首页

> 学术论文知识库

首页 学术论文知识库 问题

分部积分法毕业论文

发布时间:

分部积分法毕业论文

分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。

常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。

分布积分法模式:

一般地,从要求的积分式中,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。分部积分法最重要之处就在于准确地选取,因为一旦确定,则公式中右边第二中的也随之确定,但为了使式子得到精简,如何选取则要依的复杂程度决定。

也就是说,选取的一定要使比之前的形式更简单或更有利于求得积分。依照经验,可以得到下面四种典型的模式。记忆模式口诀:反(函数)对(数函数)幂(函数)指(数函数)三(角函数)。

以上内容参考:百度百科-分部积分法

你要写毕业论文???

建议你去搜一下,用柯西、莱布尼茨这几个关键字了解微积分的产生,给你微积分的百度百科

∫ y^3. e^(-y^2/2) dy

利用 de^(-y^2/2) = (-y^2/2) dy

=-∫ y^2.  de^(-y^2/2)

利用分部积分 ∫ udv =uv-∫vdu

=- y^(-y^2/2) +2∫ ye^(-y^2/2)  dy

利用 de^(-y^2/2) = (-y^2/2) dy

=- y^(-y^2/2) -2∫ de^(-y^2/2)

=- y^(-y^2/2) -2e^(-y^2/2)   +C

积分因子法毕业论文

谈学好计量经济学的关键问题

论文关键词:计量学;模型;假定;参数枯计;

论文摘要: 计量经济学是一门涉及面广、计算复杂的较难学的课程。从学这门课应具备的知识条件入手。分析了学好的关键问题是:要把握线性回归模型的几个基本假定,要学会建模,要懂得几种参数估计的方法,还要明白模型检验的意义。

计量经济学是经济学领域内的一门应用性学科。它是以知识、方法为基础,以一定的经济理论为,以为手段,通过建立计量经济模型,考察和研究经济中各种经济变量之间的数量关系,预测经济发展的趋势,检验经济政策效果的一门非常具有实用价值的学科。现在很多专业都开设这门课。但由于这门课涉及的知识面广、计算公式多而复杂,要求的应用手段高,所以,学生在学的过程中感到比较困难,且学的效果也不太理想。本人根据自己的教学体会,谈谈学好这门课应注意的几个关键问题。

首先.学生学这门课程必须具备以下条件:统计学、数学和经济学知识以及计算机技术。且缺一不可。

(一)对统计学而言,为了测定经济变量之间的数量关系,计量经济研究过程中采用了统计学的分析方法,如:计量经济学模型的统计检验、参数估计的方法以及建立模型所需要的统计数据资料的搜集等都离不开统计方法。特别是统计数据的搜集、整理和分析。因此,统计学就成为计量经济学研究的基础。统计资料的准确性、时效性和系统性就成为计量经济学模型建立的好坏、参数估计代表性大小的影响因素。

(二)对经济学而言,经济学是计量经济学的理论基础,因为计量经济学研究的主题是经济现象发展变化的规律,计量经济模型描述的是经济变量之间的数量关系,这就决定了计量经济研究必须以经济理论和经济运行机制作为建立模型的理论基础。如消费函数和函数的建立,就是以不同的消费理论和投资理论为前提的。此外,计量经济研究的结论反过来可以验证有关经济理论的正确与否。

(三)对数学而言,为了将经济理论和客观事实有机的结合起来,需要采用适当的方法。由于计量经济学研究的主要是多个因素之间静态或动态的随机关系,所以需要引人数理统计以及微积分与矩阵等理论方法,这些方法成为计量经济研究的建模工具。如利用最小二乘法估计模型中的参数就利用到微积分中的极值原理,在多元线性回归模型中要用矩阵理论推导参数的性质,在搜集资料时要用抽样理论等。现在经济学研究的数学化和定量化是经济学科学化的标志。这种科学化推动了经济学领域的发展,如微分学与边际理论,优化方法与最优配置理论,所以,数学是计量经济分析的一个基本工具,用数学方法去思考和描述经济问题和政策,这是计量经济学的关键。

(四)对计算机技术而言,社会发展到今天,计算机已普遍运用到定量分析中,定量分析是依据数理统计理论的发展而发展起来的。它包括系统论、信息论和控制论,其多数方法复杂,计算工作量大,这就需要利用计算机软件来解决问题。

所以,要想学好计量经济学,学生就必须要有厚实的统计学基础,扎实的数学功底和熟练的技术。否则,分析问题时将会很困难,甚至分析不下去,即使分析出来,结论和实际也会有很大偏差或者根本和实际经济运行规律相违。

