首页

> 学术论文知识库

首页 学术论文知识库 问题

酶活测定毕业论文

发布时间:

酶活测定毕业论文

多酚氧化酶(PPO)活性的测定相关实验:多酚氧化酶(PPO)活性的测定最新修订时间:2022-02-10简介多酚氧化酶(polyphenol oxidase,PP0)广泛存在于植物组织中,可以氧化酚类物质为醍类物质,但在正常组织中这一反应并不经常发生,如果组织受损,反应便可发生,如苹 果、茄子创面的褐变。另外,当植物感病时,多酚氧化酶活性明显升高。因此,酚类物质含量和多酚氧化酶活性测定是植物抗性生理研究中经常用到的一个指标。本实验的目的在于学习测定多酚氧化酶活性的方法、原理及操作技术。原理多酚氧化酶催化分子态氧将酚类化合物如邻苯二酚(儿茶酚)氧化为醍类物质, 所生成的产物(邻醍)在525 nm波长处有最大吸收峰,其吸光值与产物生成量呈正相关,所以可据此测定多酚氧化酶的活性。材料与仪器材料:马铃薯块茎等。试剂: mol · L-1 pH 磷酸缓冲液, mol · L-1邻苯二酚溶液,20% 三氯乙酸。器材:分光光度计,离心机,研钵,容量瓶,试管等。步骤多酚氧化酶(PPO)活性的测定的基本过程可分为如下几步:1. 酶液提取:取5 g洗净去皮的马铃薯块茎,切碎,放入研钵中。加适量磷酸缓冲液研磨成匀浆。将匀浆液全部转入离心管中,3 000 r · min-1离心10 min,上清液转入25 mL 容量瓶中。沉淀用5 mL磷酸缓冲液再提取2次,上清液并入容量瓶,定容至刻度。低温下保存备用。2. 酶活测定:取4支试管(2支对照,2支测定)按表41 -1加入试剂。37°C水浴中保温 10 min,到时间后立即加入2 mL 20% 的三氯乙酸,终止酶的反应。反应液4 000 r ·min,离心10 min,收集上清液,并适当稀释,于525 nm波长下测定其吸光值

金山词霸可以查词翻译,用来学习英语是很不错的,而且现在的手机版更方便。

直接给你大纲吧。

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

土壤酶活性测定毕业论文

这个挺容易理解的啊,酶是干吗用的呢?还不是跟cell有关,所以你用生物的方法肯定要考虑影响生物活性的因子了啊。转个角度思考,检出土壤中的酶的含量or活性,不就反过来说明了你的植物修复的效果了。给分啊,呵呵。

脲酶urease(水解酶):nbsp;脲酶试验原理:nbsp;存在于大多数细菌、真菌和高等植物里。它是一种酰胺酶、能酶促有机物质分子中酶键的水解。脲酶的作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和碳酸。土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。人们常用土壤脲酶活性表征土壤的氮素状况。nbsp;土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。本方法是测定生成的氨量。nbsp;试剂:1)甲苯nbsp;2)10%尿素:称取10g尿素,用水溶至100ml。nbsp;3)柠檬酸盐缓冲液():184克柠檬酸和克氢氧化钾溶于蒸馏水。将两溶液合并,用1mol/LNaOH将PH调至,用水稀释至1000毫升。nbsp;4)苯酚钠溶液():克苯酚溶于少量乙醇,加2毫升甲醇和毫升丙酮,用乙醇稀释至100毫升(A),存于冰箱中;27克NaOH溶于100毫升水(B)。将AB溶液保存在冰箱中。使用前将2溶液各20毫升混合,用蒸馏水稀释至100毫升。nbsp;5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为,溶液稳定。nbsp;6)氮的标准溶液:anbsp;精确称取克硫酸铵溶于水并稀释至1000ml,得到1ml含有氮的标准液nbsp;标准曲线绘制:吸取配置好的氮溶液10ml,定容至100ml,即稀释了10倍,吸取1,3,5,7,9,11,13ml移至50ml容量瓶,加水至20ml,再加入4ml苯酚钠,仔细混合,加入3ml次氯酸钠,充分摇荡,放置20分钟,用水稀释至刻度。将着色液在紫外分光光度计上于578nm处进行比色测定,以标准溶液浓度为横坐标,以光密度值为纵坐标绘制曲线图。nbsp;取新鲜土壤7份,每份30g,装于棕色广口瓶中,先将1,3-二氯丙烯溶于丙酮(定量),6份分别加入不同浓度均为的1,3-二氯丙烯,使之在土壤中的浓度分别为1、10、50、100、200、500amp;micro;g/g,另1份相应加入的丙酮作为对照,然后调节土壤的含水量至最大田间持水量的60%(记录此时重量,以便补充水分)。放置于25℃恒温培养箱,培养后第0d、1d,5d,10d(前10d密封,后来测定的敞口)、20d,30d,40d,50d分别取土样检测脲酶的活性。取样前,反复旋转广口瓶,混匀土样,一个处理随机取3个重复。nbsp;1)nbsp;称取5g过1mm筛的风干土样于100ml容量瓶中。nbsp;2)nbsp;向容量瓶中加入1ml甲苯(以能全部使土样湿润为度)并放置15分钟nbsp;3)nbsp;之后加入10mlnbsp;10%尿素溶液和20ml柠檬酸缓冲液(),并nbsp;仔细混合nbsp;4)nbsp;将容量瓶放入37摄氏度恒温箱中,培养24hnbsp;5)nbsp;培养结束后,用热至38摄氏度水稀释至刻度,仔细摇荡,并将悬液用致密滤纸过滤于三角瓶中。nbsp;6)nbsp;显色:吸取3ml滤液于50ml容量瓶中,加入10ml蒸馏水,充分震荡,然后加入4ml苯酚钠,仔细混合,再加入3ml次氯酸钠,充分摇荡,放置20分钟,用水稀释至刻度,溶液呈现(青定)酚的蓝色。nbsp;7)nbsp;1h内在((青定)酚的蓝色在1h内保持稳定)在分光光度计上用1cm液槽,于578nm处将显色液进行比色测定。nbsp;8)nbsp;无土对照:不加土样,其他操作与样品实验相同。以检验试剂纯度,整个实验设置一个对照nbsp;9)无基质对照:以等体积的水代替基质,其他操作与样品实验相同。每个土样都设此对照。nbsp;结果计算:土壤脲酶活性以24小时后100g土壤中NH3-N的毫克数表示。nbsp;M=(X样品-X无土-X无基质)*100*10nbsp;式中:M-土壤脲酶活性值nbsp;X样品――样品实验的光密度值在标准曲线上对应的NH3-N毫克数nbsp;X无土――无土对照实验中的光密度值在标准曲线上对应的NH3-N毫克数nbsp;X无基质――无基质对照实验中的光密度值在标准曲线上对应的NH3-N毫克数nbsp;100nbsp;――样品定容的体积与测定时吸取量的比值nbsp;10nbsp;――酶活性单位的土重与样品土重之比值nbsp;注意事项:当脲酶活性为3-80微克NH3-N时,本法能获得可靠结果。当脲酶活性小于3微克NH3-N,培养时间需增至24小时(已经24h了)(计算时应考虑这一点)nbsp;计算:脲酶活

