随着计算机技术的发展和系统科学的全面开发,结合计算机技术、控制技术、图像技术、三维技术等技术的进步,衍生了一门全新的科学技术——计算机仿真技术。下面是我为大家整理的计算机仿真技术及应用本科 毕业 论文,供大家参考。
《 化工中计算机仿真技术研究 》
摘要:目前,计算机逐渐被普及到生活生产各个方面,并逐渐被拓展至化工行业内应用,计算机仿真技术化工行业内应用范围渐渐被扩大,某种特殊程度上促进化工行业可持续发展。本文由计算机仿真技术化工行业应用角度阐述该技术优势,以及对其应用必要性,希望可以对相关工作者带来一些启示。
关键词:计算机仿真技术;化工;应用
伴随科学技术逐渐发展进步,化工行业设施装置逐渐趋于大型化、复杂化发展,自动化水平逐渐提升,操作要求更加严格。需要相关操作人员与技术人员渐渐提升自身业务能力与水平,不单确保生产设备能够稳定安全与长期运行,还需要有关工作者对于发现事故做到尽快合理处理,争取避免有所损失。在化工行业里,传统培训体系偏向于师傅带领徒弟传帮带形式,而有关工作人员对于故障处理的能力,通常要靠长时间实践积累为主,还要具备资历师傅将其所掌握的原封不动传授给徒弟。该方式比较真实,但却受到授培训时间与周期限制,培训内容缺少丰富性,某种程度上有可能增加相关工作者独立上岗时间,不符合生产技术可持续发展与生产装置更新所需。
1应用计算机仿真技术重要性
化工行业常需要针对部分具体工程设备与工艺流程予以操作,才逐渐深入至岗位操作人员,然后通过培训,培训工作通常结合实物挂图与微缩器具将知识传授出去,传授过程比较枯燥。实物挂图与教具基于实用因素与经济因素,并不选择大尺寸,致使所有培训工作人员详细掌握相关操作与原理。结合3D技术绘制能够让设备形象更趋于逼真化,可做任意旋转,使培训工作人员可实现全方位观察工艺与设备[1]。结合Flash技术制作设备动画有效代替挂图,对设备动态进行演示的时候更为生动形象,帮助相关人员针对设备工作原理予以掌握,能够很好带动培训人员热情。并且,使用设备较为方便,对使用要求可以很好满足。
2基于计算机仿真技术化工数据模型
结合计算机做仿真模拟,是把化工过程数理带入计算机当中,接下来经计算机把工艺过程进行模拟与反映。所有原理基于人为因素转变,可以得到与之匹配反应过程与反应结果变化值。通常情况下它存在下述优势。其一,友好人机交互界面。当前,诸多化工业模拟软件设计规则都以微软公司为基础,使相关工作者能快速上手并投入相关操作中,让相关人员感到轻松便捷,培养浓厚实验兴趣,并充分调动起工作积极性与能动性。其二,对工程装备的性能反应较为真实[2]。要充分分析化工设备反应过程,建立同它相互匹配模型,凭借实验把所有过程全权反映出来,对操作工人熟练快速掌握操作技能非常有利。我们在下述 文章 中列举一个化工工业常会涉及到的一个模型,希望可以供相关操作人员参考。计算机仿真系统具有许多特点,如重复、复杂性和多个,20世纪50年代初,西方国家一直在计算机仿真系统的动态和静态特性进行了研究,并取得了非常重要的影响。仿真系统对我国化工行业也进行了一系列的设计和研究,但也限于静态研究范畴。
3针对电子数字方面的研究
基于计算机仿真系统的特点,可以把它看作是非线性的本质,及其相对高阶的时候,分析 方法 和经典控制理论,计算机模拟在化工系统动态性能研究是非常困难的[3]。本文通过计算机在电子数字计算机系统微积分方程,计算,介绍了结合时域动态性能指标体系,这将最终调整方案出来。第一,系统是稳定的;第二,在数值计算时,系统的输入值等于;第三,在排除干扰因素,把化学工作在正常状态;第四,干扰因素考虑在内的情况下,各种干扰因素也作为单独的个体来处理。本文通过预测校正格式,欧拉方法是迭代微分方程数值积分计算。
4计算机仿真系统的改进方案
