首页

> 学术论文知识库

首页 学术论文知识库 问题

电气电子学报官网

发布时间:

电气电子学报官网

啊,我才小学

英语写作网上可能会有

这个杂志是Ei核心,是印尼的杂志,下面介绍最近收录的一篇文章的情况: Source title: Telkomnika Abbreviated source title: Telkomnika Volume: 10 Issue: 1 Issue date: March 2012 Publication year: 2012 Language: English ISSN: 16936930 E-ISSN: 2087278X Document type: Journal article (JA) Publisher: Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia

Sensorless torque control scheme ofinduction motor for hybrid electric vehicleYan LIU 1,2, Cheng SHAO1( Institute of Advanced Control Technology, Dalian University of Technology, Dalian Liaoning 116024, China; of Information Engineering of Dalian University, Dalian Liaoning 116622, China)Abstract: In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrialdrive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-basedextension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed inorder to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme isrobust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor ischosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy lossesshown by : Hybrid electric vehicle; Induction motor; Torque tracking; Sliding mode1 IntroductionBeing confronted by the lack of energy and the increasinglyserious pollution, the automobile industry is seekingcleaner and more energy-efficient Hybrid ElectricVehicle (HEV) is one of the solutions. A HEV comprisesboth a Combustion Engine (CE) and an Electric Motor(EM). The coupling of these two components can be inparallel or in series. The most common type of HEV is theparallel type, in which both CE and EM contribute to thetraction force that moves the vehicle. Fig1 presents a diagramof the propulsion system of a parallel HEV [1].Fig. 1 Parallel HEV automobile propulsion order to have lower energy consumption and lower pollutantemissions, in a parallel HEV the CE is commonlyemployed at the state (n > 40 km/h or an emergency speedup), while the electric motor is operated at various operatingconditions and transient to supply the difference in torquebetween the torque command and the torque supplied bythe CE. Therefore fast and precise torque tracking of an EMover a wide range of speed is crucial for the overall performanceof a induction motor is well suited for the HEV applicationbecause of its robustness, low maintenance and lowprice. However, the development of a drive system basedon the induction motor is not straightforward because of thecomplexity of the control problem involved in the IM. Furthermore,motor parameter variations in HEV applicationsare larger than in industrial drive system during operation[2]. The conventional control technique ranging from theinexpensive constant voltage/frequency ratio strategy to thesophisticated sensorless control schemes are mostly ineffectivewhere accurate torque tracking is required due to theirdrawbacks, which are sensitive to change of the parametersof the general, a HEV operation can be continuing smoothlyfor the case of sensor failure, it is of significant to developsensorless control algorithms. In this paper, the developmentof a sensorless robust torque control system for HEVapplications is proposed. The field oriented control of the inductionmotor is commonly employed in HEV applicationsdue to its relative good dynamic response. However the classical(PI-based) field oriented control (CFOC) is sensitive toparameter variations and needs tuning of at least six controlparameters (a minimum of 3 PI controller gains). An improvedrobust PI-based controller is designed in this paper,Received 5 January 2005; revised 20 September work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 43which has less controller parameters to be tuned, and is robustto parameter variable parameters modelof the motor is considered and its parameters are continuouslyupdated while the motor is operating. Speed andflux observers are needed for the schemes. In this paper,the speed-flux observer is based on the sliding mode techniquedue to its superior robustness properties. The slidingmode observer structure allows for the simultaneous observationof rotor fluxes and rotor speed. Minimization of theconsumed energy is also considered by optimizing operatingflux of the The control problem in a HEV caseThe performance of electric drive system is one of thekey problems in a HEV application. Although the requirementsof various HEV drive system are different, all thesedrive systems are kinds of torque control systems. For anideal HEV, the torque requested by the supervisor controllermust be accurate and efficient. Another requirement is tomake the rotor flux track a certain reference λref . The referenceis commonly