土壤脱氢酶活性测定 原理 氯化三苯基四氮唑(TTC)是标准氧化电位为80mV的氧化还原色素,溶于水中成为无色溶液,但还原后即生成红色而不溶于水的三苯甲臢(TPF),TPF比较稳定,不会被空气中的氧自动氧化,所以TTC被广泛地用作酶试验的氢受体,植物根系中脱氢酶所引起的TTC还原,可因加入琥珀酸,延胡索酸,苹果酸得到增强,而被丙二酸、碘乙酸所抑制。所以TTC还原量能表示脱氢酶活性并作为根系活力的指标。 测定步骤 1 称取4克鲜土于50ml三角瓶中,加入4mL(TTC-葡萄糖-Tris缓冲溶液(,即2ml 1%TTC-Tris缓冲溶液,2ml 1%葡萄糖),置37℃暗室培养24hr。 2 取出后用少量甲醇提取后过滤,再用50ml容量瓶或比色管定容。 3 滤液马上用485nm波长下分光光度计测定。 附: Tris缓冲液的配制: A: 三-(羟甲基)-氨基甲烷溶液(1000 ml含克) B: HCl 100 ml A+ B,加水稀释至400 ml,准确调节pH为。 TPF标准曲线的制备:准确称取10mg TPF溶于250 ml甲醇中,得到40 mg/L的母液。从中吸取0,1,2,3,4,5 ml于50ml容量瓶中,用甲醇定容,得到0,40,80,120,160,200ug TPF的标准曲线。 参考文献 Casida LC Jr, Klein DA, Santoro T(1964) Soil dehydrogenase activity. Soil Science 98, 371-376. , , , , and (2003) Effects of lanthanum on dehydrogenase activity and carbon dioxide evolution in a Haplic Acrisol. Australian Journal of Soil Research 41, 731-739. ,

小麦酶活力测定论文题目

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

操作步骤

1.淀粉酶液的制备称取1g 25℃下萌发3天的小麦种子(芽长约),置于研钵中,加入少量石英砂和2mL蒸馏水,研磨成匀浆后,将匀浆转入离心管中,用6mL蒸馏水分次将残渣洗入离心管。提取液在室温下放置提取15~20min,每隔2分钟搅动1次,使其充分提取。然后在3 000r/min转速下离心10min,将上清液倒入50mL容量瓶中,加蒸馏水定容至刻度,摇匀,即为淀粉酶原液,用于淀粉酶活力的测定。吸取上述淀粉酶原液10mL,放入50mL容量瓶中,用蒸馏水定容至刻度,摇匀,即为淀粉酶稀释液,用于淀粉酶总活力的测定。取干燥种子或浸泡小时后的小麦种子1g,进行淀粉酶的提取,提取方法同上。

2.麦芽糖标准曲线制作:取7支干净的具塞刻度试管,编号,按表1加入试剂。

附 注

(1)样品提取液的定容体积和酶液稀释倍数可根据不同材料酶活性的大小而定。

(2)为了确保酶促反应时间的准确性,在进行保温这一步骤时,可以将各试管每隔一定时间依次放入恒温水浴,准确记录时间,到达5min时取出试管,立即加入3,5-二硝基水杨酸以终止酶反应,以便尽量减小因各试管保温时间不同而引起的误差。同时恒温水浴温度变化应不超过±℃。

(3)如果条件允许,各实验小组可采用不同材料,例如萌发1d、2d、3d、4d的小麦种子,比较测定结果,以了解萌发过程中这两种淀粉酶活性的变化。

小麦萌发前后淀粉酶活力的比较实验结果说明了什么如下:

一般都指的是淀粉酶。目的就是让你知道以下事实:休眠种子的淀粉酶活力很弱,种子吸胀萌动后,酶活力逐渐增强,并随着发芽天数的增长而增加。

小麦萌发过程中淀粉酶活性升高的原因和意义如下:

1、小麦种子中的主要储能物质是淀粉(多糖),淀粉不能直接被植株吸收利用,需要经过淀粉酶的催化后,变成葡萄糖、麦芽糖等小分子物质,才能被幼苗吸收利用,为细胞分裂生长以及生命活动提供能量。

2、淀粉酶活性提高以后,可以加速淀粉的水解过程,更快的将储存的有机物中的能量释放出来,保证种子在萌芽过程中能量充足,这样才有利于小麦种子的萌芽,成长。

3、在未发芽之前,小麦种子中只有β-淀粉酶;而在发芽过程中则会形成α-淀粉酶。

4、α-淀粉酶可以随机的作用在淀粉的α-1,4糖苷键,形成葡萄糖、麦芽糖、麦芽三糖、糊精等还原糖,而β-淀粉酶作用在淀粉的非还原性末端,主要产物为麦芽糖连续单位以及极限糊精。

酶检测技术论文

食品快速检验检测技术以其简捷性和便携性两大优势得到了快速发展。 下面是我为大家整理的食品快速检测技术论文,希望你们喜欢。

食品的快速检验检测技术

摘要:食品安全已成为社会关注的焦点问题。文章介绍了目前常用的食品安全快检技术,并展望了其发展方向。

关键词:食品安全 快检 技术综述

引言

食品安全(food safety)是指食品无毒、无害,符合应当有的营养要求,对人体健康不造成任何急性、亚急性或者慢性危害。俗话说“民以食为天”,食品安全关系到人民群众的身体健康和生命安全,关系到社会和谐稳定,而近年来食品安全问题层出不穷,加了吊白块的面粉,有毒的大米,注了水的鸡肉,掺了石蜡的火锅底料,硫酸泡过的荔枝,以及假酒假烟假蜂蜜劣质奶粉充斥着市场,真让老百姓担心起这片“天”。因此,对食品的生产、加工和销售环节实施监测监控势在必行,食品安全分析检测技术应运而生。

传统的食品安全分析检测技术主要是指化学分析法和大型仪器检测法,相对成熟。但它们的操作只能局限于实验室,操作复杂,耗时长,不能满足对食品质量安全实时监督掌控的需求,尤其在突发事件时,快速检验检测技术以其简捷性和便携性两大优势得到了快速发展。