当前,化工仿真系统应用范围很广,但由于化工设备操作和较大的工艺流程不同,当前的仿真软件,仿真机器,更好的培训新员工无法满足,因此,未来的新的仿真技术和仿真软件的发展空间仍然是大[4]。未来,应该与自动控制理论相结合,适当参考校正环节能有效地改善系统动态性能的质量,使其有较高的稳定性和抗干扰能力。可以连接到气体的输入端仿真系统的微分和积分负反馈环节,最终会使动态性能大大提高,它相当于系列的介绍和链接。我们计算的结果可以看出,只要相应的参数选择正确获得超出预期的效果。微分和积分部分的结构可以被视为一种天然气供应预感桥,放置在相同的速度管道温度传感器已经变成一座桥两个手臂,表达时间常数很小,时间常数相对较长。仿真系统的输入结构的负面反馈链接到系统具有更好的动态性能。基于基本知识理论,修正的链接对系统控制精度的影响,通过计算结果我们可以看到,只要精心挑选的组件参数,达到理想的效果是指日可待。我们提倡这项计划的最明显的特征是它简单易操作,换句话说,只要其中一个传感器连接到导管,同时本文串并联在同一桥臂上面的。连接到放大器的输入和先进的网络,结合线性系统的自动控制原理做提前修正原则,与放大器的输入电阻和电容组成先进的网络,可以很好的改善系统的动态品质。讨论上述3种改进方案是基于先进的理论为基础,由计算结果可以看到,他们所有的3种基本上可以改善系统的动态品质。第一种和第二种的系统还可以明显改善方案来提高抗干扰能力。和改进项目的这些类是基于现有技术的前提下,没有相对比较容易实现的障碍。当然,想把他们对实际系统的引用,还需要很长一段时间。
5结语
目前,计算机仿真技术生产与培训方面应用比较多,所以,要着重强化对仿真软件与仿真机器开发设计,计算机仿真技术进一步推广,要对该项技术加速深化,让它的应用范围与性能得以提升。计算机仿真技术应用,促进高新技术更进一步发展,促进科学技术加速发展,同一时间为化工行业提供更为广阔发展空间。未来可持续发展当中,化工行业把握计算机仿真技术应用 措施 ,为企业赢得更多收益。
参考文献:
[1]余小花.基于计算机仿真技术的自动化物流系统设计[J].自动化与仪器仪表,2014(12):66-67+70.
[2]李晶,侯倩倩,田彬.浅谈计算机仿真技术在我国公铁联运物流系统中的应用[J].通讯世界,2014(22):3-4.
[3]杜静.关于计算机模拟仿真技术在物流自动化系统的相关研究[J].物流工程与管理,2015(1):97-98.
[4]赵冉,朱西方.仿真技术在高职计算机网络教学中的应用探讨[J].河南科技,2014(1):282.
《 计算机仿真技术及其应用 》
随着计算机技术的发展和系统科学的全面开发,结合计算机技术、控制技术、图像技术、三维技术等技术的进步,衍生了一门全新的科学技术——计算机仿真技术。计算机仿真技术在近些年不断的发展,而且科学家在众多的领域都联合计算机机仿真技术进行开发,并取得了良好的成果。本文通过对计算机仿真技术的概况进行阐述,探讨计算机仿真技术的应用。
一、计算机仿真技术的定义
计算机仿真技术通过对科研工程人员和系统操作管理人员进行研究,利用计算机多种软件分析、设计、模拟实际环境,进行仿真的科学实验的技术。计算机仿真技术比真实试验更加省时省力,大大节约科研成本。所以计算机仿真技术一经推出,就受到人们极大的喜欢。
二、计算机仿真技术各阶段的发展及未来发展的趋势
计算机仿真技术根据计算机、图形图像、建模、三维、系统等技术的发展可以分为以下四个阶段发展:
(1)模型试验阶段
(2)数字化仿真阶段
(3)图像化仿真阶段
(4)虚拟现实技术阶段计算机仿真技术在这四个阶段里,每个阶段的发展都各种特色及侧重点。如模型试验阶段就是注重试验建模;数字化仿真就是对计算机数字化设计;图像化仿真注重运用图像进行表达设计;虚拟现实技术采用特色设置配备三维技术,是仿真技术更加逼真。随着社会的发展,计算机 网络技术 的进步,结合人们的生活需求,计算机仿真技术越来越趋于人性化。在未来,计算机仿真技术会朝着几个趋势进行发展:分布式、协同式、沉浸式、网络环境式的计算机仿真技术。如分布交互仿真就是运用计算机网络技术把各地分散的仿真实验进行串联起来构建一个网站的仿真实验环境。协同式仿真就是建立配合生产协同作用。沉浸式仿真就是满足纵向信息分享的要求,使得数据更加直观,更便于分析。网络环境式仿真就是建立在虚拟网络的仿真模式,这种就更具有普遍性。这几个计算机仿真技术发展的方向,从纵向和横向都有发展,至于多方位的满足人们多计算机仿真技术的要求,这也加快了计算机仿真技术的推广。
三、计算机仿真的步骤及技术核心
计算机仿真技术研发的步骤可以分为三大步:一是建立数学模型二是数据模型的程序化三是仿真实验。第一步建立数学模型,即是科研这通过多方面的考究分析,建立起一个特定的具有边际的数据模型来进行对象研究。第二步数据模型的程序化,即是对数据模型进行数字化及编程化。第三步仿真实验即是对已经建好的模型,进行仿真式的模拟实验,形成一个系统的仿真模式。经过这三大步奏,便能得到想要的仿真数据。计算机仿真的关键技术有面向对象的仿真、分布交互仿真、智能仿真三个主要关键技术。这三大关键技术,纵横相互关联的,而且是逐层递进的关系。智能化仿真将是未来的发展趋势,更能满足人们的需求。
