首页

> 学术论文知识库

首页 学术论文知识库 问题

历年建模论文题目

发布时间:

历年建模论文题目

论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

1、小学低年级数学游戏教学方法的案例研究。

2、以学习为中心的小学数学教学过程研究。

3、激发小学生数学学习兴趣的实践研究。

4、农村小学与初中数学教学衔接问题的研究。

5、小学低年级学生数学学习兴趣的培养。

6、游戏化教学在小学数学教学中的应用与研究。

7、激发兴趣对小学生数学探究能力影响的研究。

8、小学数学教学中信息技术应用策略研究。

9、《几何画板》在小学平面图形上的教学应用研究。

注意。

1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。

2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。

3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。

4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。

大学生数学建模比赛历年论文题目

1992年全国大学生数学建模竞赛赛题- - 某地区作物生长所需的营养素主要是氮(N),钾(K),磷(P)。某作物研究所在该地区对土豆与生菜做了一定数量的实验,实验数据如下列表格所示,其中ha表示公顷,t表示吨, 表示公斤,当一个营养素的施肥量变化时,总将另二个营养素的施肥量做实验晨,P与K 的施肥量分别取为196kg/ha与372kg/ha. 土豆:N P K 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 34 67 101 135 202 259 336 404 471 0 24 49 73 98 147 196 245 294 342 0 47 93 140 186 279 372 465 258 251 生菜:N P K 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 28 56 84 112 168 224 280 336 392 0 49 98 147 196 294 391 489 587 685 0 47 93 140 186 279 372 465 558 651 试分析施肥量与产量之间关系,并对所得结果从应用价值与如何改进等方面作出估价。 ------------------------------ B题 实验数据分解 组成生命蛋白质的若干种氨基酸可形成不同的组合,通过质谱试验测定分子量来分析某个生命蛋白质分子的组成时,遇到的首要问题主是如何将它的分子量x分解为几个氨基酸的已知分子量a[i](i=)之和。某实验室所研究的问题中: n=18, a[1:18]=57,71,87,97,99,101,103,113,114,115,128,129,131,137 ,147,156,163,186. x为正整数≤1000, 针对该实验室拥有或不拥有微型计算机的情况,对上述问题提出你们的解答,并就所研讨的数学模型与方法在一般情形下进行讨论。 2005高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题: 长江水质的评价和预测 水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理应是重中之重。专家们呼吁:“以人为本,建设文明和谐社会,改善人与自然的环境,减少污染。” 长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视。2004年10月,由全国政协与中国发展研究院联合组成“保护长江万里行”考察团,从长江上游宜宾到下游上海,对沿线21个重点城市做了实地考察,揭示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”(附件1),并发出了“拿什么拯救癌变长江”的呼唤(附件2)。 附件3给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。通常认为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水。一般说来,江河自身对污染物都有一定的自然净化能力,即污染物在水环境中通过物理降解、化学降解和生物降解等使水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的自然净化能力可以认为是近似均匀的,根据检测可知,主要污染物高锰酸盐指数和氨氮的降解系数通常介于之间,比如可以考虑取 (单位:1/天)。附件4是“1995~2004年长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002) 给出的《地表水环境质量标准》中4个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。 请你们研究下列问题: (1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。 (2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区? (3)假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况。 (4)根据你的预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水? (5)你对解决长江水质污染问题有什么切实可行的建议和意见。 附表: 《地表水环境质量标准》(GB3838—2002)中4个主要项目标准限值 单位:mg/L 序号 分 类 标准值 项 目 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 Ⅴ类 劣Ⅴ类 1 溶解氧(DO) ≥ (或饱和率90%) 6 5 3 2 0 2 高锰酸盐指数(CODMn) ≤ 2 4 6 10 15 ∞ 3 氨氮(NH3-N) ≤ ∞ 4 PH值(无量纲) 6---9

1、小学低年级数学游戏教学方法的案例研究。

2、以学习为中心的小学数学教学过程研究。

3、激发小学生数学学习兴趣的实践研究。

4、农村小学与初中数学教学衔接问题的研究。

5、小学低年级学生数学学习兴趣的培养。

6、游戏化教学在小学数学教学中的应用与研究。

7、激发兴趣对小学生数学探究能力影响的研究。

8、小学数学教学中信息技术应用策略研究。

9、《几何画板》在小学平面图形上的教学应用研究。

注意。

1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。

2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。

3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。

4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。

利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。下文是我为大家搜集整理的关于2017数学建模b题优秀论文的内容,欢迎大家阅读参考!

浅谈数学建模实验教学改革

摘要:阐述了数学建模课程在大学生知识面的拓宽、全方位能力的培养以及人文素质的提高三方面的重要作用,提出了数学建模课程有助于提高学生的综合素质。从数学建模理论课程和实验教学两者之间的区别与联系的角度提出了实验教学改革的必要性,最后针对数学建模实验教学的具体情况提出了实验教学改革的 措施 。

关键词:数学建模;实验教学;教学改革

一、数学建模课程有助于提高学生的综合素质

随着 教育 改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的 方法 论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。[1]

数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。”数学的广泛应用性主要取决于数学的 思维方式 。数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。

21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。[2-4]与传统数学所给的应用题有所不同,数学建模课程着重培养学生的创造性。由于数学建模是从实际问题着手,经过分析、抽象、简化建立数学模型,然后求解、验证并解释实际问题的过程。 社会实践 中的有些实际问题,没有一个明确的已知条件,有时甚至连求解目标也要经过分析问题的各种因素自行确定。这就要求建模者具有较宽的基本知识面,分析问题的能力,具有一定的 想象力 、联想力、洞察力和创新力,具有归纳综合和计算能力等等,即要求具有较好的数学 文化 素质。