set to a value that generates maximumtorque and avoids magnetic saturation, and is weakened tolimit stator currents and voltages as rotor speed HEV applications, however, the flux reference is selectedto minimize the consumption of electrical energy as it is oneof the primary objectives in HEV applications. The controlproblem can therefore be stated as the following torque andflux tracking problems:minids,iqs,we Te(t) − Teref (t), (1)minids,iqs,we λdr(t) − λref (t), (2)minids,iqs,we λqr(t), (3)where λref is selected to minimize the consumption of electricalenergy. Teref is the torque command issued by thesupervisory controller while Te is the actual motor (3) reflects the constraint of field orientation commonlyencountered in the literature. In addition, for a HEVapplication the operating conditions will vary changes of parameters of the IM model need to be accountedfor in control due to they will considerably changeas the motor changes operating A variable parameters model of inductionmotor for HEV applicationsTo reduce the elements of storage (inductances), the inductionmotor model used in this research in stationary referenceframe is the Γ-model. Fig. 2 shows its q-axis (d-axisare similar). As noted in [3], the model is identical (withoutany loss of information) to the more common T-model inwhich the leakage inductance is separated in stator and rotorleakage [3]. With respect to the classical model, the newparameters are:Lm = L2mLr= γLm, Ll = Lls + γLlr,Rr = γ. 2 Induction motor model in stationary reference frame (q-axis).The following basic w−λr−is equations in synchronouslyrotating reference frame (d - q) can be derived from theabove model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dλdrdt= −ηλdr + (we − wr)λqr + ηLmids,dλqrdt= −(we − wr)λdr − ηλqr + ηLmiqs,didsdt= ηβλdr+βwrλqr−γids+weiqs+1σLsVds,diqsdt=−βwrλdr+ηβλqr−weids−γiqs+1σLsVqs,dwrdt= μ(λdriqs − λqrids) −TLJ,dθdt= wr + ηLmiqsλdr= we,Te = μ(λdriqs − λqrids)(4)with constants defined as follows:μ = npJ, η = RrLm, σ = 1−LmLs, β =1Ll,γ = Rs + RrLl, Ls = Ll + Lm,where np is the number of poles pairs, J is the inertia of therotor. The motor parameters Lm, Ll, Rs, Rr were estimatedoffline [4]. Equation (5) shows the mappings between theparameters of the motor and the operating conditions (ids,iqs).Lm = a1i2ds + a2ids + a3, Ll = b1Is + b2,Rr = c1iqs + c2.(5)4 Sensorless torque control system designA simplified block diagram of the control diagram isshown in Fig. Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 3 Control PI controller based FOC designThe PI controller is based on the Field Oriented Controller(FOC) scheme. When Te = Teref, λdr = λref , andλqr = 0 in synchronously rotating reference frame (d − q),the following FOC equations can be derived from the equations(4).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ids = λrefLm+ λrefRr,iqs = Terefnpλref,we = wr + ηLmiqsλref.(6)From the Equation (6), the FOC controller has lower performancein the presence of parameter uncertainties, especiallyin a HEV application due to its inherent open loopdesign. Since the rotor flux dynamics in synchronous referenceframe (λq = 0) are linear and only dependent on thed-current input, the controller can be improved by addingtwo PI regulators on error signals λref − λdr and λqr − 0 asfollowids = λrefLm+ λrefRr+ KPd(λref − λdr)+KId (λref − λdr)dt, (7)iqs = Terefnpλref, (8)we = wr + ηLmiqsλref+ KPqλqr + KIq λqrdt. (9)The Equation (7) and (9) show that current (ids) can controlthe rotor flux magnitude and the speed of the d − q rotatingreference frame (we) can control its orientation correctlywith less sensitivity to motor parameter variations becauseof the two PI Stator voltage decoupling designBased on scalar decoupling theory [5], the stator voltagescommands are given in the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩Uds = Rsids − weσLsiqs = Rsids − weLliqs,Uqs = Rsiqs + weσLsids + LmLrweλref= Rsiqs + weσLsids + weλref .(10)Because of fast and good flux tracking, poor dynamics decouplingperformance exerts less effect on the control Speed-flux observer designBased on the theory of negative feedback, the design ofspeed-flux observer must be robust to motor parameter speed-flux observer here is based on the slidingmode technique described in [6∼8]. The observer equationsare based on the induction motor current and flux equationsin stationary reference frame.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d˜idsdt= ηβ˜λdr + β ˜ wr˜λqr − γ˜ids +1LlVds,d˜iqsdt= −β ˜ wr˜λdr + ηβ˜λqr − γ˜iqs +1LlVqs,d˜λdrdt= −η˜λdr − ˜ wr˜λqr + ηLm˜ids,d˜λqrdt= ˜wr˜λ dr − η˜λqr + ηLm˜iqs.