1、食品快速检验检测技术的研究现状

化学速测技术

化学速测技术主要是根据待测成分的某些化学性质,将样品与特定试剂发生水解、氧化、磺酸化或络合等化学反应,通过与标准品的颜色比较或特定波长下的吸光度比较,以获得检测结果,通常也成为化学比色分析法。

利用普通化学原理的速测法主要包括检测试剂和试纸,随着检测仪器的不断发展,国内外均已有与测试剂相配套的微型光电比色计。针对试纸检测的仪器也有报道,如硝酸盐试纸条[1],主要是将硝酸盐还原为亚硝酸盐,在弱酸性条件下与对氨基苯磺酸重氮化后,和N-1-盐酸萘乙二胺偶合形成紫红色染料,试纸变色,插入检测仪读数即可。德国默克公司生产的与试纸联用的光反射仪技术相对成熟,国内尚无商品化仪器问世。

利用生物化学原理的速测法主要应用于微生物的检测,商品化成品以美国3M公司的PerrifilmTM Plate系列微生物测试片为代表,在检测金黄色葡萄球菌时,只需要测试片与确认片配套使用即可。测试片有上下两层薄膜组成,下层的聚乙烯薄膜上印有网格,便于计数,同时覆盖着含有特异性显色物质和抗生素的培养基,若样品中含有金黄色葡萄球菌,无须增菌,直接接种纸片培养24h后便可观察到显示出特殊颜色的菌落;确认片与测试片相似,只是含有不同的特异性显色物质,将有疑似菌落的测试片影印到确认片后,培养1-3h即可观察,不需进行繁琐的生理生化鉴定。而常规的Baird-Parker平板计数法耗时长达78h。

酶抑制速测技术

酶抑制速测技术主要用于食品中农药残留和重金属的快速检测。这些物质可通过键合作用造成酶的化学性质和结构的改变,产生的酶-底物结合体会发生颜色、吸光度或者pH值的变化,通过测定这些变化以达到定性或定量检测的目的。根据检测方式的不同,可分为试纸法、pH计法和光度法。相比而言,试纸法成本低、操作简单,更易于推广。它主要是将酶和底物分别固定在两张试纸片上,当样品中有待测组分时,会对酶产生抑制作用,两张试纸片接触后,酶和底物结合便会发生显著地颜色变化,比较适合农贸市场和超市等一些食品集散地的实时安全监管。由于该方法的检出限和保存性等方面的局限,只适用于初筛检测[2]。

生物传感器速测技术

生物传感器技术是利用生物感应元件的专一性,按照一定的规律将被测量转换成可用信号,使这种信号强度与待测物浓度形成一定的比例关系,具有快速、灵敏、高效的特点,是目前食品安全检测技术的研究热点,广泛应用于食品中农药残留、兽药残留等方面的检测,与传统的离线分析技术相比,它更适应于在复杂的体系内进行快速在线连续监测,在现场快速检测领域有着不可逾越的优势,按照传感器类型又可分为免疫传感器、酶传感器、细胞传感器、组织传感器、微生物传感器等等。

免疫传感器是在抗原抗体结合免疫反应的基础上发展起来的生物传感器。利用压电免疫传感器检测食品中常见肠道细菌时,通过葡萄球菌蛋白A将肠道菌共同抗原的单克隆抗体宝贝在10MHz的石英晶体表面,以大肠菌群为例,响应值可达10-6-10-9。

免疫速测技术

免疫速测是利用抗原抗体的专一、特异性反应建立起来的方法,根据选用的标记物可分为放射免疫检测、酶免疫检测、荧光免疫检测、发光免疫检测、胶体金免疫检测等。酶联免疫吸附检测法是应用较为广泛的一种免疫速测技术。它将酶标记在抗体/抗原分子上,形成酶标抗体/抗原即酶结合物,抗原抗体反应信号放大后,作用于能呈现出颜色的底物上,可通过仪器或肉眼进行辨别。目前,黄曲霉毒素酶联免疫试剂盒已广泛应用于食品检测中。

分子生物学速测技术

聚合酶链式反应(PCR)是近年来分子生物学领域中迅速发展并运用的一种技术,在食品检测中主要用于微生物的检测。它利用是否能从待测样品所提取的DNA序列中扩增出与目标菌种同源性的核酸序列来判定是否为阳性,该方法从富集菌体、提取遗传物质、PCR扩增到电泳、测序鉴定,可控制在24h,而致病菌的传统培养检测至少需要4-5天。

随着研究的逐深入,由PCR技术派生出的实时荧光PCR法、DNA指纹图谱法、免疫捕获PCR法、基因芯片法等也逐步得到了应用。基因芯片技术可以在很小的面积内预置千万个核酸分子的微阵列,利用细菌的共有基因作为靶基因,选用通用引物进行扩增,利用特异性探针检测这些共有基因的独特性碱基,从而区分出不同的细菌微生物。该法特异性强、敏感性高,可实现微生物检测的高通量和并行性检测。

2、食品快速检验检测技术的发展方向

食品安全快检法以其简捷性和便携性两大优势得到了快速发展,但缺点也显而易见,需要完善的地方依然很多:

简单 速检验检测技术往往是由一些非专业技术人员使用,因此,检测方法采样、处理、检测、分析等各个环节简单、易行是该方法的一大发展趋势。

准确 检法前处理简单,势必导致待测样品纯度不高,基体干扰大。因此,在今后方法的研究中,应更多关注与如何避免假阳性结果,尤其是在分子生物学速测法中,增强靶基因的特异性、引物的特异性、排除死菌体造成的假阳性应得到进一步探索。

便携 着微电子技术、智能制造技术、芯片技术的发展,检测仪器应向微型化、集约化、便携化方向发展,以满足更多的现场、实时、动态的检测要求。

经济 测成本的高低直接决定着检测技术能否得到广泛的推广和应用,如何在确保又好又快的检测基础上,尽最大可能的降低成本也是今后的研究方向。

标准化前,我国尚未制定出与食品安全快速检测技术相关的标准和规范,这也阻碍了快检法的推广和应用。随着技术的提高和检测中对快检法的需要,应及时制定出相关标准规范以增强快检结果的认可性和权威性。

参考文献

[1]房彦军,周焕英,杨伟群。试纸-光电检测仪快速测定食品中亚硝酸盐的研究【J】解放军预防医学杂志,2004,22(17):18-21

[2]易良键。食品安全快速检测方法的应用和研究【J】中国信息科技,2012,3:46

点击下页还有更多>>>食品快速检测技术论文

PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。下面是我整理的关于pcr技术论文,希望你能从中得到感悟!