1.数学建模课程拓宽了学生的知识面

一方面,数学专业的基础理论教材内容比较成熟,并且侧重定理证明以及演算方法的训练,对问题的实际背景以及模型提取过程介绍不多,而数学建模课程恰好弥补了这一不足。另一方面,由于数学建模问题的实用性和广泛性,大学生在建模实践中要用到很多知识,这些知识已超出了学生的专业知识范围。除了数学知识外,还必须掌握诸如计算方法、计算机语言、应用软件及其他学科的知识等。它是多学科知识的高度综合,宽泛的学科领域和广博的技能技巧是学生所不曾涉猎过的,只能通过学生自学和讨论来进一步掌握。

2.数学建模课程对学生能力的培养是全面的

数学建模的题目多数直接来源于科研、生产、工程与管理的实际问题,且大多是经过适当简化的正在研究或正在探讨阶段中的尚未完全解决的实际问题的部分或片段。解决数学建模问题的过程是对大学生数学与计算机知识、发现及解决问题能力、信息收集能力、论文写作能力及团队协作能力等各方面能力的综合考查。在数学建模实践中,大多数问题既没有唯一的答案,也没有唯一的方法,要解决问题必须要求学生具有独立的思考能力,充分发挥自己的创造能力、想象能力,深刻了解背景,查阅大量资料,并且参加实际调查,根据自身对问题的熟悉程度和知识的掌握来选择思路与方法。通过对所得结果不断地思考和改进,培养和训练学生的科研能力

3.数学建模课程使学生的毅力、意志以及团结合作精神等人文素质方面得到了培养

每年一期的全国大学生数学建模竞赛采取半封闭的形式持续三个昼夜。这是一个非常艰苦的创新过程,不仅培养了大学生刻苦探索的态度、不屈不挠的精神、坚韧不拔的毅力,还培养了学生孜孜不倦、精益求精和锲而不舍的创新精神,并且数学建模竞赛采取三人一个小组,三名同学在竞赛过程中共同解决一个竞赛题目。这就需要他们在竞赛的不同阶段团结协作,密切配合,取长补短,合理分工。因此,数学建模可以培养学生的团队意识与协作精神。

二、数学建模的理论课程与实验教学

数学模型是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法,它是对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。而创建一个数学模型的全过程称为数学建模,即运用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过程。换句话说,数学建模是从定量化的角度,用数学语言和方法,通过对实际问题抽象、简化建立数学模型,然后通过计算,解决实际问题的过程。[6]数学建模课程与传统的数学教学不同。前者侧重于将数学作为工具,来分析和解决各种实际问题,是以培养学生解决实际问题的能力和应用创新能力为目标的实践性课程。而后者则侧重于公式推导、定理证明等。

数学建模课程包括数学建模理论课程和实验教学。数学建模的实验教学是指学生在教师指导下用计算机和数学软件学习数学,它强调将符号计算、数值计算、数据处理、数学软件和数学建模理论课程相结合的数学课程教学。[5]

数学建模的理论课程和实验教学是相辅相成、不可缺少的,也是互相促进的。首先,数学建模理论课程主要是对实际问题进行分析并得到数学结构模型以及模型结果的解释和应用,而对于模型的求解则很少涉及,相反,实验教学则是借助计算机和数学软件对模型进行求解,充分利用计算机的有利条件,让学生手、眼、脑共用,积极主动地使用数学。其次,数学建模理论课程很少涉及模型的解法,而实验教学则是介绍若干数学方法及相应的软件,以方便地完成模型的求解。最后,数学建模理论课程包含丰富的建模案例,主要对实际问题进行分析以及建立模型等理论过程,而实验教学则通过计算机和软件将所建立的模型进行求解,从而使学生将理论和实践相融合,提高学生运用数学知识解决实际问题的能力。

三、实验教学的改革

教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,开设数学建模课程则是加强后者的一种尝试。

实际问题的解决不仅需要利用数学建模的理论知识,即根据实际问题的内在规律,通过分析做出必要的假设,适当的运用数学工具,得到一个数学结构,更要利用数学建模的实验操作知识将得到的数学结构进行求解(在实际求解中,利用计算机或者软件进行求解),而且求解所得到的结果要能够解释实际问题。因此,实际问题的解决要求数学建模的理论课程内容和实验教学内容配套同步,有机结合。

目前很多高校的数学建模课程共54课时,其中包括课堂理论讲授36课时和实验教学18课时两部分。限于课时和教学进度,现有的实验教学以学生掌握数学软件的基础操作为主要目的,达不到与课程讲授内容的配套同步,学生对于数学软件的学习掌握也存在较多的问题。因此,有必要对数学建模课程的实验教学进行改革。

实验教学改革以问题为引导,采用专题研讨的形式开展,结合台州学校“数学实验在线平台”的建设,学生利用平台掌握基础的数学软件使用方法、命令格式,并且围绕课堂讲授的数学专题模块开展配套的数学建模实验研讨。具体而言,针对不同难易程度的题目类型,实验教学内容分别以三种不同的形式进行。

1.初步的数学软件题目类型

此类题目类型以熟悉掌握数学软件的常用命令格式为目的。例如,绘出某个二元函数的三维曲面图。又如,求一个已知方阵的行列式、逆、特征值以及对应特征向量。再如,求某个具体多项式的根。

这类题目的已知条件比较简单,只需要直接利用软件的某个指令就可以得到所求解的结果,学生在了解相关的软件指令基础上就能独立完成任务。对于这类题目类型,规定学生利用课余时间登录实验平台进行操作,并由授课教师在线评判其正确与否。