(11)Define a sliding surface as:s = (˜iqs − iqs)˜λdr − (˜ids − ids)˜λqr. (12)Let a Lyapunov function beV = . (13)After some algebraic derivation, it can be found that when˜ wr = w0sgn(s) with w0 chosen large enough at all time,then ˙V = ˙s · s 0. This shows that s will converge tozero in a finite time, implying the stator current estimatesand rotor flux estimates will converge to their real valuesin a finite time [8]. To find the equivalent value of estimatewr (the smoothed estimate of speed, since estimate wr is aswitching function), the equation must be solved [8]. Thisyields:˜ weq = wr˜λqrλqr + λdr˜λdr˜λ2qr +˜λ2dr −ηnp˜λqrλdr − λqr˜λdr˜λ2qr +˜λ2dr. (14)The equation implies that if the flux estimates converge totheir real values, the equivalent speed will be equal to thereal speed. But the Equation (14) for equivalent speed cannotbe used as given in the observer since it contains unknownterms. A low pass filter is used instead,˜ weq =11 + s · τ˜ wr. (15)Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 45The same low pass filter is also introduced to the systeminput,which guarantees that the input matches the feedbackin selection of the speed gain w0 has two major constraints:1) The gain has to be large enough to insure that slidingmode can be ) A very large gain can yield to instability of the simulations, an adaptive gain of the slidingmode observer to the equivalent speed is = k1 ˜ weq + k2. (16)From Equation (11), the sliding mode observer structureallows for the simultaneous observation of rotor Flux reference optimal designThe flux reference can either be left constant or modifiedto accomplish certain requirements (minimum current,maximum efficiency, field weakening) [9,10]. In this paper,the flux reference is chosen to maximum efficiency at steadystate and is weaken for speeds above rated. The optimal efficiencyflux can be calculated as a function of the torquereference [9].λdr−opt = |Teref| · 4Rs · L2r/L2m + Rr. (17)Equation (17) states that if the torque request Teref iszero, Equation (8) presents a singularity. Moreover, theanalysis of Equation (17) does not consider the flux fact, for speeds above rated, it is necessary toweaken the flux so that the supply voltage limits are not improved optimum flux reference is then calculatedas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩λref = λdr-opt,if λmin λdr-opt λdr-rated ·wratedwr-actual,λref = λmin, if λdr-opt λmin,λref = λdr-rated ·wratedwr-actual,if λdr-opt λdr-rated ·wratedwr-actual.(18)where λmin is a minimum value to avoid the division SimulationsThe rated parameters of the motor used in the simulationsare given byRs = Ω, Rr = Ω, Lls = 75 H,Llr = 105 H, Lm = mH, Ls = Lls + Lm,Lr = Llr + Lm, P = 4, Jmot = kgm2,J = Jmot +MR2tire/Rf, ρair = , Cd = = m2, Rf = , Cr = = m, M = 3000 kg, wbase = 5400 rpm,λdr−rated = shows the torque reference curve that representstypical operating behaviors in a hybrid electric . 4 The torque reference torque is modeled by considering the aerodynamic,rolling resistance and road grade forces. Its expression isgiven byTL = RtireRf(12ρairCdAfv2 +MCr cos αg +M sin αg).Figures in [5∼8] show the simulation results of thesystem of (considering variable motor parameters).Though a small estimation error can be noticed on the observedfluxes and speed, the torque tracking is still achievedat an acceptable level as shown in Figs. [5, 6, 8]. The torquecontrol over a wide range of speed presents less sensitivityto motor parameters presents the d and q components of the rotor flux λr is precisely orientated to d-axis because of theimproved PI shows clearly the real and observed speed in thedifferent phases of acceleration, constant and decelerationspeed with the motor control torque of . The variablemodel parameters exert less influence on speed shows the power loss when the rotor flux keeps constantor optimal state. A significant improvement in powerlosses is noticed due to reducing the flux reference duringthe periods of low torque . 5 Motor rotor flux λ Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 6 Motor . 7 Power . 8 Motor ConclusionsThis paper has described a sensorless torque control systemfor a high-performance induction motor drive for aHEV case. The system allows for fast and good torquetracking over a wide range of speed even in the presence ofmotor parameters uncertainty. In this paper, the improvedPI-based FOC controllers show a good performance in therotor flux λdr magnitude and its orientation tracking. Thespeed-flux observer described here is based on the slidingmode technique, making it independent of the motor adaptation of the speed -flux observer is used tostabilize the observer when integration errors are present.