技术的研究进展

摘要 PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。因其高强的特异性和灵敏度以及检测速度快、准确性好等优点,已被广泛地应用于水产、微生物检测等许多领域。该文从PCR技术的原理及应用方面进行了综述,并对其发展做出了展望。

关键词 PCR技术;研究进展;应用

中图分类号 Q819 文献标识码 A 文章编号 1007-5739(2012)10-0047-02

PCR(polymerase chain reaction,PCR)即聚合酶链式反应,它是一种体外酶促合成,扩增特定DNA片段的方法。1985年,美国Karray等学者首创了PCR技术,并由美国Cetus公司开发研制[1]。随着科学技术的发展和突破,PCR技术已在多个领域得到广泛地应用,如微生物检测、兽医学、水产养殖等方面。由于该技术具有较强的灵敏度、准确度和特异性,又能快速进行检测,因而其应用领域也在不断延伸[2-3]。随着PCR技术的不断发展,在常规PCR技术的基础上又衍生出了许多技术,如多重PCR(mutiplex PCR)技术[4]、实时荧光定量PCR(real-time fluorescent quantitative PCR,FQ-PCR)技术[5]、单分子PCR技术[6]。

1 PCR技术原理

PCR技术是根据待扩增的已知DNA片段序列、人工合成与该DNA 2条链末端互补的2段寡核苷酸引物,在体外将待检DNA序列(模板)在酶促作用下进行扩增。PCR的整个技术过程经若干个循环组成,一个循环包括连续的3个步骤:第1步是高温条件下的DNA模板变性,即模板DNA在93~94 ℃的条件下变性解链;第2步是退火,即人工合成的2个寡核苷酸引物与模板DNA链3’端经降温至55 ℃退火;第3步是延伸,即在4种dNTP底物同时存在的情况下,借助TaqDNA聚合酶的作用,引物链将沿着5’-3’方向延伸与模板互补的新链[7]。经过这个循环后,合成了新链,可将其作为DNA模板继续反应,由此循环进行。循环进程中,扩增产物的量以指数级方式增加,一般单一拷贝的基因循环25~30次,DNA可扩增l00万~200万倍[1]。PCR反应的步骤很简单,但是具体的操作是复杂的,如退火温度的确定、延伸时间的长短以及循环数等。因此,不同的反应体系应该确定适当的反应条件,以避免假阴性或假阳性等情况的产生。

2 PCR技术的分类

在传统PCR技术的基础上,根据人们的需要以及各个领域的应用要求,又衍生出很多种类的PCR技术。新技术在各领域广泛应用并逐渐改进,为进一步的研究提供了基础。

实时荧光定量PCR技术

1996年,学者经过研究,在传统PCR技术的基础上,首创了实时荧光定量PCR技术,新技术已经应用至医学领域、分子生物学和其他基础研究领域。实时荧光定量PCR技术基于传统技术的优势,还具有实时性、准确性、无污染,实现了自动化操作和多重反应,是PCR技术研究史上从定性到定量的飞跃[8]。

荧光定量PCR技术最大的特点是能将荧光基团加入到PCR反应体系中,借助于荧光信号,累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析[9]。实时监测这一特点是常规PCR技术所不具有的,因为其对扩增反应不能进行随时的检测。常规PCR技术的扩增终产物需要在凝胶电泳等条件下才能进行,无法对起始模板进行准确的定量,而荧光定量PCR技术的反应进程可以根据荧光信号的变化做出准确的判断[10-11]。一个PCR循环反应结束之后,定量PCR仪可以收集1个荧光强度信号,荧光信号强度的变化可以反映产物量的变化情况,这样就可以得到1条荧光扩增曲线[12]。荧光信号在指数扩增阶段,PCR产物荧光信号的对数值与起始模板量之间存在线性对应关系,然后进行定量分析[13]。

多重PCR技术

多重PCR(mutiplex PCR)技术是PCR技术的一种,为同一管中加入多对特异性引物,与PCR管内的多个模板反应,在一个PCR管中同时检测多个目标DNA分子。多重PCR技术可以扩增一个物种的一个片段,也可以同时扩增多个物种的不同片段[14]。

在同一反应体系中,多重PCR技术进行多个位点的特异性扩增时,引物间的配对、引物间的竞争性扩增等会对扩增效果产生重要影响。一方面,如果能选择适宜的反应体系和反应条件,可极大地提高多重PCR的扩增效果[15]。主要包括退火温度、退火及延伸时间、PCR缓冲液成分、dNTP的用量、引物及模板的量等。另一方面,DNA的抽提质量也影响多重PCR扩增效率,如DNA抽提不干净或降解都将影响PCR扩增效果[16]。

单分子PCR技术(SM-PCR)

单分子PCR技术是在传统PCR技术的基础上发展的,基本循环过程相同,但在反应条件、模板数量、DNA 聚合酶选择、引物设计方面具有不同点。该技术是以少量或单个DNA分子为模板进行的PCR[17]。

单分子PCR技术反应中,DNA 模板浓度极低,这就要求模板有较高的质量。因为这是试验成败的决定性因素。在设计引物时,应该严格控制GC的含量和Tm值,同时尽量避免引物间存在可配对序列。在反应混合物模板数极低的情况下,若引物之间存在少量配对序列,扩增时极易形成二聚体,使反应无法进行,得不到所需要的产物[18]。由于单分子PCR技术反应的变性温度(96~98 ℃)大多比常规PCR技术(94 ℃)略高,因而对DNA 聚合酶热稳定性的要求也更加严格,需要有较好的热稳定性,以防止温度过高而使其失活。其变性时间(5~15 s)、退火时间及延伸时间也短于常规PCR技术[17]。

3 PCR技术的应用

PCR技术在水产上的应用

基因表达是检测某个基因在不同发育期或不同组织中的表达量变化,或受到某种试验处理过程中的影响而出现表达量变化的情况。有学者应用real-time PCR技术研究碳水化合物含量对翘嘴红鲴糖代谢酶G6Pase、GK以及PEPCK表达量的影响[19-21],研究结果可为翘嘴红鲴饲料配方中的最合适糖含量提供理论依据。孙淑娜等[22]研究叶酸拮抗剂对斑马鱼心脏发育相关基因BMP2b及HAS2表达的影响,表明叶酸拮抗剂对早期胚胎的心脏发育影响较大,可导致斑马鱼心脏发育延迟及心脏形态异常,并下调斑马鱼心脏发育相关基因BMP2b及HAS2的表达,这可能是叶酸生物学活性受抑后导致心脏发育异常的机制之一。Sawyer et al[23]以斑马鱼的未受精卵、胚胎、仔鱼和成鱼为研究材料,采用实时荧光定量PCR技术,检测了P450aromA和P450aromB在不同组织的表达量,表明在各组织中均有2种基因的表达,但表达量显著不同,呈现组织特异性。