四、计算机仿真技术的应用
计算机仿真技术由于它的优越性且高性能多样性,越来越被各行各业看好,并应用与实际的生产中。如航空航天、航海、企业生产、地理勘探、交通运输、农业、 教育 、军事国防、还有各项的科研设计等等,都应用了计算机仿真技术。我们可以根据计算机仿真技术使用的功能及范围,把计算机仿真技术的应用分为:系统的研发及理论研究应用、产品研发应用、人才培育应用。
(一)系统的研发及理论研究应用
在开发研究新的项目是,都需要到对各种数据进行分析,而计算机仿真技术就能应用在这些项目的研发中,通过仿真建模,便能对各个系统的研究,还有理论分析,收集各种数据。如:对航空航天技术的研究应用,主要是对火箭、航天飞船等模拟实验,收集需要的数据等。军事军方领域应用,多先进的军事设备、战地环境进行模式实验。()产品研发应用计算机仿真技术应用于企业产品生产或者各种产业研发生产中,比如工业制造行业的仿真,根据企业生产的产品、建立产品模型、测量产品功能、外观是否能满足需求。医学领域的仿真,对医疗设备或者仿真医疗试验。这些技能节约研发成本,节约人力物力。而且还能提高科技人员的整体技能水平。
(三)人才培育及教育应用
计算机仿真在训练和教育领域中的应用可以是多方面的,比如,在学校的实践教学中,可以仿真虚拟的企业见习,丰富了实践教学的内容,提高的效率、节约能源。在如航天员训练等仿真实验,一方面保证安全、而且还减低了成本,达到预期的效果。计算机仿真技术还在进一步的开发中,在未来,计算机仿真技术在更多的领域得到应用。
五、 总结
随着计算机技术、网络技术、系统知识科学、控制技术的再发展,计算机仿真新技术会发展的突飞猛进。而且计算机仿真技术隐藏着巨大的效益,不管对于哪行哪业,未来计算机仿真技术必将达到产业化,这就使得计算机仿真技术在各个领域越来越广泛的应用,为人类的发展,又翻开了一个全新的篇章。
《 汽车理论教学中计算机仿真技术的应用 》
1课程 教学方法 探讨
汽车理论是一门涉及内容较多、理论性很强、综合多个学科的专业课程,不同于其他汽车专业课程那么形象直观,学生普遍反映难以掌握。根据课程教学内容及其特点,选择适用的教学方法是提高教学效果的关键。对于基本概念、工作原理、受力分析图、曲线图、数据表以及一些结论性的知识点,可以采用多媒体中的文字、图表和动画等方法展示,既可达到直观明了的效果,又可提高教学效率。涉及公式推导和受力分析内容的,宜采用传统的黑板板书教学方式。因为传统的黑板推演过程更能容易引导学生进行 逻辑思维 和 抽象思维 ,对得到的结论印象也会更加深刻。对于比较复杂、抽象的教学内容,可以应用计算机仿真平台通过动画视频,以及现场调取模型进行分析等方式辅助教学,将其形象化以提高学生的感性认识,避免了让教师空洞地陈述、学生想象地去理解的局面,从而提高教学效果。对于汽车性能实验,特别是汽车的操纵稳定性和平顺性实验,由于实验条件的限制多数无法开展。而通过应用计算机仿真技术可以设计与实施一些虚拟仿真实验,从而弥补了实验教学内容的不足。汽车理论课程除理论教学和实验教学内容之外,一般还附带课后作业、课外大作业、课堂演讲以及后续汽车理论课程设计等环节,由于课后题目一致、项目任务单一、可用的计算工具也比较局限(常用 Excel 或Matlab),往往造成大量抄袭,不利于学生能力的培养与公正的评价。可以考虑以项目为驱动将多种计算机仿真技术融入实践教学环节,以加深学生对理论知识的理解,并激发学习和研究的兴趣。在教学过程中,需要根据具体的教学内容选择恰当的教学手段,结合传统教学方法与现代教学方法,使其发挥各自优势才能获得更好的教学效果。
2计算机仿真技术应用方法探讨
在汽车理论教学中,合理应用计算机仿真技术将对课程的教学和学生的学习效果、对后续课程设计与毕业设计,以及对学生工程软件应用能力的培养带来很大的帮助。下面将从如下几点探讨其应用方法:
建立汽车性能仿真分析辅助教学模型库