其次,学生学这门课必须注意把握线性回归模型的几个基本假定。

(一)几个基本假定是运用最小二乘法的前提条件。对于线性回归模型,模型估计的任务是用回归分析的方法估计模型的参数,常用的方法是普通最小二乘法,简称ors法,为保证参数估计量具有良好的性质,就需对模型提出几个假定。如果实际模型满足这些假定,ors法就是一种适用的方法,如果实际模型不满足这些假定,ors法就不再适用,这就需要发展其它方法来估计模型。因此它是运用ors法的前提。

几个基本假定是:1、假定解释变量xi是确定性变量,不是随机变量,且之间互不相关。( 是第i个解释变量);2、零均值假定,即,其中为随机误差项;3、同方差假定,即,其中为方差;4、无自相关假定,即C OV ;5、解释变量与随机误差项之间互不相关假定,即;6、随机误差相服从均值为0,方差为的正态分布假定,即 。

(二)几个基本假定是贯穿计量学的一条主线。计量经济学研究的一个主要任务是对模型进行计量经济,目的是检验计量经济学的性质。一般是检验模型中随机误差项是否存在异方差和序列相关的问题、解释变量是否存在多重共线性问题以及解释变量是否是随机变量,这些问题都是根据这几个基本假定而来的,即如果违背了同方差假定,模型就存在异方差,即;如果违背解释变量之间互不相关假定,模型就存在多重共线性问题,即0;如果违背随机误差项在不同样本点之间互不相关假定,模型就存在自相关问题,即0;如果违背解释变量是确定性变量的假定,那么模型就存在解释变量是随机变量的问题。每一个问题都有它产生的原因,会造成不同的后果,因此,就有不同的模型检验、处理和估计的方法,所以学生要特别注意把握这几个基本假定。

第三.学生学这门课要了解为什么要建模.以及如何建模?

模型就是表达研究系统内经济变量之间关系的一个或一组方程式。它是根据经济行为理论和样本数据显示出的变量间的关系建立的。如生产函数模型,在实际生活中,经济系统各部门之间、经济过程各环节之间、经济活动中各因素之间除了存在经济行为理论上的'相互联系之外,还存在数量上的相互依存关系,这些关系可通过模型来表达。通过模型可进行结构分析、经济预测、政策评价和检验与发展经济理论。模型研究的是当一个或几个变量发生变化时,会对其它变量以至整个经济系统发生影响。如果人们不通过建模,而过分依赖直觉,即凭经验和学识去判断变量之间的关系,则会很危险,因为可能会忽略或者错误地使用某些重要的关系。另外,凭直觉判断变量之间的关系充其量只能算作定性分析,它只能分析出变量发展的趋势,而不能分析出当一个或几个变量每变动一个单位时会引起另一个变量变动几个单位,也就是说,它不能进行定量分析,不能证实变量变化的度以及进行检验和计量经济学检验。再有,经济预测时,要提供预测的精度,凭直觉的方法通常会阻碍预测结果置信度的数学度量。所以,只有通过建模,才能比较准确地反映经济现象中各经济变量之间的关系。

那么如何才能科学合理的建模?建模是一门很难掌握的,因为它主要依赖建模过程中的直觉判断,而这些判断又没有清楚的准测。一般建模的方式有四种:一是根据经济行为理论,运用数理经济学的研究方法,判断变量间的关系,推导出模型的具体数学形式;二是根据实际统计资料绘制被解释变量与解释变量之间的相关图,由相关图现实的变量之间的关系确定模型的数学形式。如果相关图中的点大致呈一条直线,那么就建立直线回归模型,如果大致呈一条指数曲线,就建立指数曲线回归模型;三是如果数列是时间数列,可根据时间数列的特点确定模型。例如,若时间数列中各项数据的K次差大致为一常数,一般说可考虑配合K次曲线模型,若时间数列中各项数据的对数一次差大体为一常数,可考虑配合指数曲线模型;四是在某些情况下,如果无法事先确定模型的数学形式,那么就可采用各种可能的形式进行段模拟,然后选择其中较好的一种。这几种方式都是对理论模型的初步设定,在模型的估计和检验过程中还需逐步调整,以得到一个函数形式较为合理的模型。一个合理的模型应包括三点:(1)要符合经济现象的行为理论;(2)模型的建立方法和参数的估计方法要科学;(3)数据要真实可靠。

第四.学生学这门课必须掌握几个主要知识点。

这门课主要学单方程计量学模型、扩展的单方程计量经济学模型、联立的计量经济学模型以及模型的应用,其中又以单方程计量经济学模型为基础。不管什么样的模型,都要涉及到模型的建立、参数的估计以及模型的,这些其实就是这门课的主要知识点。模型的建立前己述过,这里主要谈谈参数估计的方法和模型的检验方法。