2.简单的数学建模题目类型

此类题目类型以提高使用数学软件能力为目的。例如,列出所有的水仙花数(水仙数是一个三位数,其各位数字立方和等于该数本身)。又如,已知某车间生产不同的产品,不同的产品所需要的原料和工时数据,以及不同产品所获得的利润数据。要求在给定原料和工时的条件下,如何安排生产,使得获得的利润最大。再如,给定一片海域一组数据,该数据包括一些离散点的坐标以及在该坐标处的水深,在已知船吃水深度的条件下,求船安全行驶的范围或者容易触礁的范围。

这类题目的已知条件唯一确定,所得到的结果也是唯一的,需要通过简单的编程实现。学生需要对问题进行分析,并具备一定的编程基础才能进行求解并完成规定的任务。对于这类题目类型,授课教师可以利用实验教学的课程时间先进行简单的分析和阐述,然后要求学生利用课余时间独立完成,最后由授课教师进行评判。

3.具有一定综合性质的数学建模题目类型

此类题目以培养学生建立模型和分析求解能力为目的。例如,根据某集团的经济效益指标、发展能力指标、内部运营指标以及客户满意度指标在2011年和2012年的数据,分析并阐述客户满意指标的走势。又如,收集数据,从手机品牌、外观、功能和质量等方面分析目前市场主流手机产品的价格定位规律,以及分析各品牌手机的价格策略与市场占有份额的关系。再如,选择某个事件(例如2010年的上海世博会、全国竞赛题)的某个侧面,建立数学模型,利用互联网或者调查收集的数据,定量分析该事件的影响力。

这类题目的已知条件比较复杂和灵活,有些题目甚至需要自己收集,有时甚至连求解目标也要自行确定。对于这类题目,授课教师应先利用实验教学课程时间指导研讨,然后要求学生通过团队合作完成基本的建模思路整理和模型求解,并以实验 报告 的形式提交数学模型和模型求解的实验结果。

参考文献:

[1]陈祖福.面向21世纪改革高等教育的教学内容和课程体系[J].教学与教材研究,1994,(1).

[2]叶其孝.数学建模教学活动与大学生教育改革[J].数学的实践与认识,1997,27(1):92-96.

[3]李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,1998:313-321.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,31(5):613-617.

[5]蒲俊,张朝伦,李顺初.探索数学建模教学改革提高大学生综合素质[J].中国大学教学,2011,(12):24-26.

[6]陈慧.数学实验课程教学改革研究[J].中国大学教学,2007,(12):35-36.

浅谈数学建模与创新

摘要:数学建模是一门十分注重理论联系实际的课程,它有助于培养学生的创新能力、动手能力和 自我评价 能力。本文分析了数学建模竞赛对数学教学改革和创新所起的作用,指出数学建模的起源、发展和目的。着重在提高学生的学习兴趣、做好选题工作、评价工作和指导工作上进行分析和讨论。

关键词:数学建模;数学建模竞赛;创新能力

1 数模竞赛的起源与历史

数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意识、团队精神、重在参与、公平竞争。1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。

2 什么是数学建模

数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模 的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。

3 竞赛的内容

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

4 竞赛的目的

随着科学技术的飞速发展,现代中学生的生活背景越来越丰富,他们看问题的视野也越来越开阔。

国家新的课程改革的进行,不但使广大教师的教育理念发生了根本性的改变,同学们的学习理念也发生了巨大改变,过去的那种单纯的知识性的传授和学习的模式已转变为以能力培养为主、学以致用的教学和学习模式,同学们的接受能力和学习能力得到极大提高。所以在中学阶段向同学们更多介绍一些科技事件或自然现象的知识储备基本具备。下面就中学阶段如何开设好数学建模选修课谈几点体会。

提高学生的学习兴趣,培养他们的创新能力是开设数学建模选修课的主要目的

数学建模就是运用数学思想、方法和知识解决实际问题的过程。

兴趣是最好的老师。而数学建模在数学知识与实践之间建立了一个沟通的平台,通过这个平台,同学们可以体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,对数学有一种感性的认识,激发他们学习数学的兴趣。

做好选题工作是开好数学建模选修课的关键

数学学习过程中,问题是关键。如何提出一些贴合学生实际、具有代表意义、能培养学生创新意识、提高学习能力、真正让学生感兴趣的问题是开好数学建模选修课的第一步。做好数学建模选题工作,可从以下几个方面入手。

可操作性。通过数学建模,学生将了解和经历解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。所以在选题时要考虑到不同学校、不同层次的学生的接受能力,争取让每一个学生能够根据自己的生活 经验 发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。

实践性。开设数学建模选修课的主要目的之一就是让同学们在能力培养的同时,学以致用。所以所选课题应来源于实践,尽量是学生所熟悉的、或亲身经历的现实问题,让学生有一种身临其境的感觉,以提高他们的求知欲。

知识性。高中阶段的学习虽然强调能力培养,但也应该注意到,学生的学习过程也是一个知识积累、为下一步的继续学习打基础的过程。所以我们在数学建模选题的时候,应选取一些解决问题所涉及的知识、思想、方法与高中数学课程内容有联系的问题。让同学们在探索的过程中体会到所学知识的作用。

做好数学建模过程中的指导工作是开好数学建模选修课的重要保障

数学建模是一门实践性很强的科目,学生在初接触时往往抓不住问题的关键,很难将实际问题中的信息数学化。同时就同学们的学习方式给以必要的指导。具体可从以下几个方面入手。