首先应根据汽车理论教材,结合学生的具体理解情况,合理选择应用点,对某些重点、难点以及不易讲述的地方,考虑能否应用计算机仿真技术进行辅助教学。应用计算机仿真软件建立汽车性能仿真分析实例库与模型库,在课程教学中可以随时调用视频录像与仿真模型,将汽车的一些结构运动、参数调整、性能分析、曲线变化等复杂问题在课堂中进行动态仿真演示。这样老师就可以方便地进行讲解,并给学生提供了直观、形象的过程与结论,学生理解起来会更容易。同时在教学过程中,向学生展示计算机仿真技术在汽车领域的应用,还可激发学生利用相关软件对理论知识进行学习和应用,为后续课外实践、课程设计、毕业设计等环节打下基础。由于课程所涉及的应用点可能较多,所以模型库建设之初,工作量较大,不过这对学校精品课程建设和直接改善课程教学效果来说是十分必要且一劳永逸的。
各种仿真软件在专业教学中的优势
根据不同计算机仿真软件的专业优势,合理应用于汽车理论教学中,使复杂问题的分析变得直观、清晰,并能激发学生的学习兴趣。Matlab软件是进行汽车性能计算的常用工具,具有强大的数值计算和图形功能,可以方便地完成各种汽车性能的计算;同时,利用Matlab的数值计算函数和Simulink模块,可以对汽车理论中复杂的过程进行仿真分析和求解。这些计算和分析的结果都可以通过Matlab提供的可视化手段呈现给学生,有助于清晰地阐释抽象的概念。[4]车辆性能仿真软件CRUISE是一款专门为汽车传动系统匹配而设计的整车性能仿真软件。模块化的建模方式将整车分为发动机、离合器、变速箱、主减速器等汽车模块,同时设有循环行驶工况、爬坡性能分析、稳态行驶性能分析等计算任务,可方便地进行传统汽车、新能源汽车整车动力性、经济性计算与动力装置参数的匹配分析。与Matlab软件不同的是,该软件建模方便,不同的模块参数和计算任务可以详细、方便地进行设置,更加接近汽车实际模型,计算结果也更加精确。该软件在汽车动力传动系统仿真方面具有其他仿真软件无法比拟的专业性和灵活性,在国内外汽车行业应用十分广泛。ADAMS是一款在汽车行业应用较为广泛的机械系统多体动力学仿真软件,其中ADAMS/CAR模块为一款整车设计软件包,它能够快速建造高精度的整车虚拟样机模型,通过高速动画,直观地再现各种虚拟实验工况下整车的动力学响应,大大减少了对物理样机的依赖。在汽车理论教学中,可通过ADAMS/CAR在虚拟环境中实现悬架、转向系统的运动分析,同时还可进行汽车操纵稳定性和平顺性等相关的仿真实验,解决了由于客观条件限制不能进行的实验教学环节。另外,在汽车仿真技术研究领域还有ADVISOR,CarSim/TruckSim等工程软件,凭借自身的优势和特点,应用也较为广泛。计算机仿真技术在项目驱动实践教学模式中的作用目前多数汽车理论教学进行的课后作业、课外大作业和汽车理论课程设计,以Matlab软件应用较为广泛。通过Matlab软件进行编程计算可对汽车的多项性能进行分析,但是应用Matlab使学生过多偏重于公式计算与编程,具有一定的局限性。而且,单一的课题任务往往伴随大量的抄袭,不利于学生独立解决问题与公正的评价。以多类课题项目为驱动将不同计算机仿真软件应用于汽车理论各个实践教学环节,可解决上述问题。[5]实施过程中,需要构建多个贴合汽车实际使用性能的课题项目,并以同类型仿真软件的应用进行分组学习和指导,使学生在项目学习及完成过程中加深对理论知识的理解及实际应用,激发学生实际分析问题、解决问题的能力。
3计算机仿真技术应用实例
软件应用实例
汽车的动力性是汽车各种性能中最基本、最重要的性能。其中,在绘制一下曲线图,如驱动力-行驶阻力平衡图时,以往的教学方法基本是课堂讲授曲线的作图方法,给一个课本已经绘制好的某车型的曲线,然后由曲线分析汽车各档的驱动力的变化。可根据发动机转矩拟合公式、驱动力计算公式、行驶阻力计算公式及车速计算公式,
软件应用实例
利用CRUISE软件模块库,可快速搭建传统汽车及新能源汽车动力传动系统仿真模型,通过设置计算任务,对整车动力性、经济性等进行仿真计算。同时,软件自身也提供了多种汽车模型模板,便于初学者进行学习。图3为软件自身提供的传统后轮驱动汽车(FR)动力传动系统仿真模型,通过设置计算任务,可得到丰富的有关汽车动力性、经济性的文本和图表结果分析文件。为设置UDC循环工况后,计算得到的发动机工作点分布示意图,可对发动机与整车动力装置参数进行匹配分析提供依据。
软件应用实例