PCR技术在微生物检测上的应用

1990年,Bej et al[24]在利用多重PCR的方法检测了Leg-ionella类菌种和大肠类细菌,其结果是通过点对点方法固定的多聚dT尾捕捉探针和生物素标记的扩增DNA进行杂交来检测的。张志东等检测口蹄疫病毒(FMDV)持续性感染的带毒动物,表明实时荧光定量PCR技术具有快速检测、准确、客观等优势,较优于传统的检测方法[25-26]。Metzger-Boddien et al[27]对PCR-ELISA的方法进行了评价,结果显示,样品中沙门氏菌的检出率可以达到98%。

4 展望

传统PCR技术以及衍生出来的新型PCR技术自面世以来,已被广泛应用到生命科学的各个领域。随着技术方法的不断改进与完善,荧光定量PCR技术将会逐渐完善并广泛应用。多重PCR技术在食品病原微生物、非致病微生物及环境微生物检测中具有重要作用;未来的研究主要集中在去除食品抑制因子干扰、改进样品前处理技术等方面,其次是整合应用多重PCR与其他技术,必将在未来食品微生物检测中有非常好的应用前景。

5 参考文献

[1] 常世敏.PCR在食品微生物检测中的应用[J].邯郸农业高等专科学校学报,2004,21(4):23-25.

[2] 唐永凯,俞菊华,徐跑,等.实时荧光定量PCR技术及其在水产上的应用[J].中国农学通报,2010(21):422-426.

[3] 吴学贵.LPS刺激点带石斑鱼免疫相关基因的克隆与组织表达差异性分析[D].海口:海南大学,2011.

[4] 侯立华,黄新,朱水芳,等.双色荧光多重PCR技术及在禽流感病毒检测中的应用[J].生物技术通报,2010(1):168-172.

[5] 查锡良.生物化学[M].7版.北京:人民卫生出版社,2009:483-485.

[6] 张杰道.生物化学实验技术PCR技术及应用[M].北京:科学出版社,2005:12-18.

[7] 谢海燕.黑线仓鼠LHR部分序列克隆及组织器官的表达差异[D].曲阜:曲阜师范大学,2011.

[8] KUBISTA M,ANDRADE J M,BENGTSSON M,et real-time pol-ymerase chain reaction[J].MoLecular Aspects of Medicine,2006,27(2-3):95-125.

[9] AGINDOTAN B O,SHIEL P J,BERGER P detection of potato viruses,PLRV,PVA,PVX and PVY from dormant potato tubers by TaqMan real-timeRT-PCR[J].J Virol Methods,2007,142(1-2):l-9.

[10] 李丽平.小麦慢锈品种叶片受条锈菌侵入后的木质素合成及调控研究[D].雅安:四川农业大学,2009.

[11] 薛霜,独军政,高闪电,等.实时荧光定量PCR技术研究进展及其在兽医学中的应用[J].中国农学通报,2010(7):11-15.

[12] SCHUBERT J,FOMITCHEVA V,SZTANGRET-WISNIEWSKA J. Dif-ferentiation of Potato virus Y strains using improvedsets of diagnostic-PCR-primers [J].J Virol Methods,2007,140(1-2):66-74.

[13] 袁继红.实时荧光定量PCR技术的实验研究[J].现代农业科技,2010(13):20-22.

[14] 朱善元.生物检测技术PCR及其在兽医微生物检测中的应用[J].黑龙江畜牧兽医,1999(11):21-22.

[15] 黄银花,胡晓湘,李宁,等.影响多重PCR扩增效果的因素[J].遗传,2003,25(1):65-68.

[16] 陈诺,唐善虎,岑璐伽,等.多重PCR技术在食品微生物检测中的应用进展[J].生物技术,2010,37(10):72-75.

[17] 刘连生.常规PCR技术与单分子PCR技术[J].医学信息,2010,23(11):4379-4380.

[18] 顾超颖.汗孔角化病的临床分析,SSH1、ARPC3基因突变检测和表达谱分析[D].上海:复旦大学,2008.

[19] 唐永凯,俞菊华,刘波,等.翘嘴红鲌肝脏G6Pase催化亚基的克隆以及摄食和饲料中碳水化合物对其表达的影响[J].水产学报,2007,31(1):45-53.

[20] 刘波,谢骏,苏永腾,等.高碳水化合物日粮对翘嘴红鲌生长、GK及GK mRNA表达的影响[J].水生生物学报,2008,32(1):47-53.

[21] 俞菊华,戈贤平,唐永凯,等.碳水化合物、脂肪对翘嘴红鲌PEPCK基因表达的影响[J].水产学报,2007,31(3):369-373.

[22] 孙淑娜,桂永浩,宋后燕,等.叶酸拮抗剂甲氨喋呤导致斑马鱼心脏发育异常及BMP2bHAS2表达下调[J].中国当代儿科杂志,2007,9(2):159-163.

[23] SAWYER S J,GERSTNER K A,CALLARD PCR analysis of cytochrome P450 aromatase expression in zebrafish:gene specific tissue disyribution,sex differences,developmental programming,and estrogen regulation[J].General and comparative endocrinology,2006,147(2):108-117.

[24] BEJ A K,MAHBUBANI M H,MILLER R,et PCR amplif-ication and immobilized capture probes for detection of bacterial patho-gens and indicators in water[J].Mol Cell Probes,1990,4(5):353-365.

[25] ZHANG Z D,ALEXANDERSEN of carrier cattle and sheep persistently infected with foot-and-mouth disease virus by a rapid real-time RT-PCR assay[J].Journal of Virological Methods,2003,111(2):95-100.

[26] ZHANG Z D,BASHIRUDDIN J analysis of foot-and-mouth disease virus RNA duration in tissues of experimentally infected pigs[J].TheVeterinary Journal,2009,180(1):130-132.

[27] METZGER-BODDIEN C,BOSTEL A,KEHLE for analysis of food samples[J].J Food Prot,2004,67(8):1585-1590.