引导学生学会发现并提出问题。最初开设数学建模时,可以先由老师提出一些问题供学生选择,或者提供一些实际情景,引导学生提出问题。随着课程的推进,教师应逐渐让学生学会从自己生活的世界中发现问题、提出问题。

引导学生学会数学建模的基本程序,让同学们掌握科学的 学习方法 。数学建模可以通过以下框图实现。

指导学生成立课题组,学会合作学习。数学建模学习对知识和能力的要求明显高于传统意义上的学习,在这种学习过程中,个人力量往往很难奏效,所以数学建模经常采取课题组的模式。

做好学生在数学建模过程中表现的评价工作对学生的后继学习是一个有力促进

高中阶段开设数学建模选修课的目的主要是以培养学生的学习能力、提高他们的创新意识为主要目的。通过师生之间的互动,使同学们在互动中展示自我,张扬个性,提高他们的 总结 能力和应变能力。评价内容应关注以下几个方面:

科学性。建模过程中使用的数学方法是否得当,求解过程是否合乎常理。

创新性。问题的提出和解决的方案是否充分发挥了学生的主观能动性,有新意。

合作性。学生在数学建模中是否采取了各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。

真实性。建模的结果是否是学生本人参与制作的,数据是否是真实的。

实效性。建模的结果是否具有一定的实际意义。

新的九年义务教育数学课程标准认为:数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程。义务教育的课程不仅要考虑数学自身的抽象性、精确性和应用的极端广泛性等特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程。从这个意义上说,我们的中学数学教育的过程应该是一个教会学生建模和解模,并会用模的过程。目前,二期课程改革明确要求加大研究性和探究性课程的力度,这无疑将推动数学模型课在中学阶段的开设和推广。

参考文献

[1]王彬.数学建模在中职研究性学习中的实践研究[J].东北师范大学,2010-05-01.

05年建模论文竞赛题目

2009高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C题 卫星和飞船的跟踪测控卫星和飞船在国民经济和国防建设中有着重要的作用,对它们的发射和运行过程进行测控是航天系统的一个重要组成部分,理想的状况是对卫星和飞船(特别是载人飞船)进行全程跟踪测控。测控设备只能观测到所在点切平面以上的空域,且在与地平面夹角3度的范围内测控效果不好,实际上每个测控站的测控范围只考虑与地平面夹角3度以上的空域。在一个卫星或飞船的发射与运行过程中,往往有多个测控站联合完成测控任务,如神州七号飞船发射和运行过程中测控站的分布如下图所示: 图片来源 请利用模型分析卫星或飞船的测控情况,具体问题如下:1. 在所有测控站都与卫星或飞船的运行轨道共面的情况下至少应该建立多少个测控站才能对其进行全程跟踪测控?2.如果一个卫星或飞船的运行轨道与地球赤道平面有固定的夹角,且在离地面高度为H的球面S上运行。考虑到地球自转时该卫星或飞船在运行过程中相继两圈的经度有一些差异,问至少应该建立多少个测控站才能对该卫星或飞船可能飞行的区域全部覆盖以达到全程跟踪测控的目的?3. 收集我国一个卫星或飞船的运行资料和发射时测控站点的分布信息,分析这些测控站点对该卫星所能测控的范围。

请问是什么意思

1992年全国大学生数学建模竞赛赛题- - 某地区作物生长所需的营养素主要是氮(N),钾(K),磷(P)。某作物研究所在该地区对土豆与生菜做了一定数量的实验,实验数据如下列表格所示,其中ha表示公顷,t表示吨, 表示公斤,当一个营养素的施肥量变化时,总将另二个营养素的施肥量做实验晨,P与K 的施肥量分别取为196kg/ha与372kg/ha. 土豆:N P K 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 34 67 101 135 202 259 336 404 471 0 24 49 73 98 147 196 245 294 342 0 47 93 140 186 279 372 465 258 251 生菜:N P K 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 28 56 84 112 168 224 280 336 392 0 49 98 147 196 294 391 489 587 685 0 47 93 140 186 279 372 465 558 651 试分析施肥量与产量之间关系,并对所得结果从应用价值与如何改进等方面作出估价。 ------------------------------ B题 实验数据分解 组成生命蛋白质的若干种氨基酸可形成不同的组合,通过质谱试验测定分子量来分析某个生命蛋白质分子的组成时,遇到的首要问题主是如何将它的分子量x分解为几个氨基酸的已知分子量a[i](i=)之和。某实验室所研究的问题中: n=18, a[1:18]=57,71,87,97,99,101,103,113,114,115,128,129,131,137 ,147,156,163,186. x为正整数≤1000, 针对该实验室拥有或不拥有微型计算机的情况,对上述问题提出你们的解答,并就所研讨的数学模型与方法在一般情形下进行讨论。 2005高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题: 长江水质的评价和预测 水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理应是重中之重。专家们呼吁:“以人为本,建设文明和谐社会,改善人与自然的环境,减少污染。” 长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视。2004年10月,由全国政协与中国发展研究院联合组成“保护长江万里行”考察团,从长江上游宜宾到下游上海,对沿线21个重点城市做了实地考察,揭示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”(附件1),并发出了“拿什么拯救癌变长江”的呼唤(附件2)。 附件3给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。通常认为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水。一般说来,江河自身对污染物都有一定的自然净化能力,即污染物在水环境中通过物理降解、化学降解和生物降解等使水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的自然净化能力可以认为是近似均匀的,根据检测可知,主要污染物高锰酸盐指数和氨氮的降解系数通常介于之间,比如可以考虑取 (单位:1/天)。附件4是“1995~2004年长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002) 给出的《地表水环境质量标准》中4个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。 请你们研究下列问题: (1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。 (2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区? (3)假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况。 (4)根据你的预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水? (5)你对解决长江水质污染问题有什么切实可行的建议和意见。 附表: 《地表水环境质量标准》(GB3838—2002)中4个主要项目标准限值 单位:mg/L 序号 分 类 标准值 项 目 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 Ⅴ类 劣Ⅴ类 1 溶解氧(DO) ≥ (或饱和率90%) 6 5 3 2 0 2 高锰酸盐指数(CODMn) ≤ 2 4 6 10 15 ∞ 3 氨氮(NH3-N) ≤ ∞ 4 PH值(无量纲) 6---9