在汽车理论教学中,可通过ADAMS/CAR在虚拟环境中实现汽车操纵稳定性和平顺性等相关的仿真实验,解决实际实验条件限制带来的问题。在ADAMS/CAR中用户可以通过模板自行创建模型,也可调用共享数据库中的系统或整车模型进行仿真分析。以汽车操纵稳定性中的单移线实验为例,对某车整车操纵稳定性进行了虚拟仿真。可根据标准设置实验条件,通过仿真计算,将实验结果以动画、曲线图等方式展现。ADAMS/CAR所提供的仿真实验平台,可使学生方便地进行各种有关操纵稳定性、制动性、平顺性虚拟实验,弥补了实验教学内容的不足。
4结束语
将计算机仿真技术应用到汽车理论教学,可以使教学质量得到明显提高。形象、生动的仿真模型分析与演示,既便于老师的讲述,又使学生对理论知识有了深刻的理解,克服了客观实际条件对理论教学的制约,同时也能培养学生对相关软件学习的兴趣与应用能力。当然充分利用多种计算机仿真工程软件的优势来辅助教学,还需要大量的准备工作,但考虑到对教学效果的提高改善与学生理论知识的学习,这将是十分必要。
有关计算机仿真技术及应用本科毕业论文推荐:
1. 计算机仿真技术论文范文
2. 浅谈计算机仿真技术论文范文
3. 计算机仿真技术的论文
4. 大学计算机仿真技术论文
5. 大一计算机仿真技术专业期末论文
6. 大一计算机仿真技术论文
哥尼斯堡七桥问题最后是被欧拉解决的
29岁的欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。并且发表了论文《关于位置几何问题的解法》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。
在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。
若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由B或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。
即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是5为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是3、3,都是奇数,即以之为起点都是无解的。
扩展资料:
莱昂哈德·欧拉(LeonhardEuler,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。
欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。 此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书CharlesKleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”
法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国教育部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。
参考资料来源:百度百科-七桥问题
参考资料来源:百度百科-莱昂哈德·欧拉
如果要说起中国数学从小学到大学知识点的最大贡献者,相比非欧拉莫属。
欧拉是天生奇才,对,他不仅仅是在数学方面的奇才,是所有领域都能精通。他的人生就连小说都不敢这么写,实在是太过于逆天。
9岁,他就把牛顿的《自然哲学的数学原理》看完了,13岁就考入巴塞尔大学一开始是主修哲学和法律,这在当时轰动了数学界,欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。
在读大学的欧拉觉得主修哲学和法律太容易了、太轻松了。一口气又修了数学、神学、希伯来语以及希腊语。
课余还研究音乐、物理、建筑啥的。这样他依然觉得自己过得非常清闲,在大学仅仅用了两年时间,他总共学习了6个专业,然后考取硕士,读了1年硕士就考取了博士,博士毕业论文写的是物理论文......
19岁的时候就想申请巴塞尔大学物理系教授,对,没有错,就是19岁,结果被拒绝了,你又不是物理专业出来的,物理学的好就想当教授吗?