(一)参数估计的方法。模型建立以后,要想在实际中对经济现象进行估计和预测就必须估计模型的参数。参数是模型中表示变量之间数量关系的系数,说明解释变量对被解释变量的影响程度,它是未知的,需要估计。因此参数估计方法是计量经济学的核心内容,可根据不同的原理构造不同类型的估计方法。主要方法有:

1、普通最小二乘法(OIS法),是应用最多的一种方法。因为用这种方法估计的参数具有线性性、无偏性和最小方差性,即参数具有优良的性质。这种方法是从最小二乘原理出发的其它估计方法的基础,如加权最小二乘法、折扣最小二乘法、间接最小二乘法、二阶段最小二乘法。它的理论前提是各实际观察值与理论估计值离差平方和最小。

2、最大或然法(ML法),也称最大似然法。这种方法是从最大或然原理出发发展起来的一种估计参数的方法。虽然其应用没有最小二乘法普遍.但在计量经济学中占据很重要的地位。其原理是当从模型总体中随机抽取n组样本观测值之后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的联合概率最大。这个联合概率又称为变量的或然函数,通过对或然函数极大化以求得总体参数的估计量。

3、高斯—牛顿迭代法。对于有些不能转化为线性方程的非线性方程模型,估计参数时用高斯—牛顿迭代法就是一种适用的方法。它的基本思想是用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代去多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳系数,最后使原模型的残差平方和达到最小。它的程序是:(1)选择初始值;(2)把泰勒级数展开;(3)估计修正因子;(4)检验精确度;(5)重复迭代。

(二)模型检验的类型。参数估计出之后,模型便已确定。但模型是否符合实际,能否解释实际经济运行过程,是否最大限度地拟合了样本数据,还需要进行检验,检验类型包括:

1、经济意义检验,主要检验各个参数值的符号以及数值的大小、数值之间的关系在经济意义上是否合理。例如,需求函数中,需求量一般与收人正相关,与价格负相关。所以,收人与价格的参数估计值分别应取正值和负值,如果结果相反,就应调整模型。又如,食品支出的恩格尔函数:  其中: 表示人均月食品支出水平,表示人均月收人水平,那么的取值区间应在。到1之间,因为食品的增长幅度一般低于收人的增长幅度,如超出这个范围,则不能通过经济意义的检验。

2、检验,是利用数理统计中的推断方法,对估计结果的可靠性进行检验。一般包括拟合优度检验法、模型的显著性检验法(F检验法)和解释变量检验法(T检验法)等。统计检验是对所有现象进行回归分析时都必须通过的检验。

3、计量经济检验,主要用于检验模型的计量经济学性质。如回归模型的前提条件(基本假定)的检验、模型的识别性检验等。

模型如果通过上述检验,则表明所估计的计量经济模型较好地反映了经济变量之间的数量关系,可以进一步用于定量分析。若有些检验未通过,则表明:或者模型设定有错,或者搜集的统计资料不能真实地反映客观实际情况。这就需要重新设定理论模型或重新搜集统计数据。

论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文

我其实也想知道,但是你能不能告诉我怎么进行复审吗?我们正在进行数学建模急需这方面的资料,谢谢了~~~~

复审为对学位论文终稿的主体部分进行检测等。

以潍坊医学院为例,研究生论文复审论文答辩后修改并提交研究生处准备印刷的学位论文终稿(PDF电子版、word电子版、纸质版)。对学位论文终稿的主体部分进行检测,重复率≥15%的博士学位论文、≥20%的硕士学位论文不予提交校学位评定委员会审议。

所有学位论文的撰写应严格按照《潍坊医学院研究生学位论文撰写规范》执行,包括论文封面格式、论文结构要求、参考文献著录格式、论文排版要求等。形式审查不合格者需重新排版打印。

扩展资料:

硕士学位论文答辩后实施复审的相关要求规定:

1、答辩委员会及论文评阅专家认为学位论文必须修改者,研究生应根据答辩委员会及论文评阅专家对论文提出的意见进行修改,并提交书面修改说明,需要修改但未修改者不予提交学校学位评定委员会(研究生处将聘请专家根据论文评阅书、答辩记录及修改情况进行复审)。

2、电子版论文和纸质版论文不相符或学位论文中部分文字采用图片形式插入等任何故意规避重合率检测皆属学术不端行为,按《潍坊医学院学位论文作假行为处理办法实施细则》(潍医研字〔2015〕4号)文件规定进行处理。

3、导师要加强对学生的教育与指导,督促检查学生对其答辩后的论文按照学校规定予以修改完善,不断提高论文质量。导师要对修改后的论文进行审查,并在论文封面上签字确认。

参考资料来源:潍坊医学院-关于对博士硕士学位论文答辩后实施复审的通知

发表论文对毕业生有什么好处

毕业论文微积分

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):

下(B):

左(L):2cm

右(R):2cm

装订线(T):

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……、……、…………的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

就是你准备怎么样来完成毕业论文。 写出你打算采用的方法就可以了。 如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。希望对你有帮助!!!