点击下页还有更多>>>关于pcr技术论文

固定化酶的研究论文

环境工程专业的论文

导语:针对环境工程这一专业,大家会写出什么样的论文呢?下面是我收集整理的环境工程专业论文,供各位阅读和参考。

摘要:

磁性固化技术凭借自身的特点与优势在环境工程利用中得到了广泛地应用,并且从其应有效果来看,其具有不错的应用前景。该文在介绍磁性固化技术种类的基础上,对其在环境工程领域中的应用进行了介绍,仅供参考。

关键词:

磁性固化;环境工程;废气处理

磁性固化技术通过物理或化学方法将酶或微生物定位于磁性固化载体,待固化反应完后,通过外部磁场完成对其的分离处理,同时使酶或微生物能够保持活性,并且可以进行多次固化,具有不错的应用前景。

1磁性载体的固化分类

磁性纳米球是磁性固化过程中的常用载体,对其进行分类大体可以分为以下几种。

(1)吸附法,利用物理吸附方法,将酶固定在琼脂糖或多孔玻璃等载体上。该固定方法具有固定条件温和、工艺简单等诸多优点,同时其载体具有较为广泛的选择空间,既可以选择人工合成的高分子材料,也可以选择天然的高分子材料,在吸附过程中可以实现固定化和纯化,失活的酶能够再次活化,而应用的载体也能够实现再生。

(2)共价法,支持物反映基团和分子功能基形成共价键,粘合十分牢固,在应用过程中具有较高的稳定性,并且很少会发生酶脱落的情况。该方法在应用过程中的主要缺点是固化和载体活化起来相对比较复杂,并且反应发生所需要的环境也十分剧烈,因此要想获取活力较好的固定化酶,必须要对反应条件进行严格地控制。

(3)包埋法,在聚合物材料的微囊或格子结构中固定酶,通过这种方式有效地避免了酶蛋白释放,而在实际操作中,在微囊或格子中仍然可以有底物落入与酶发生接触。该方法的最大优点是操作起来相对比较容易,只是将酶分子包埋起来,不会对生物活性造成较为严重地破坏,但是该方法并不是适用于分子较大的底物。(4)交联法,对试剂进行应用,完成蛋白酶之间交联,从而使多功能试剂与酶分子之间形成共价键,最终形成三向交联网结构,酶分子不仅存在外交联,而且也存在内交联。在实际操作过程中添加材料上的差异会使产生的固化酶具有不同的物理性质。

2环境工程对磁性固化技术的应用

环境检测

免疫磁性分离技术在生物学和医学中的应用已经十分成熟,近几年其也被应用到环境检测中。通过对免疫磁分离技术的应用可以从样品中将目标微生物分离,如果在检验过程中与荧光免疫分析、多聚酶链式反应等方法合理地结合在一起,可以提高检测极限和分离效率。在检测废水大肠杆菌的含量时,可以结合三磷酸腺苷为生活和免疫磁性分离技术相结合,实验结果显示,检测的整个环节时间低于60min,并且检测结果具有较高的精准度,因此是一种快速有效的检测方法。部分学者在研究过程中在分离金属离子过程中利用了一种表面被改性后的磁性纳米微生物球,实验结果显示,在浓度为10ng/ml,pH=4的溶液中,Cu、Co、Pb等离子能够依照顺序被提出,并且提取效率超过了90%,是一种不错的方法。

废气处理

磁性固定化技术因为具有反应速度块、密度高、产物易分离、抗毒性较强等等优点,被广泛地应用到废气治理领域中。宣群等研究人员利用海藻酸钠进行固化实验,在对氧化亚硫酸铁的降解率超过了97%,得到不错的应用效果。马艳玲等研究人员利用海藻酸钙制定固定微生物颗粒实现对硫化氢等废气的净化,通过实验发现,硫化氢的排除率超过了90%,排除效果良好。此外,马艳玲通过对活性炭的应用,对假单胞菌进行吸附降解油烟废气,通过实验结果发现,当气流速低于8L/h,油烟浓度未超过100mg/L,容积负荷处于~,油烟的滞留时间超过30s时,生活反应器对讲解油烟的效率超过了95%,降解效果十分明显,对油烟的处理效果明显,并且以活性炭为填充料的反应器具有较强的抗冲击能力,这也确保了其应用的合理性。

废水处理

部分学者在尝试在污水处理过程中将磁性技术与固化技术结合,将磁性物质作为酶或微生物在固化过程中的载体,通过其具有的磁场和高效分离等特点对微生物和污水进行处理,这弥补了传统废水处理中难以对微生物进行处理,难以将水与微生物进行分离的弊端,探索出一条处理废水的新途径。在对磁性纳米球进行一系列地处理后,可以使其携带功能基团,这在一定程度上提高了载体对微生物的固载量。固定微生物附着在磁性载体上可以使其在废水处理上的效率、速度得到提高,同时在污水处理过程中还具备磁处理所具有的优势,也就是在存在外磁场的情况下,具有较强的磁响应,因此很容易从反应体系中将载体分离出来,具有良好的处理效果。

部分学者在磁性微球上固定辣根过氧化物酶,在固定酶过程中,酶最大固载量可以达到,在反应器中利用其对废水(含有酚酞)进行处理,在实验过程中对废水的成分进行处理,通过测量,游离酶的动力学参数Km为224μmol/L,固定化酶动力学参数Vmax为371μmol/L;也有学者对磁活性污泥进行应用对奶厂生产过程中产生的废水进行处理,主要处理废水中的氨氮和有机物,相关实验表明,处理率分别可以达到98%和92%,并且随着科技的发展,处理率还会进一步提高,可见其是一种高效的处理方法;部分学者也针对功能化硅包覆介孔磁性载体固定细菌效果进行了研究,主要针对pH值、处理时间、处理温度等因素进行分析,同时在研究过程中需要将结果与其他载体固菌效果对比。实验结果显示在30℃环境中,摇床中的振动速度为200r/min,对固菌进行24h培养效果最佳,在城市污水处理过程中对固菌后载体进行应用,处理24h,主要处理过程中应当在pH=7,投加量为的最佳情况下开展,在该环境下,去除COD的量能够超过83%,利用pH=2的HCL溶液完成酸洗后的再生载体,将其应用到城市污水处理中,处理效果仍然可以超过76%。

将磁性载体固化酶放入磁场稳定流动床反应器中,可以简化整个体系在反应过程中的操作环节,比较适合规模化生产。通过对外部磁场的应用可以对磁性材料固定酶的运动方向和方式进行适当控制,通过该方式顶替传统机械搅拌的方式,可以使搅拌变得更加合理,使固定化酶的催化效率得到了进一步提高。

部分学者利用纳米磁粉磁化菌生物肥对屠宰场的废水进行处理,处理结果显示,通过对该工艺的应用,可以快速地分离磁性生物絮凝泥水混合液,在处理过程中仅需要15min便可以完成沉淀,磁粉和磁场能够促进微生物的新陈代谢,提高了污泥活性以及处理废水的效果,通过大量的实验结果进行统计分析,可以发现,利用其对屠宰场的废水处理,对SS、COD、NH3-N3种化学物质的.去除效率分别可以达到92%、96%、87%,通过处理后的排除的水的水质远高于排放标准,并且该工艺具有很强的抗冲击负荷能力,具有不错的应用前景。

3结语

磁性固化技术因为其自身具有的特点和优势,被广泛地应用到生物学、医学等多个领域中,并且对其的应用也已经逐渐趋于成熟,但是对其环境工程领域中的应用还处于发展阶段。因此,加强对磁性固化技术在环境工程领域中的应用的研究,扩大其应用范围,并且要将研究结果由实验阶段逐渐向应用阶段发展,进一步改善我国的环境。