电子学报官网

学报是含金量比较高的一种刊物,学校或者是其他一些单位认可度都是比较高的。那么 学报投稿有几种方法 ?自己投稿学报的主要方式为大学学报官方网站和知网等平台。有的学报只有官网投稿,有的学报没有官网,就只有知网平台来投稿,有的学报是官网和平台都同时高端学术服务项目sci论文项目ssci论文项目ei论文项目scopus项目国际中文项目国外出书项目学报是含金量比较高的一种刊物,学校或者是其他一些单位认可度都是比较高的。那么学报投稿有几种方法?自己投稿学报的主要方式为大学学报官方网站和知网等平台。有的学报只有官网投稿,有的学报没有官网,就只有知网平台来投稿,有的学报是官网和平台都同时接受投稿,或者大家也可以选择学报网安排投稿。一般大学学报都有自己的官方网站,寻找方法比较简单,就是进入大学的主页,然后找到学报编辑部的官网,里面会有详细的投稿要求和投稿入口,一般都是需要注册会员的,投稿后编审的情况会都直接的反馈到这里,还是比较人性化的。也有一部分学报是没有官方网站的,但是也会有相应的投稿入口,就是知网平台。作者们可以进入“知网”找到此大学学报的收录地址,直接搜索就可以了,之后点击此学报的封面图片,里面会有一个投稿的平台,每个学报都是独立的,这里也是可以投稿的。下面小编也分享了南通职业大学学报投稿须知,大家可以作为参考:1. 为加强规范化、信息化建设,本刊自2013年7月1日起正式启用《南通职业大学学报》在线投稿系统,启用后的系统是本刊接受投稿的唯一通道,本刊不再接受来自其他渠道(如电子邮件、纸质等)的投稿。2. 作者投稿时,首先进入线投稿系统。请在首页左上方的“用户中心”栏里先点击按钮“在线注册”,进入后按系统提示进行注册。然后在“在线投稿查稿”中按要求填写稿件信息,并提交稿件电子文本。之后可在系统中及时跟踪、查询稿件是否通过初审、是否通过专家审稿、是否需要修改、是否被录用等信息,并可与编辑及时联系交流。3. 本刊稿件审理周期为30日,故请作者在投稿后30日内经常浏览在线投稿系统和个人电子邮箱,以及时了解稿件审理情况。(1)稿件通过专家审稿后的录用通知将通过在线投稿系统和个人电子邮箱发送给作者。特别提醒:稿件一经录用,本刊不再接受撤稿请求,同时通过数字优先出版予以网络刊发。作者一稿多投造成的后果自负。(2)作者若在投稿30日后未收到录用通知,可改投他刊。4. 本刊工作流程是“编辑部初审→专家审稿→修改后复审→编辑排版→三次以上校对→终审定稿→付印”,其间根据专家审稿意见和期刊规范,本刊编辑部有权对来稿作必要的处理,同时也可能会要求作者对稿件作适当的修改、补充或删减,敬请作者予以配合。5. 本刊已许可“清华同方”、“万方”、“维普”等多家期刊数据库收录本刊全文,并以数字化方式传播,作者投稿本刊即视为同意本刊的相关处置。若作者不同意被数据库收录,来稿恕不刊用,敬请谅解。6. 作者在收到稿件录用通知后,请按系统提示的信息支付版面费,稿件发表后,正式发票随样刊一并寄给作者。对特约专稿、省级以上政府部门设立的科研基金资助项目的研究成果以及高质量学术论文,本刊可减免版面费。7. 来稿篇幅要求一般为3500~5000汉字(含图、表)。8. 来稿须有(1)标题;(2)摘要;(3)关键词(3~8个);(4)作者姓名;(5)作者单位及二级单位名称;(6)单位地址、所在城市及邮政编码;(7)以上6项的英文翻译;(8)第一作者的性别、出生年份、籍贯、学历、职称(职务)、主要研究方向;(9)联系电话与电子邮箱。9. 来稿正文后须著录参考文献(参见样刊或样稿),凡引用参考文献,须在正文引用处标注引文序号。以上就是大学学报投稿的相关知识,您也可以与学报网的在线老师沟通,他们可以给您讲解更多论文发表相关的知识。转载请注明来源。原文地址:《学报投稿有几种方法》文章内容如果没有解决您的问题,在线咨询可提供高效的解答。上一篇:学报投稿论文后拒审是怎么回事下一篇:农业工程学报发表论文被哪儿收录学报期刊咨询网专业提供学报论文发表咨询平台学术咨询正当时可提供的学术服务论文预审评估论文润色翻译论文查重降重发表期刊推荐论文格式修改论文发表支持最新学报发表论文知识雷达学报是EI吗sci论文见刊和国内论文见刊的区论文发表中介比自己投稿有哪些优ssci期刊发表学术论文常见问题西北工业大学学报投稿经历分享学报投稿咨询热点问题大学学报哪些比较容易发表论文中国食品学报对于投稿文章的格式电子学报是什么级别期刊化工学报上发表的论文算什么档次物理学报审稿时间多久录用率高吗什么学报容易投稿还审稿快哪些专科学报比较容易投稿农业工程学报论文格式要求物理学报属于什么级别论文机械工程学报编辑审稿录用几率高学报范文/文献农业科技类学报论文发表论文范文学报期刊投稿范文浅谈中学物理教学报期刊咨询网教学论文范文下载学报论文发表范文南漳街道名的语“一带一路”倡议对我国经济有何热点查询学报期刊河北农业大学学报农业工程类期刊