学年论文题目数学建模

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø 基于xx模型/方法(主要的、特色的)Ø 赛题所给题目/研究的问题

1、小学低年级数学游戏教学方法的案例研究。

2、以学习为中心的小学数学教学过程研究。

3、激发小学生数学学习兴趣的实践研究。

4、农村小学与初中数学教学衔接问题的研究。

5、小学低年级学生数学学习兴趣的培养。

6、游戏化教学在小学数学教学中的应用与研究。

7、激发兴趣对小学生数学探究能力影响的研究。

8、小学数学教学中信息技术应用策略研究。

9、《几何画板》在小学平面图形上的教学应用研究。

注意。

1、选题能决定论文的阅读价值。导师在某一方面的知识面是很广的,研究也是有深度的,所以如果对新的有价值的选题肯定特别有兴趣。

2、选题能够规划文章的方向、角度和规模,弥补知识储备的不足。对于所搜集的资料进行整理,加固积累,加深理解,对于分散的思想进行选择、鉴别和几种,最后对文章进行整体轮廓的勾勒。

3、合适的选题可以保证写作的顺利进行,提高研究能力。选题是论文实践的第一步,需要积极思考,适当的选题能够使论文写作过程进行得比较顺利。

4、考虑写作过程。在确定选题的时候虽然有些新颖的观点固然可以吸引到是的眼球,但是有的学生提出的新观点水平太高,可是学生的知识储备不够,语言表达得也不精练、准确、专业,结果弄巧成拙。也有的学生提出的观点自己在论证时就感觉到不是很可信。