就是你准备怎么样来完成毕业论文。

写出你打算采用的方法就可以了。如:方面的研究"课题拟采用的研究方法和手段"是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。

论文拟采用的研究方法:

1、实验; 2、试验; 3、理论解析、计算; 4、工业性实验及生产实践等等。

毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。

但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。

(一)、毕业论文是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。

(二)、选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。

第一、研究课题的基础工作——搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。

首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。

调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。

实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。

第二、研究课题的重点工作——研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。

第三、研究课题的核心工作――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。

提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。

第四、研究课题的关键工作――执笔撰写。下笔时要对以下两个方面加以注意:拟定提纲和基本格式。

第五、研究课题的保障工作――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。

定积分的计算方法毕业论文

可以上网查书籍目录: 前言第一章 函数、极限与连续第一节 函数第二节 极限第三节 函数的连续性自测题(一)自测题(二)自测题答案第二章 导数与微分第一节 导数概念第二节 导数的计算第三节 函数的微分自测题(一)自测题(二)自测题答案第三章 中值定理与导数应用第一节 中僮定理第二节 洛必达法则与泰勒公式第三节 函数翡单调性、极值和凸性自测题(一). 自测题(二)自测题答案第四章 不定积分第一节 原函数与不定积分的概念第二节 利用凑微分法求不定积分第三节 换元积分法与分部积分法第四节 几种特殊类型函数的积分自测题(一)自测题(二)自测题答案第五章 定积分第一节 定积分的概念与性质第二节 定积分的计算方法第三节 反常积分第四节 与定积分相关的综合性问题自测题(一)自测题(二)自测题答案第六章 定积分的应用 第一节 极坐标简介第二节 定积分的应用自测题(一)自测题(二)自测题答案第七章 向量代数与空间解析几何第一节 向量代数第二节 空间曲面与空间曲线第三节 平面与直线方程自测题(一)自测题(二)自测题答案第八章 多元驻散微分法及应用第一节 多元函数的概念第二节 多元函数微分法第三节 多元函数微分法的应用自测题(一)自测题(二)自测题答案第九章 重积分第一节 二重积分的概念第二节 二重积分的计算第三节 三重积分的计算第四节 重积分的应用自测题(一)自测题(二)自测题答案第十章 曲线积分与曲面积分第一节 对弧长的曲线积分第二节 对坐标的曲线积分第三节 格林公式第四节 对面积的曲面积分第五节 对坐标的曲面积分第六节 高斯公式和Stokes公式自测题(一)自测题(二)自测题答案第十一章 无穷级数第一节 常数项级数及其性质第二节 常数项级数敛散性判别法第三节 幂级数第四节 函数展开成幂级数第五节 傅里叶级数自测题(一)自测题(二)自测题答案第十二章 微分方程第一节 常微分方程的基本概念第二节 一阶微分方程第三节 可降阶的高阶微分方程第四节 高阶线性和常系数线性方程

国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

定积分的数值解法毕业论文

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

尽管连续函数的原函数一定存在,但原函数不一定是有限形式。所谓的有限形式就是初等函数。所说的能积出来,就是原函数是有限形式。能积出来的函数和不能积出来的函数相比,能积出来的非常少。积不出来的非常多。换句话说,积不出来和积出来的相比,是无穷大。课本上的题目能积出来是为了学生练习。你说的是著名的积不出来的例子,还有例如e^(-x²),这是概率中及其重要的正太分布密度函数。要算它的积分值,有数值解法。就是求近似值

定积分概念的产生来源于计算平面上曲边形的面积和物理学中诸如求变力所作的功等物理量的问题.解决这些问题的基本思想是用有限代替无限;基本方法是在对定义域[a,b]进行划分后,构造一个特殊形式的和式,它的极限就是所要求的量.具体地说,设f(x)为定义在[a,b]上的函数,任意分划区间[a,b]:a=x0<x1<…<xn=b,记,||Δ||= ,任取 xi ∈Δxi,如果有一实数I,有下式成立 :,则称I为f(x)在[a,b]上的定积分,记为I=f(x)dx.当f(x)≥0时,定积分的几何意义是表示由x=a,x=b,y=0和y=f(x)所围曲边形的面积.定积分除了可求平面图形的面积外,在物理方面的应用主要有解微分方程的初值问题和“微元求和”. 积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展.并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展.

相关百科

热门百科

首页
发表服务