在中国知网上搜索: 当前位置:数字出版物超市 >> 中国学术文献网络出版总库 >> 通过来源检索文献(点击来源名称) 期刊收录源: EI工程索引(美) 左侧的领域,选择信息科技下面的“计算机硬件技术 ”和“计算机软件及计算机应用” 然后开始搜索: 然后得到了三个期刊: 1 软件学报 中国科学院软件研究所 中科双百期刊; 2 计算机辅助设计与图形学学报 中国计算机学会 第三届(2005)国家期刊提名奖期刊; 3 Journal of Zhejiang University-Science C(Computers and Electronics) 浙江大学出版社 呵呵,但是感觉这个不全。所以我扩大了领域,选择整个“信息科技”:得到了一大堆,给你以下答案,你自己看看刊物名称,细心的话可以去各家期刊的网站上看看他们接受稿件的内容范围:1 软件学报 2 计算机学报 3 计算机研究与发展 4 自动化学报 5 光电子.激光 6 电子学报 7 通信学报 8 控制与决策 9 计算机集成制造系统 10 机器人 11 红外与毫米波学报 12 电机与控制学报 13 控制理论与应用 14 计算机辅助设计与图形学学报 15 西安电子科技大学学报 16 电子与信息学报 17 北京邮电大学学报 18 真空科学与技术学报 19 红外与激光工程 20 电波科学学报 21 模式识别与人工智能 22 系统工程与电子技术 23 电子科技大学学报 24 Journal of Computer Science and Technology 计算机科学技术学报(英文版) 25 Optoelectronics Letters 26 Chinese Journal of Semiconductors 半导体学报 27 Journal of Systems Engineering and Electronics 28 The Journal of China Universities of Posts and Telecommunications 中国邮电高校学报(英文版);29 Journal of Control Theory and Applications 30 Journal of Zhejiang University-Science C(Computers and Electronics) 这个肯定是最佳答案了吧。不用谢。

可以帮助你做论文检索,可以联系

ICCSE \ ICSREI,你是要CA还是JA检索的?