往年数学建模题目及论文

这是07年数模比赛获奖的:乘公交 看奥运二 符号说明 :第i条公汽线路标号,i=1,2 …10400,当 时, 表示上行公汽路线, 当 时, 表示与上行路线 相对应的下行公汽路线; :经过第i条公汽路线的第g个公汽站点标号; :第j条地铁路线标号, j=1,2; :经过第j条地铁线路的第h个地铁站点标号; :转乘n次的路线; :选择第k种路线的总时间; :选择第k种路线公汽换乘公汽的换乘次数; :选择第k种路线地铁换乘地铁的换乘次数; :选择第k种路线地铁换乘公汽的换乘次数; :选择第k种路线公汽换乘地铁的换乘次数; :第k种路线、乘坐第m辆公汽的计费方式,其中: 表示实行单一票价, 表示实行分段计价; :第k种路线,乘坐第m辆公汽的费用; :选择第k种路线的总费用; :选择第k种路线,乘坐第m辆公汽需要经过的公汽站个点数; :选择第k种路线,乘坐第n路地铁需要经过的地铁站个点数; :表示对于第k种路线的第m路公汽的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行; :对于第k种路线的第n路地铁的路线是否选择步行, 为0-1变量, 表示不选择步行, 表示选择步行;三 模型假设基本假设1、相邻公汽站平均行驶时间(包括停站时间): 3分钟2、相邻地铁站平均行驶时间(包括停站时间): 分钟3、公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)4、地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)5、地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)6、公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)7、公汽票价:分为单一票价与分段计价两种;单一票价:1元其中分段计价的票价为:0 ~20站:1元21~40站:2元40站以上:3元8、地铁票价:3元(无论地铁线路间是否换乘)9、假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘,且无需支付地铁费 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四 问题的分析在北京举行奥运会期间,公众如何在众多的交通路线中选择最优乘车路线或转乘路线去看奥运,这是我们要解决的核心问题。针对此问题,我们考虑从公交线路的角度来寻求最优线路。首先找出过任意两站点(公众所在地与奥运场地)的所有路线,将其存储起来,形成数据文件。这些路线可能包含有直达公交线路,也有可能是两条公交线路通过交汇而形成的(此时需要转乘公交一次),甚至更多公交线路交汇而成。然后在这些可行路线中搜寻最优路线。对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。老年人总愿意以最省的方式看到奥运比赛。而对于残疾人士则总转乘次数最少为好。不同的路线查询需求用图表示如下: 图 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。此方法在后文中有详细说明。五 建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。5.1数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:L009: L529: L529为L009所对应的下行线路。如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001: 3914 0128 0710L521: 如果是环线的情况(如图所示),则可以等效为两条线路:顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。 经过分析,此两条”单行路线”线路的作用等同于原环形路线 图 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 1212 812 171 172 1585 1215 2606 1212 812 171 172 1585 1215 2606L673: 3513 172 2600 811 170 2355 649 534 2606 1215 3513 172 2600 811 170 2355 649在这里,L153被看作成上行路线,L673被当成下行路线。这样对于每条公交线路都可以得到两行线路存储信息。5.2搜寻经过每个站点的公交路线处理所得信息,找出通过每个站点的所有公交路线,并将它们存入数据文件中。例如,通过搜寻得出经过站点S0001的线路和经过站点S0002的线路如下:经过S0001的线路有:L421经过S0002的线路有:L027 L152 L365 L395 L4855.3统计任意两条公交线路的相交(相近)站点依次统计出任意两条公交线路之间相交(相近)的站点,将其存入1040×1040的矩阵A中,但是这个矩阵的元素是维数不确定的向量,具体实现的时候可以将用队列表示。例如:公交线路L001与公交线路L025相交的站点为A[1][25]={S0619,S1914,S0388,S0348}。六 模型的建立与求解6.1模型一的建立 该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点 与 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。6.1.1 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图的四种情况。该图中的A、B为出发站和终点站,C、D、E、F为转乘站点。 图 公汽路线图对于任意两个公汽站点 与 ,经过 的公汽线路表示为 ,有 ;经过 的公汽线路表示为 ,有 ;1)直达的路线 (如图(a)所示)表示为: 2)转乘一次的路线 (如图(b)所示)表示为: 其中:SC为 , 的一个交点;3)转乘两次的路线 (如图(c)所示)表示为: 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。6.1.2最优路线模型的建立 找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间 等于乘车时间与转车时间之和。 (式)其中,第k路线是以上转乘路线中的一种或几种。2)以转乘次数最少作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。3)以费用最少作为最优路线的模型: (式)其中, (式)6.1.3模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。现将此算法运用到该问题中,结合图叙述如下:(该图中的 、 、 、 、 表示公汽站点, 、 、 、 、 、 表示公汽线路。其中(a)、(b)、(c)图分别表示了从点 到点 直达、转乘一次、转乘两次的情况) 图 公交直达、转乘图(1)首先输入需要查询的两个站点 与 (假设 为起始站, 为终点站);(2)搜索出经过 的公汽线路 (i=1,2,…,m)和经过 的公汽线路 ( =1,2, …,n),存入数据文件;判断是 与 是否存在相同路线,若有则站点 与 之间有直达路线(如图中的 ),则该路线是换乘次数最少(换乘次数等于0)的路线,若有多条直达路线,则可以在此基础上找出时间最省的路线;这样可以找出所有直达路线,存入数据文件;(3)找出经过 的公汽线路 (如图中的 )中的另一站点 和经过 的公汽线路 中的另一站点 。判断 与 中是否存在相同的点,若存在(如图中的 )则站点 与 间有一次换乘的路线(如图中的 与 ),该相同点即为换乘站点;这样又找出了一次换乘路线,存入数据文件;(4)再搜索出经过 (如图中的 )线路上除了站点 的另一站点 (如图中的 )的公汽线路 (如图中的 ),找出公汽线路 上的其他站点 ;判断,如果 与经过 的公汽线路 中的其他站点 存在相同的点(如图中的 ),则 与 间有二次换乘的路线(如图中的 、 、 ),该相同点和点 是换乘站点;将此二次换乘的路线存入数据文件中;(5)对上述存储的经过两个站点 与 的不同路线,根据不同模型进行最优路线进行搜索,得出查询者满意的最优路线。6. 1. 4模型一的求解根据以上算法和前面建立的模型一,用VC++进行编程(程序见附录)就可以得出不同目标下的最优路线。