教师要以数学的趣味性、教学的艺术性感染学生,引起学生学数学的兴趣,同时培养学生各方面能力,真正实现素质教育。

关键词: 学习兴趣 课堂导入 实践操作 学习习惯

学生升入七年级伊始,对数学有着浓厚的兴趣,可是没多久,兴趣就慢慢消失了,这几乎成了七年级数学教学的普遍性问题。长期以来,教师为保持学生的学习兴趣一直进行着不懈努力。那么,如何提高七年级学生的学习兴趣呢?经过不断探索和实践,我认为应该从以下几个方面入手。

一、要充分把握入门阶段的教学

“良好的开端是成功的一半”,这是义务教育课程标准试验教科书编写者的指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费时间,深下功夫,让学生在学习的入门阶段留下深刻的印象,产生浓厚的兴趣。为此教师在教学七年级数学上册第一章“几何图形的初步认识”时,可多运用几何体教具进行教学,还有多让学生观察日常生活中的几何体,课上多动手操作,来引发学生的学习兴趣。如在教学第三节“几何体表面展开图”时,让学生以组为单位,剪、展纸盒,通过动手实际操作激起学生的学习兴趣。这样通过第一章的学习,一点点诱发学生的学习兴趣,消除学生害怕学数学的心理,以数学的趣味性、教学的艺术性给学生以感染,使其像磁铁上的铁屑离不开磁铁一样。

二、要保持课堂教学的生动性、趣味性

学生对数学学习有了初步兴趣后,要保持七年级学生学数学的永久兴趣,教师还应抓住七年级学生情绪易变、起伏较大的心理、生理特点,要求以“活的东西去教活的学生”,来培养学生持久的学习兴趣。对此,我的具体做法:

(一)注重课堂教学中的导入环节

一个好的导入设计,能使这堂课先声夺人,引人入胜,更为重要的是,好的导入能激发学生的学习兴趣和旺盛的求知欲,并创造良好的学习氛围,为授课的成功奠定良好的基础。以下是我教学实践过程中总结的几种课堂导入的方法。

1.设置情境,激发兴趣。

创设良好的导入情境,激发探索动机是引导学生探索学习的前提。因而,在导入阶段教师应注重情境的创设,创设好奇、疑惑、生动、有趣的情境,让学生对学习产生兴趣,进而产生主动探索的强烈欲望。如在教学“用平面截几何体”时教师可用实际切豆腐演示的方法导入,从而激发学生的学习兴趣。

2.设置疑点,引起兴趣。

“学贵有疑”,这是常理。学生在学习数学的过程中不断发现问题,学习数学才有兴趣,才会主动。亚里士多德曾说过:“思维是从疑问和惊奇开始的。”因此教师在导入教学过程中,还可以设置障碍,故意制造疑团和悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。

3.联系生活,灵活应用。

生活中处处有数学的存在。要培养学生数学的应用意识,教会学生去观察生活,领悟生活的数学因素,教师就应注意课堂中实际生活的渗透,巧妙设置情境;启发学生从生活实际中发现某些规律,从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时有利于学生对新知识的理解和记忆。

(二)课堂教学中充分让学生参与实践操作

教材针对七年级学生喜欢观看、喜欢动手的性格特征,安排了大量的实践性内容,以激发学生的学习兴趣。教师要抓住教材这一编排特点在教学中让学生参与实践操作,如在教学“有理数的混合运算”一节时,教师可把学生分成几个小组,每组一副扑克牌(去掉大、小王牌),让学生任意抽取四张牌,然后根据牌面上的数字进行加、减、乘、除、乘方混合运算,使运算结果为24或-24,来激发学生的学习兴趣和求知欲。

此外,教师可讲与数学知识有关的小 故事 ,做小游戏等,适当增加趣味成分,使看似枯燥的数学变得形象具体,这样也可以使课堂教学变得生动有趣。

三、教学中要注重培养学生学习习惯

七年级数学在每章节内容的编排上安排了“观察与思考”、“一起探究”、“做一做”、“大家谈谈”等栏目,独具匠心、面目一新。其宗旨是设法使学生学有趣、学有法、学有得。为此我在教学实践中从培养学生学习兴趣入手,逐渐使学生养成良好的学习习惯,使数学兴趣真正变成永久兴趣。具体做法:

(一)培养观察习惯

学生对图形、对实验的观察特别感兴趣,教师就可以引导他们有的放矢、积极主动去观察,边观察、边提问、边引导学生进行讨论。根据他们观察、分析的情况逐步引导出知识点。这样能使学生体会观察的收获与兴奋,自觉养成观察的习惯。

(二)培养思考习惯

具体方法是课前或课中出示思考题,如教学“用一元一次方程解决实际问题”时,可出示思考题:你还能想出另外的方法解这道应用题吗?鼓励学生思考多种方法,表扬回答正确的学生,使学生有获得成功之喜悦,从而产生兴趣,养成爱思考的习惯。

(三)培养探究的习惯

教师通过提问,引发学生积极探讨数学知识,逐步培养学生合作探究的习惯。特别是一题多解的题目或需要分类讨论的问题,如在教学“平行线的特征”时,可以让学生进行分组探究。通过探讨,归纳出平行线的性质。

以上只是我个人在七年级数学教学过程中对如何培养学生学习兴趣方面一点粗浅的看法,还望各位同仁给予指教。教师在实际教学中,其方法、 措施 是多种多样的,体会也各不相同,对于数学教学还有待于我们共同的研究和探讨。

参考文献:

[1]尹安群编著.有效教学――初中数学教学中的问题与对策.东北师范大学出版社.

1. 浅谈七年级数学相关论文

2. 初中数学的教学论文

3. 关于初中数学教学论文

4. 初中数学教学论文范文

5. 初中数学教育教学论文

初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。

数学教学论文篇一

一、引进有效的教学方法

科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。

而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。

二、进行激励性教育

在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。

每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。

三、寓教于乐的教学

在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。

游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。

四、总结

总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。

数学教学论文篇二

一、差别性教学的作用

(一)通过差别性教学,学生更好地成长

由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。

(二)使学生更加自信

推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。

二、初中数学教学中差别性教学的实施办法

(一)从学生的水平出发,有序地分组

通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。

(二)依据分组后学生的情况,采取不同的教学方式

我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。

(三)依据分组后学生的情况,安排的任务有所不同

安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。

(四)依据分组后学生的情况,评估的方面有所不同

因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。

三、总结

差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。

数学教学论文篇三

一、课堂上进行有针对性的有效提问

1.问题必须要有思维容量。

不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。

2.锻炼提问的技巧。

问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。

二、让学生“想学”,教学语言风趣

美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。

三、对学生进行正确的思维训练

对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。

四、总结

总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。

初中数学竞赛学生一等奖论文

感悟数学曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。记住,站在峰脚的人是望不到峰顶的。

在国家教委制订的《九年义务教育全日制初级中学数学教学大纲(试用)》中,第一次使用了“数学素养”一词,成为全国中学数学教师的热门话题之一。数学素养是人所必备的素养。人们在社会活动中,逐渐积累着对于数量关系和空间形式的认识,没有这种素养,人类就不会记数,不会排序,不会测量,不会分配,社会也就不可能发展,就没有现代社会的物质文明和精神文明。数学素养是民族素质的重要组成部分:思想道德、文化科学、劳动技术和身体心理这四项素质的各个方位及其成分、因素,都要通过量化才能得以充分展示,并且变得更有标准、可操作、可测量、可评价。数学图形是物质世界和人类文化相结合的一种完善形式。数学语言是全人类共同使用并可以传授给机器人的一种交流手段。数学是思维的体操,思维是数学灵魂,在运用数学思想、数学方法去思考和解决问题的过程中,培养着人的辩证唯物主义的世界观和严谨的科学态度。数学素养的结构是多方位的,基本的有下列四个:1.知识技能素养。2.逻辑思维素养。3.运用数学素养。4.唯物辩证素养。数学素养除了具有素质的一切特性以外,还具有以下特性:1.精确性。2.思想性。3.并发性。4.有用性。我国建国以来,民族素质和数学素养都得到了很大的提高。中国学生的数学素养也已为世人所公认。根据国际教育评估协会1992年的报告,在参加数学测试的21个国家或地区中,我国以总平均80分的成绩荣居榜首。此外,我国中学生在国际奥林匹克数学中连获冠军,有时竟囊括全部金牌,我们还拥有一批数学尖子。提高学生的数学素养,需从以下几方面努力:(一)面向全体学生。(二)突出基本的数学思想和数学方法。(三)抓住培养思维能力这一数学教学的核心。(四)注重运用数学。

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

相关百科

热门百科

首页
发表服务