电气工程学报官网

中国电气工程学报是季刊,一年4期。

《电气工程学报》创刊于2006年,是由中国机械工业联合会主管;机械工业信息研究院主办的电力工业类学术期刊。

据2020年5月《电气工程学报》官网显示,《电气工程学报》编辑部有顾问3人、编委33人、青年专家15人。

栏目方向

主要栏目

《电气工程学报》主要设有综述、理论研究、工程技术、电机与电器、电力电子与电力传动、电力系统自动化、高电压技术与绝缘材料、新能源等栏目。

刊登内容

《电气工程学报》主要报道电气工程领域在基础理论和工程技术应用方面具有国际水准、国内领先具有创新性、前沿性的科研成果。报道内容覆盖电气工程领域的各个学科。

读者对象

《电气工程学报》主要读者对象为电气工程行业从事教学、科研、设计、生产单位的科技人员,大专院校与科研院所的师生和其他电气专业技术人员等。

这是个假的期刊报社,它不被任何官方承认,例如知网,万维等,《电气工程学报》是真的,中国电气工程学报是假的,千万别被忽悠了

只要是真刊,凡是以中字开头的期刊质量都错不了。另外,可以去知网查一下,上面有期刊的一些评价数据,比如影响因子,文章被下载信用次数,是否中文核心期刊,是否cssci检索期刊等。

电气电子教学学报好投吗

投稿可能有潜规则,把这些潜规则都搞懂了,你就好中了。

电气电子教学可能会更好一些!里面内容很好。

《电气电子教学学报1》为全国理工科高校除计算机专业外的所有电类专业的教学类学术期刊,为各电类专业的专业课和基础课教师发表教学、科研论文,为各专业教学指导分委员会指导教学工作服务。由东南大学主编,清华大学、西安交通大学、天津大学、北京交通大学、哈尔滨工业大学参办。

中国电气工程学报英文官网

中国电气工程学报是季刊,一年4期。

《电气工程学报》创刊于2006年,是由中国机械工业联合会主管;机械工业信息研究院主办的电力工业类学术期刊。

据2020年5月《电气工程学报》官网显示,《电气工程学报》编辑部有顾问3人、编委33人、青年专家15人。

栏目方向

主要栏目

《电气工程学报》主要设有综述、理论研究、工程技术、电机与电器、电力电子与电力传动、电力系统自动化、高电压技术与绝缘材料、新能源等栏目。

刊登内容

《电气工程学报》主要报道电气工程领域在基础理论和工程技术应用方面具有国际水准、国内领先具有创新性、前沿性的科研成果。报道内容覆盖电气工程领域的各个学科。

读者对象

《电气工程学报》主要读者对象为电气工程行业从事教学、科研、设计、生产单位的科技人员,大专院校与科研院所的师生和其他电气专业技术人员等。

《中国电气工程学报》这本刊是中国期刊网收录的,知网、万方、维普都没有收录,评职称认不认可就得看当地的具体要求

6月。《电气工程学报》杂志创刊于2006年,由中国机械工业信息研究院主办,其于2021年发布的25版是在2021年6月正式发行,其属于半年刊,是面向电气工程行业的高端学术期刊。

是可以认可的。需要注意这几点,评职称你需要多看评审文件,评审文件里有对期刊的详细要求,比如级别,字符,检索。你根据这些要求就能判断一个期刊是不是会被认可,满不满足要求。这里再说一下,期刊是够用就行,并不是越高级越好,因为越高级的意味着所花的时间精力越多,还不如把其他资料准备充分。

相关百科

热门百科

首页
发表服务