然而巴塞尔大学不要,俄罗斯圣彼得堡皇家科学院成功捡漏,让欧拉去当物理系教授,欧拉去了俄罗斯,对俄罗斯学术界影响很大,他为苏联的莫斯学派奠定了基础,而莫斯科学派是苏联崛起的核心支撑力量。
欧拉20岁的时候就参加巴黎科学院奖金的奖赏大赛,就拿了一个第二,当时第一名的是科学界的大佬“造船工程之父”皮埃尔·布格。但是这样欧拉依然不服气,接下来12年,奖赏大赛的冠军都被欧拉拿了。
我感觉每次参加比赛的时候,裁判肯定说:“欧拉来了,冠军就不用比了,接下来各位一起争夺亚军吧。欧拉,要不然你就直接拿着奖杯回家吧,省的耽误功夫。”
27岁的时候,他发明了一系列对人类影响深远的符号——圆周率的符号π、函数符号f(x)、以及三角学符号sin、cos、tg,还有符号Σ等等都是他发明的。
在41岁的时候,他出版了《无穷分析引论》,这部书被称为分析学的化身,《无穷分析引论(上)》在数学史上地位显赫,是对数学发展影响最大的七部名著之一。
他将这些符号进行统一整理,使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,又把三角函数与指数函联结起来。
欧拉第一次把函数放到了中心的地位,并且是建立在函数的微分的基础之上。他在这本书里给出的函数定义是:“变量的函数是一个解析表达式,它是由这个变量和一些常量以任何方式组成的”。
可以说,我们高中用到的一大半数学符号,还有我们学习到的指数函数、三角函数等,都和欧拉有关。
然而,这只是人家做的一点点微博贡献。祸害了小学生、中学生。大学生我就能放过吗?从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式,欧拉可以说在数学每个领域都留下了足迹,给无数大学生都贡献了超级多的知识点。
欧拉实际上支配了18世纪的数学;对于当时新数学分支微积分,他推导出了很多结果。很多数学的分枝,也是由欧拉所创或因而有了极大的进展,就算是我们现在的信息时代,依然受到他的惠泽,在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。
当然欧拉不仅祸害数学系的大学生,32岁的时候,很久没有跨界的他,心里痒痒的,于是出版了一部音乐理论著作,顺便创建了刚体力学、流体力学,当然了,人间还是弹性系统稳定性理论开创人。
然而,或许是因为太过于BUG了,欧拉31岁右眼失明,59岁双眼全部失明。
作为科学史上做多产的人,科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。
这还是在他双目失明,家里遭遇大火之后遗留下的成果,1771年,64岁的欧拉因为彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然人被救出来了,但是所有研究成果都被付之一炬。
然而过目不忘的欧拉表示,没有关系,全部记在脑子里了,欧拉的脑子有多厉害呢?他的记忆力甚至达到了过目不忘的程度,他可以背诵出年轻时候看过的维吉尔的史诗《埃涅阿斯纪》,这本书有多厚呢,人民出版社翻译的中文版共有300多页,并能指出他所背诵的那个版本的每一页的第一行和最后一行是什么。。
虽然双目失明,但是心算能力惊人。欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位。眼瞎的欧拉只依靠心算就找出来错误。
所以在大火之后,欧拉有相当一部分的都在重新整理被大火烧毁的成果,他来口述,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录,依靠书记员的帮助下,欧拉在多个领域的研究其实变得更加高产了。在1775年,他平均每周就完成一篇数学论文。一方面要重新整理烧毁的成果,一方面又在出新成果,这简直不是人。。。
然而即使欧拉奋战了13年,依然才整理出来一小部分被烧毁的成果。数学史上公认的4名最伟大的数学家分别是:阿基米德、牛顿、欧拉和高斯。
欧拉是最为全才的一位,被誉为是超越达芬奇的全才,无论是人为还是自然科学,欧拉都取得了许多伟大的成就。
特别是他提出的欧拉公式,这个公式十分简单,却被誉为宇宙第一公式,这个公式影响了整个数学的发展,三角函数、傅里叶级数、泰勒级数、概率论、群论、几何都受到这个公式的影响,就连物理也收到了这个公式的影响,机械波论、电磁学、波动光学以及引发了电子学革命的量子力学的理论基础也蕴含其中。
高斯曾经说:“一个人第一次看到这个公式而不感到它的魅力,他不可能成为数学家。”
国内外研究现状,即文献综述,要以查阅文献为前提,所查阅的文献应与研究问题相关,但又不能过于局限。与问题无关则流散无穷;过于局限又违背了学科交叉、渗透原则,使视野狭隘,思维窒息。所谓综述的“综”即综合,综合某一学科领域在一定时期内的研究概况;“述”更多的并不是叙述,而是评述与述评,即要有作者自己的独特见解。要注重分析研究,善于发现问题,突出选题在当前研究中的位置、优势及突破点;要摒弃偏见,不引用与导师及本人观点相悖的观点是一个明显的错误。综述的对象,除观点外,还可以是材料与方法等。此外,文献综述所引用的主要参考文献应予著录,一方面可以反映作者立论的真实依据,另一方面也是对原著者创造性劳动的尊重。 毕业论文开题报告——毕业设计研究方案① 研究的目标。只有目标明确、重点突出,才能保证具体的研究方向,才能排除研究过程中各种因素的干扰。② 研究的内容。要根据研究目标来确定具体的研究内容,要求全面、详实、周密,研究内容笼统、模糊,甚至把研究目的、意义当作内容,往往使研究进程陷于被动。③ 研究的方法。选题确立后,最重要的莫过于方法。假如对牛弹琴,不看对象地应用方法,错误便在所难免,相反,即便是已研究过的课题,只要采取一个新的视角,采用一种新的方法,也常能得出创新的结论。④ 研究的过程。整个研究在时间及顺序上的安排,要分阶段进行,对每一阶段的起止时间、相应的研究内容及成果均要有明确的规定,阶段之间不能间断,以保证研究进程的连续性。⑤ 拟解决的关键问题。对可能遇到的最主要的、最根本的关键性困难与问题要有准确、科学的估计和判断,并采取可行的解决方法和措施。⑥ 创新点。要突出重点,突出所选课题与同类其他研究的不同之处。
毕业设计论文开题报告写法如下:
1、选题背景:简要介绍论文所研究问题的基本概念和背景,课题选题的初衷是什么,为什么会有这样的选题?