化学污染与生态是研究生态环境中的污染物与周围的生态环境之间相互影响的规律的科学,是环境工程专业的一门重要的专业课。化学污染与生态课程是一门综合性课程,同时又具有较强的现实性和实践性特点。针对化学污染与生态课程教学,我们在多年课程教学改革和实践中进行了一些探索并形成了一些想法。

一、课程特点分析

化学污染与生态课程是为环境工程专业三年级学生开设的一门综合性专业课程,这门课程涉及内容和范围比较广泛,因此在学习本课程之前学生需要具备与该课程相关的基础知识,学生不但要对有机化学和无机化学具有较深的理解,而且还应当深入了解生态学和环境学等方面的知识。在这门课程的学习过程中,学生在以前所学的相关知识的基础上进一步掌握化学污染物与生态环境的相互作用规律,并且能够根据所学的知识对实际污染过程进行分析并提出具体的防治措施。在这门课程的学习过程中,学生不但要学习各种理论知识,还应当能够进行相关的验证性和设计性实验,达到理论与实践的结合。同时,通过对该课程的学习,可以激发学生们的学习兴趣并且扩展他们的视野,为进一步学习环境工程专业的其他课程打下一定的基础。

二、教学内容的设计

化学污染与生态课程的主要研究内容是化学污染物与生态环境之间的相互作用,对实际污染过程进行分析并提出具体的防治措施。该课程的一个重要特点是内容涉及多学科交叉,包括化学,环境学和生态学等学科的基本概念和基本原理。该课程涉及内容较多但课程学时数又有所限制,因此在课程教学内容的设计过程中要考虑到这些实际情况,防止该课程所讲述的内容与其他相关课程的内容产生重复现象,重点讲述本课程的核心内容。该课程的主要内容是以生态学的基本原理为基础,以化学和生态学理论相结合的观点探讨生态系统的结构和功能,详细研究非金属污染物,重金属污染物,有机污染物的来源,分布,循环,迁移转化规律以及对生态系统的作用和防治方法等。同时在教学过程中还要通过文字和影音图片资料介绍学科发展的前沿最新动态,让学生了解到最新的研究成果,这样可以使教学内容更丰富和充实。

三、教学过程中教学方法的运用

在这门课程讲授过程中发现完全的以教师讲授教学内容的方法,很难适应学生能力培养的要求。这种教学方法不利于发挥学生的主观能动性,也不利于培养学生的创新思维。因此教学改革中需要改善教学模式,在课程讲授过程中既能发挥教师的主导作用又能调动学生学习的积极性,从而提高教学效果。同时在教学过程中不同的章节其具体的内容也不一样,可以针对不同的内容采用不同的教学方法,提高教学效率。在化学污染与生态课程的教学过程中运用了如下所述的多种教学方法。第一种方法是讲授法,讲授法是教学过程中最基本的方法,这种方法主要用于基本原理和基本概念的讲述。讲授过程中教师除了讲授课程中的内容以外,还可以结合自己的科研过程,把一些相关的内容进行讲述,使学生能够更多地掌握本学科的知识。第二种方法是课堂提问法,课堂提问可以活跃课堂气氛,同时还可以调动学生对问题积极思考的能力,通过主动思考学生对课程重点和难点的认识得以强化,使分析问题的过程思路清晰并且条理化。同时通过对以前所学知识进行课堂提问也可以巩固学生对所学知识的掌握。第三种方法是课堂讨论,课堂讨论是一种较好的教学方法,随着素质教育的深入,课堂讨论也被越来越多地使用,这种方法可以活跃课堂气氛,充分调动学生的学习积极性,有利于培养学生学习过程中的主观能动性,学生可以在课堂讨论过程中发现问题,然后通过讨论解决问题,是一种合作学习的过程,通过这种分析归纳总结的思维过程,可以让学生体会自主探究的过程,充分展示学生的个性。采用课堂讨论的方法的过程中,为了达到较好的教学效果,学生需要对问题进行充分的思考,为了使学生有充分的独立思考的时间,可以提前介绍下节课的主要内容以及提出的问题,上课时在教师的指导下通过课堂讨论的方式进行课程内容的学习。第四种方法是案例教学法,教师在课程讲述过程中要注意运用案例进行教学,通过实际案例对一些环境污染问题和事件进行探讨,可以使学生学会应用基本原理对实际情况进行分析,加深对所学知识的理解和掌握,同时还可以使学生及时了解这方面的研究热点以及最新科研成果。

四、多媒体教学的应用

多媒体教学法是随着计算机多媒体技术的发展而产生的一种新的教学方法,是传统板书教学法的重要的辅助手段。多媒体教学法和板书教学法各有优点和缺点,根据环境污染与生态课程的特点,结合环境工程专业的特点,本课程采用多媒体教学法结合板书教学法进行课堂教学。在多媒体教学过程中,可以在很大程度上增加课堂教学的信息量,例如一些图表可以通过图片方式快速显示出来,这样就能把更多的时间放到对图表的分析上。同时,利用多媒体技术可以把一些抽象的理论和概念直观地显示出来,达到感性认识和理性认识的有机结合,例如可以通过动画讲述一些比较抽象的概念和过程。因此采用多媒体教学法可以提高学生学习这门课程的学习兴趣,有利于学生对课堂所学知识的理解和掌握,从而提高课堂教学的效果。当然,多媒体教学方法只是一种辅助教学手段,传统的板数教学方法仍有很强的灵活性和实用性,例如教师在黑板上对公式进行逐步推演要比多媒体教学法更符合学生的认知规律,在多媒体教学方法的应用过程中,要与传统的板书教学法相结合,这样才能达到更好的教学效果。

五、适当增加实践性内容

化学污染与生态课程具有很强的现实性和实践性,因此应当开展实践教学活动,首先学生应当能够进行验证性实验的操作,在教师的指导下应用实验设备进行独立的操作,在实验过程中通过观察各种实验现象从而进一步加深对所学理论知识的理解和掌握。此外还鼓励学生进行创新性和设计性实践项目,例如让学生从一些环境污染问题中提出研究题目,查阅国内外与此研究题目相关的文献资料,然后进行讨论确定研究方案,在教师的指导下进行实验,通过这种具体的科研实践活动可以提高学生理论联系实际的能力,同时也巩固了在课堂上所学的知识。

六、改变课程成绩评定方式

成绩的评定是化学污染与生态课程教学改革的一个重要方面,在成绩评定过程中需要要注重四个方面,第一个方面是对学生所学课程理论基础知识的成绩评定,这项评定通过笔试试卷考试的方式进行,考试过程采用教考分离的方法,防止任课教师试卷出题过程中的倾向性,这样能更客观地评价教学过程中教师的教学效果以及学生的学习成绩,同时试卷阅卷过程采用流水阅卷方式,在此过程中可以让每位教师对学生的答题情况进行分析,这样可以更客观地评估教学成效;第二个方面是对学生出勤和平时作业的成绩评定,第三个方面是学生在实践环节中的表现,最后是成绩评定过程中还要注重学生对化学污染与生态学科发展的认识,以及对所学的一些基本原理在自己专业领域中的应用的认识。