1) 以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为106 min,耗时最少的最优路线有2条;起始站S0971到终到站S0485耗时最少为106 min,耗时最少的最优路线有2条;起始站S0008到终到站S0073耗时最少为67 min,耗时最少的最优路线有2条;起始站S0148到终到站S0485耗时最少为106 min,耗时最少的最优路线有3条;起始站S0087到终到站S3676耗时最少为46 min,耗时最少的最优路线有12条;其耗时最少的最优路线如表所示。表 耗时最少的最优路线表起始站 公汽线路 中转站 公汽线路 中转站 公汽线路 终到站 转乘次数 所需费用S3359 L0535 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0535 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0123 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0687 S1828 2 3S3359 L0652 S2903 L1005 S1784 L0737 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0687 S1828 2 3S3359 L0844 S2027 L1005 S1784 L0737 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0687 S1828 2 3S3359 L0844 S1746 L1005 S1784 L0737 S1828 2 3S1557 L0604 S1919 L0709 S3186 L0980 S0481 2 3S1557 L0883 S1919 L0709 S3186 L0980 S0481 2 3S0971 L0533 S2517 L0810 S2480 L0937 S0485 2 3S0971 L0533 S2517 L0296 S2480 L0937 S0485 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0008 L0198 S3766 L0296 S2184 L0345 S0073 2 3S0148 L0308 S0036 L0156 S2210 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3332 L0937 S0485 2 3S0148 L0308 S0036 L0156 S3351 L0937 S0485 2 3S0087 L0541 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0541 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0206 S0088 L0901 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0231 S0427 L0982 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0097 S3676 2 3S0087 L0974 S0088 L0901 S0427 L0982 S3676 2 32) 以转乘次数最少为目标的最优路线起始站S3359到终到站S1828的最少转乘次数为1次,转乘次数最少的最优路线(所需时间较短,费用较省的路线)有2条;起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有2条与耗时最少的最优路线相同(表示在表中,下同);起始站S0971到终到站S0485的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有9条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有3条与耗时最少的最优路线相同;起始站S0087到终到站S3676的最少转乘次数为2次,转乘次数最少的最优路线有6条与耗时最少的最优路线相同;其余转乘次数最少的最优路线路线如表所示。表 转乘次数最少的最优路线表起始站 公汽线路 中转站 公汽线路 终到站 耗时 所需费用S3359 L0956 S1784 L0687 S1828 101 3S3359 L0956 S1784 L0737 S1828 101 3S0971 L0533 S2184 L0937 S0485 128 3S0008 L0679 S0291 L0578 S0073 83 2S0008 L0679 S0491 L0578 S0073 83 2S0008 L0679 S2559 L0578 S0073 83 2S0008 L0679 S2683 L0578 S0073 83 2S0008 L0679 S3614 L0578 S0073 83 2S0008 L0875 S2263 L0345 S0073 83 2S0008 L0875 S2303 L0345 S0073 83 2S0008 L0875 S3917 L0345 S0073 83 2S0008 L0983 S2083 L0057 S0073 83 23)以费用最少为目标的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有30条,其中28条路线所需时间为64 min,转乘次数为2次,另外两条路线所需时间为101 min,转乘次数为1次;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有2条,所需时间为106 min,转乘次数为2次;起始站S0971到终到站S0485的最少费用为3元,最少费用的最优路线有3条,其中两条所需时间为106 min,转乘次数为2次,另外一条所需时间为128 min,转乘次数为1次;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有9条,所需时间为83 min,转乘次数为1次;起始站S0148到终到站S0485的最少费用为3元,最少费用的最优路线有3条,所需时间为106min,转乘次数为2次;起始站S0087到终到站S3676的最少费用为3元,最少费用的最优路线有12条,所需时间为46 min,转乘次数为2次;最少费用的最优路线表示在表和表中。 6.2.1模型二的建立 该模型针对问题二,将公汽与地铁同时考虑,找出可行路线,然后寻找最优路线。对于地铁线路,也可以将其作为公交线路,本质上没有什么区别,只不过乘车费用、时间,换乘时间不一样罢了。因此地铁站可等效为公交站,地铁和公交的转乘站即可作为两者的交汇点。因此该模型的公交换乘路线模型与模型一中的基本相同。现建立模型二下的最优路线模型。1)以时间最短的路线作为最优路线的模型:可行路线的总时间为乘公交(公汽和地铁)时间与公汽与地铁换乘、公汽间、地铁间换乘时间之和。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型: (式)此模型等效为以上转乘路线按直达、转乘一次、两次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型:可行路线的费用为乘公交和地铁费用的总和。 (式)其中, 仍满足(式)。6.2.2模型二的求解 不难发现,问题一是问题二解的一部分。在问题二中,新产生的最优解主要源于在通过换乘地铁、换乘附近相近站点的路线上,如下图所示: 从点A到B,图(a)表示的是通过两公交线路上相邻公汽站S1,S2进行一次转乘;图(b)表示利用地铁站进行二次转乘;图(c)表示利用另一条公汽路线为中介进行二次转乘。铁路线路引入给题目的求解增加了难度,为了形象了解为数不多的两条铁路间的交叉关系,我们通过matlab编程(程序见附录)作出了两条铁路的位置关系图,如图所示。 图 T1与T2铁路位置关系图注:图四中的直线表示T1铁路线,圆表示T2铁路线,数值表示站点,例如1表示T1铁路线上的D1铁路站,26表示T2铁路线上的D26铁路站。此图与网上查询到的北京地铁示意图(如图所示)相吻合。 图 北京地铁示意图同样将地铁线路等效为公交线路得出任意两个站点间的可行线路,再将目标函数分别用模型二建立的模型表达式表达,用VC++进行编程(程序见附录)求得出考虑地铁情况的最优路线。1)以转乘次数最少为目标的最优路线起始站S0008到终到站S0073的最少转乘次数为1次,转乘次数最少的最优路线有1条;起始站S0087到终到站S3676的最少转乘次数为0次,即有直达路线,直达下的最优路线有1条;起始站S0148到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有10条;起始站S0971到终到站S0485的最少转乘次数为2次,转乘次数最少的最优路线有20条(注表中罗列其中10条);起始站S1557到终到站S0481的最少转乘次数为2次,转乘次数最少的最优路线有17条(注表中罗列其中10条);起始站S3359到终到站S1828的最少转乘次数为2次,转乘次数最少的最优路线有2条。