2、课题研究的意义:简单阐述课题研究在该领域内有什么促进作用,通过研究能够取得哪些成果,可以与“研究与解决的问题”部分有重复。
3、国内外研究现状:课题研究当前处于一个什么样的研究状态,国内外的相关研究成果都有哪些,尤其是最近几年的研究文献一定要多列出,通过当前现状的研究可以引出自己下一步要研究的内容。
4、拟研究与解决的问题:在当前研究现状的基础上,对当前的研究成果进行分析,当前的研究成果存在哪些不足,还有哪些问题没有解决,进而描述自己的课题想要解决的问题。
5、拟采用研究的方法:对于课题研究采用的方法有哪些,尤其是对课题研究的核心部分拟采用什么样的方法,是实验分析法、调查问卷法、对照法还是其他方法。
6、进度安排:对论文的写作进度进行安排,按时间节点完成相关内容。
7、参考文献:无论是开题报告,还是文献综述,无论是论文正文,还是毕业答辩,参考文献的引用是必不可少、不可或缺的。
毕业论文:
毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。
毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。
写毕业论文主要是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。毕业论文应反映作者能够准确地掌握所学的专业基础知识,基本学会综合运用所学知识进行科学研究的方法,对所研究的题目有一定的心得体会,论文题目的范围不宜过宽,一般选择本学科某一重要问题的一个侧面。
毕业设计(论文)开题报告
题目。
1. 本课题的来源、选题依据。
2. 本课题的设计(研究)意义(相关技术的现状和发展趋势)。
3. 本课题的基本内容、重点和难点,拟采用的实现手段(途径)。
4. 文献综述(列出主要参考文献的作者、名称、出版社、出版时间以及与本课题相关的主要参考要点)。
指导教师意见。
指导教师。
系意见。
开题报告填写要求:
1、学生接受毕业设计(论文)任务书后,要围绕课题方向查阅文献、收集资料,进行调研,充分了解课题相关技术的现状和发展趋势,在此基础上确定自己的课题研究范围。
2、开题报告应着重说明课题来源、选题依据,本课题的设计(研究)意义,课题的主要内容、重点和难点,拟采用的实现手段(途径)。
3、开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
4、此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见审查后生效。开题报告通过后,原则上一般不再随意改题。如确有特殊原因需改题者,须由学生写出书面报告,经指导教师签署意见,教研室审核批准方可。改题后,需重新撰写开题报告。
5、开题报告内容必须按现代制造工程系统一设计的电子文档标准格式打印,完成后应及时交给指导教师签署意见。
6、学生查阅资料的参考文献应在3篇及以上,开题报告的字数要在1000字以上。
数学在生活中很多地方都有如:各色他告诉他绊脚石关于五十一高速钢第一位桃仁台红骨髓用途归保佑
数学家欧拉的故事:
18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科。值得提出的是,偏微分方程的纯数学研究的第一篇论文是欧拉写的《方程的积分法研究》 。欧拉还研究了函数用三角级数表示的方法和解微分方程的级数法等等。
欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达式。1766年他出版了《关于曲面上曲线的研究》,建立了曲面理论。这篇著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的一个里程碑。欧拉在分析学上的贡献不胜枚举。
如他引入了Γ函数和B函数,证明了椭圆积分的加法定理,最早引入了二重积分等等。数论作为数学中一个独立分支的基础是由欧拉的一系列成果所奠定的。他还解决了著名的组合问题:柯尼斯堡七桥问题。在数学的许多分支中都常常见到以他的名字命名的重要常数、公式和定理。
欧拉是18世纪数学界的中心人物。他是继牛顿(Newton)之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。
他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。
欧拉将数学分析方法用于力学,在力学各个领域中都有突出贡献;他是刚体动力学和流体力学的奠基者,弹性系统销定性理论的开创人。
在1736年出版的两卷集《力学或运动科学的分析解说》中,他考虑了自由质点和受约束质点的运动微分方程及其解。欧拉在书中把力学解释为“运动的科学”,不包括“平衡的科学”即静力学。
参考资料来源:百度百科-莱昂哈德·欧拉
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×= (千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米), =(千米),×2=261(千米)和45×=(千米),=(千米), ×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
分布积分法模式:
一般地,从要求的积分式中,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。分部积分法最重要之处就在于准确地选取,因为一旦确定,则公式中右边第二中的也随之确定,但为了使式子得到精简,如何选取则要依的复杂程度决定。
也就是说,选取的一定要使比之前的形式更简单或更有利于求得积分。依照经验,可以得到下面四种典型的模式。记忆模式口诀:反(函数)对(数函数)幂(函数)指(数函数)三(角函数)。
以上内容参考:百度百科-分部积分法
你要写毕业论文???