固定化细胞技术的食品工业应用论文

摘要 :固定化细胞技术是一种现代化高新技术,该种技术将细胞、酶、原生质等物质束缚于特殊相中,使之与整体流体分割开来,但是可以实现与效应物与低物的分子交换。目前,固定化细胞技术已经在环保、化工、制药、食品等领域中得到了应用。本文就固定化细胞技术在食品工业中的应用进行分析。

关键词 :固定化细胞技术;食品工业;应用

固定化技术最早产生于上世纪60~70年代,是指利用化学或物理方式将酶或细胞固定在载体上,可以有效的提升酶的稳定性。固定化细胞技术是食品中经常使用的一种技术,酶的效力在反复的反应中不会流失,可以连续生产,节约成本,因此得到广泛的应用。

一、固定化细胞的优缺点

固定化细胞较之固定化酶有下列优点:一是细胞中的酶直接发挥作用,不用直接从微生物细胞中提取出来,这样既能有效的保证酶的活性,也可以降低成本;二是细胞的繁殖速度快稳定性高;三是较之提取出来的酶,细胞中的酶的稳定性更好;四是细胞中的酶可以连续反应,操作简便;固定化细胞也有一些缺点,首先,菌体具有自溶的特点,要防止菌体自溶,保持菌体的完整性,从而提高产品的纯度;其次,细胞中的蛋白酶容易分解,要采用一定的技术防止这种情况的发生;再次,细胞中有多种菌,会影响细胞的固定性,为了防止副作用的发生,要有效抑制其它酶的活性。

二、细胞固定化的方法

细胞固定化有许多的方法,企业可以根据自己的情况合理的选用。(一)吸附法吸附法分为表面吸附法和细胞聚集法两种,其中表面吸附法是指利用微生物本身的吸附能力,将细胞固定在载体中。可以充当吸附细胞的载体有多种,例如高岭土、多孔硅、活性炭等多孔性的物质[1]。细胞聚集法是指利用细胞本身的聚集性,将细胞大面积的培养,从而提升细胞的浓度。(二)包埋法包埋法是最常用的一种方法,分为凝胶包埋法和微胶囊法两种,凝胶包埋法是将细胞用凝胶来包埋固定,生产啤酒、酒精、抗生素一般采用这种方法。微胶囊法是利用胶囊将细胞包埋起来,以利于长期保存。(三)共价结合法共价结合法对于条件的要求比较严格,没有很专业的技术不容易成功。它是利用氨基、羧基等反应基因,与已经活化的`载体相互融合形成共价键,从而让细胞固定在载体中[2]。(四)交联法交联法是利用戊二醛、甲苯二异氰酸酯等交联剂,直接与细胞上的氨基、酚基等反应集团进行反应,让各个细胞之间相连,形成网状的结构,从而形成固定化细胞。

三、固定化细胞技术在食品工业中的应用

固定化细胞技术在食品中有非常广泛的应用,并且取得很好的效果。现阶段固定化细胞技术不仅仅应用于食品加工上,在制药技术、化学分析、环境保护方面也有广泛的应用。

(一)果葡糖浆的生产

首次利用微生物菌体生产果葡糖浆是在1966年的日本,并且取得了很大的成功,随即投入了生产[3]。1969年将技术进行进一步提升,利用菌体热固法生产出固定化细胞,实现连续化的生产,有效的提升了果葡糖浆的质量。在生产的过程中,首先在微生物中水解出葡萄糖,然后再将葡萄糖转化为比较甜的果糖,再提炼浓缩就可以成为果葡糖浆。

(二)柑桔类果汁的脱苦

常用的柠檬苦素类脱苦酶其PH值为碱性,但是不适用柑桔的加工生产中使用,可以采用细胞固定化的技术,将细胞固定在载体中,用于柑桔果汁的脱苦。利用固定化细胞技术,对于PH值不再有特殊的影响,可以有效的进行具有酸性特征的柑桔的脱苦。固定化细胞技术的使用,有效的解决了柑桔果汁的脱苦问题,让柑桔果汁的口感更好,更能符合消费者的需求。

(三)酱油生产

酱油是每个家庭厨房中的必需品,采用固定化细胞技术可以更有效的促进酱油的生产。通过固定化细胞技术生产酱油,可以缩短生产周期,提升酱油的口感,让酱油的质量更加优越。在生产的过程中,将固定化细胞放置在搅拌罐的反应器中与过滤装置有效的结合,让它们做出反应,即可生产出风味良好的酱油产品。

(四)酿酒

酿酒是固定化细胞技术另一项重要的应用,较之传统的酿酒技术,利用固定化细胞酿出的啤酒香气更浓、澄清度更高,口感更好,并且酵母菌得到更好的发酵,让其中的麦芽糖得到广泛的应用。目前,固定化细胞技术已经广泛的应用于酿酒领域,并取得了很好的效果。另外固定化细胞技术也可以应用于米酒的酿造和酒精的生产中[4]。固定化细胞技术在食品工业生产中的应用还非常多,如固定a-淀粉酶、固定化氨基酰化酶的生产中,目前,很多固定化细胞与固定化酶还处在试验阶段,其中还有一些技术难题尚未克服,很多还处于研究和开发中,但它已经给我们指明了发展方向,随着固定化技术的发展,将会有更多的固定化酶、细胞、原生质体应用于生产。

四、结语

目前,各个国家都开始将固定化细胞技术应用在工业生产领域之中,其应用范围已经超过了食品加工、制药工业与轻化工业,扩展至环境保护、化学分析、能源开发等新型领域中,在下一阶段下,固定化细胞技术将表现出更好的发展前景。总之,固定化细胞技术利用了细胞密度高、繁殖速度快和耐毒害性好的特点,在食品工业的生产中表现出很高的优势。固定性细胞技术还有许多优良的性能没有发挥出来,我们要加大固定化细胞技术的研究,让其更好的为我们服务。

参考文献:

[1]韩文静.固定化酶的新型制备方法及其在食品工业中的应用[J].食品工业科技,2009(02).

[2]毛跟年,李丽维,齐凤.固定化酶应用研究进展[J].中国酿造,2009(08).

[3]乔德亮,胡冰,曾晓雄.酶固定化及其在食品工业中应用新进展[J].食品工业科技.2008(01).

[4]李晔.酶的固定化及其应用[J].分子催化,2008(01).

相关百科

热门百科

首页
发表服务