2)以耗时最少为目标的最优路线起始站S3359到终到站S1828耗时最少为64 min,耗时最少的最优路线(转乘次数较少,费用较省的路线)有28条(注:表选择了其中的10条表示);起始站S1557到终到站S0481耗时最少为109 min,耗时最少的最优路线有17条与转乘次数最少的最优路线相同;起始站S0971到终到站S0485耗时最少为96 min,耗时最少的最优路线有20条与转乘次数最少的最优路线相同;起始站S0008到终到站S0073耗时最少为55 min,耗时最少的最优路线有3条;起始站S0148到终到站S0485耗时最少为 min,耗时最少的最优路线有10条与转乘次数最少的最优路线相同;起始站S0087到终到站S3676耗时最少为33 min,耗时最少的最优路线有1条与转乘次数最少的最优路线相同;3) 最少费用的最优路线起始站S3359到终到站S1828的最少费用为3元,最少费用的最优路线(所需时间较短,转乘次数较少的路线)有2条;起始站S1557到终到站S0481的最少费用为3元,最少费用的最优路线有17条;起始站S0971到终到站S0485的最少费用为5元,最少费用的最优路线有20条;起始站S0008到终到站S0073的最少费用为2元,最少费用的最优路线有1条;起始站S0148到终到站S0485的最少费用为5元,最少费用的最优路线有10条;起始站S0087到终到站S3676的最少费用为2元,最少费用的最优路线有1条;在此种情况下,我们就只考虑可以通过地铁站换乘的情况,不通过地铁站的情况即为模型1的求解结果。模型2的求解结果见附件1。6.3.1模型三的建立 该模型针对问题三,将步行方式考虑在了出行方式当中,更符合实际。因为当出发点与换乘点、终点站或转乘站与转乘站之间只相隔几个站时,当然该段选择步行方式更优。因此作出如下假设:一、如果存在某段路线,其两端点站之间相隔站点数小等于2(即至多经过4个站点),则该段线路选择步行方式到达目的地。其他的情况用模型二来处理。其中路线的两端点站之间相隔站点数是根据公交直达换乘路线来确定的。二、相邻公交站点(包括地铁站)间平均步行时间为5分钟。三、如果在公汽线路上选择步行,则公汽间换乘次数减少1;如果在地铁线路上选择步行,则地铁间换乘次数减少1,直达线路除外。直达和转乘一次、两次的路线需要步行的路段示意图如图所示。图中(a)表示出发点A与终点站B间能直达,相隔的站点数等于2所以选择步行;图中(b)表示出发点A与终点站B间通过一次换乘能到达,其中路段AC的站点数等于2所以选择步行,同样如果CB路段的站点数小等于2,则也采取步行的方式;图中(c)选择步行方式的依据类似。 图 步行示意图是否选择步行方式的函数: (式)其中 表示第m路公交路线是否步行, 表示第n路地铁线路是否步行; 对于直达路线,如果出发点与终点站之间相隔站点数小等于2则步行,否则乘车。对于需要转乘的路线的最优路线模型讨论如下:1)以时间最短的路线作为最优路线的模型:路线总时间等于乘车时间加上步行时间,再加上转乘时间。 (式)其中,第k路线为同时考虑公汽与地铁的转乘路线中的一种或几种。2)以转乘次数最少的路线作为最优路线的模型:每步行一次就少换乘一次车。 (式)此模型等效为以上转乘路线按直达、转乘一次、两次、三次(包括公交与地铁间的转乘)的优先次序来考虑。3)以费用最少的路线作为最优路线的模型: (式)其中, 仍满足(式)。七 模型的优缺点及改进模型的评价 模型优点1、模型是由简单到复杂一步步建立的,使得更贴近实际。2、本文的模型简单,其算法直观,容易编程实现。3、本文模型比较注重数据的处理和存储方式,大大提高了查询效率。4、本文模型注重效率的提高,通过大量的特征信息的提取,并结合有效的算法,使其完全可以满足实时系统的要求。 模型缺点在建模与编程过程中,使用的数据只是现实数据的一种近似,因而得出的结果可能与现实情况有一定的差距。 模型的改进以上模型主要是从公交线路出发,寻找公交线路的交叉站作为换乘站点,进而找出经过任意两个站点的可能乘车路线。我们也可以从公交站点的角度出发,用图论的方法建立有向赋权图(如图所示),此向赋权图是针对问题三建立的图论模型,问题一、问题二只是此模型的简化。图中 表示公汽线路标号,该线路是公汽线路 的上行线或下行线, 、 、 、 、 、 是公汽线路 上的站点标号; 表示地铁线路标号,该地铁线路是双向行驶的, 、 、 、 、 是地铁线路 上的站点标号;公汽 与地铁 可以在公汽站 和地铁站 间换乘。如果图中的地铁线路替换成公汽线路,为了表示公汽间换乘所需的时间或者费用,应将同一个换乘站点用两个站点来表示。 图 公交线路的有向赋权图根据不同的目标,给不同的站点间的边赋上不同的权值。然后利用图论的相关算法,找出相应的最短路径。1)当以时间最短为目标时,给每条边赋上时间的权值。给同一线路上任意两个站点间的边赋值时,其权值等于站点间的公交线路段数与平均时间的乘积。当某段线路的两段点间间隔站点数小等于3时,选择步行,该线路的权值等于步行时间。不同公汽和地铁间进行换乘时需要赋给不同的权值,以表示换乘时间。例如(如图):当j>4时, 到 的边权值 ;, 从 到 不需要的转车,但根据假设应选择步行,其边权值 ;,从 到 要么乘公交,然后转车,要么步行,根据步行的假设条件, 到 的站点间隔数小于2,因此选择步行,其边权值 ;,当g>4时, 与 之间的边权值 ;, 到 的边权值 ; 到 的边权值 ;当j>4、g>4时, 到 的路径长度为: ;当 、g>4时,则从 到 选择步行,再乘地铁到 ,其路径长度为; ;找出任意两点间可行路线的路径长度后,再搜索出其中的最短路径的的可行路线作为时间的最优路线。2)当以费用最省为目标时,则给每条边赋上费用的权值。公汽站点间的边权按(式)赋值。当公汽线路 按单一票价计费,对于 上任意两个公汽站点 和 间,若 ,则选择步行 ;若 ,则 ;当公汽线路 按分段计价,若 ,则 ;若 ,则 ;若 ,则 ;若 ,则 ;地铁线路 上任意两个站点 和 间,若 ,则选择步行 ;若 ,则 ;换乘站点 与 间的边权值均为0,即 ;则从 通过站点 换乘 到 的一条可行路线的路径长度为:若 , ,则从 到 选择步行, ;若 , ,则 ;同样可以找出任意两点间可行路线的路径长度,然后再搜索出最短路径作为费用的最优路线。

数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为米,单级楼梯的宽度为米,每级楼梯共有26级,楼梯口宽米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为 s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=××(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在 内才能完全疏散完毕。 设人员按照 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700= < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第(60+)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> f1 = (3400/ 8040) × 200 = 人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在(180+)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - ( – ) × = (人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 : f2 = (3400/8040) × 200 = (人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷ = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 120×3 = ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =×(~2)=~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。

你可以去赛才网上去看看,那里有1992-2008的优秀论文,很不错

已发送···

相关百科

热门百科

首页
发表服务