建议你去搜一下,用柯西、莱布尼茨这几个关键字了解微积分的产生,给你微积分的百度百科
∫ y^3. e^(-y^2/2) dy
利用 de^(-y^2/2) = (-y^2/2) dy
=-∫ y^2. de^(-y^2/2)
利用分部积分 ∫ udv =uv-∫vdu
=- y^(-y^2/2) +2∫ ye^(-y^2/2) dy
利用 de^(-y^2/2) = (-y^2/2) dy
=- y^(-y^2/2) -2∫ de^(-y^2/2)
=- y^(-y^2/2) -2e^(-y^2/2) +C
高等数学在我们生活中的具体应用论文
从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。
摘要:
进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。
关键词 :
高等数学;经济社会;应用;
引言:
数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。
一、高等数学在学术中的应用
高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。
在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。
二、高等数学在经济社会的应用
随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。
三、高等数学在军事中的应用
纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。
四、高等数学中概率和数理统计的应用
高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。
五、高等数学在学生思维构建方面的应用
高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。
六、结语
当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。
参考文献
[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)
[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)
[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)
拓展:
专业论文格式模板
一、毕业论文(设计)资料按以下顺序排列:
(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。
(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。
(三)正文。
(四)注释。
(五)附录。
(六)参考文献。
(七)致谢。
二、毕业论文的打印与装订
除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。
(一)页面设置
毕业论文(设计)要求纵向打印,页边距的要求为:
上(T):
下(B):
左(L):2cm
右(R):2cm
装订线(T):
装订线位置(T):左
其余采取系统默认设置。
(二)排式与用字
文字图形一律从左至右横写横排。
文字一律通栏编辑。
论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。
(三)段落设置
采用多倍行距,行距设置值为。
其余采取系统默认设置。
(四)页眉、页脚设置
论文题目(不包括副题目)居中,采用五号宋体字。
页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。
三、毕业论文(设计)撰写的内容与要求
(一)封面
1、封面。
纸质封面由学校统一印制。不编排页码。
2、封一(中文摘要)
中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。
关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。
3、封二(外文摘要)
外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。
关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。
(二)正文
正文一般使用小四号宋体字,重点文句加粗。
1、标题层次。
毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。
各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。
标题序数采用1.、2.……、……、…………的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。
2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。
3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。
4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。
5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。
6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。
7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。
公式下有说明时,应在顶格处标明“注: ”。
较长公式的转行应在加、减、乘、除等符号处。
8、表格和插图。
(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。
(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。
文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。
(三)注释
注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。
以下为引用各类文献注释格式:
专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码
期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码
论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码
学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.
专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期
光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)
互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)
文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)
(四)附录
“附录”两字在第一行居中位置,使用小二号黑体字,加粗。
附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。
(五)参考文献
参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。
“参考文献”四字居中放置,使用小二号黑体字,加粗。
内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
就是你准备怎么样来完成毕业论文。 写出你打算采用的方法就可以了。 如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。希望对你有帮助!!!
就是你准备怎么样来完成毕业论文。
写出你打算采用的方法就可以了。如:方面的研究"课题拟采用的研究方法和手段"是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。
论文拟采用的研究方法:
1、实验; 2、试验; 3、理论解析、计算; 4、工业性实验及生产实践等等。
毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。
但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。
(一)、毕业论文是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。
(二)、选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。
第一、研究课题的基础工作——搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。
首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。
调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。
实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。
第二、研究课题的重点工作——研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。
第三、研究课题的核心工作――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。
提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。
第四、研究课题的关键工作――执笔撰写。下笔时要对以下两个方面加以注意:拟定提纲和基本格式。
第五、研究课题的保障工作――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。