《豆科植物与根瘤菌共生》空气中存在着大量的分子态氮,它们约占空气成分的百分之八十。估计在整个大气层中,约有四千多吨的分子态氮。然而,绝大多数的植物只能从土壤中吸收结合态氮,用来合成自身的含氮化合物,如蛋白质等。土壤中的含氮化合物,不是土壤本身固有的,而是在生物生命活动过程中逐渐积累起来的,其中很大一部分来自微生物的生物固氮。据估计,地球表面上每年生物固氮的总量约为一百吨,其中豆科植物体内根瘤菌的固氮量约为五十五屯,占生物固氮总量的百分之五十五左右。在植物根系上生长的特殊的瘤,因寄生组织中建成共生的固氮细菌而形成。用来合成自身的含氮化合物。根瘤菌在皮层细胞中迅速分裂繁殖,同时皮层细胞因根瘤侵入的刺激,也迅速分裂和生长,而使根的局部体积膨大,形成瘤状突起,就是根瘤。豆科植物能肥田,是由于根瘤菌的固氮作用。豆科植物与根瘤菌的共生因得到氮素而获高产;同时由于根瘤的脱落,具有根瘤的根系或残株遗留在土壤中,能增加土壤的肥力。根瘤菌从根瘤细胞中摄取它们生活所需要的水分和养料,它能固定游离氮、合成含氮化合物,为豆科植物所利用。
小学生科技论文关键注意三点:科学性、创造性、实践性。其中科学性是重点,他要求选题科学、研究方法正确论据确凿、符合逻辑。而且文字简洁。创造性就是要有自己的新意见,新发现,这点可能较难。而实践性就是动手能力,能不能看出文章有别人带刀就从此看出。另外,小学生科技论文最常见的形式有科学观察小论文、科学实验小论文、科学考察小论文和科学说明小论文。(一)科学观察小论文 科学观察小论文,是指青少年对某事物或自然现象通过周密细致的观察,并对取得的材料和数据进行认真的分析、综合研究后得出结论,作出科学的解释和描述。 湖南廖郝同学的爸爸经常咳嗽,他通过长期、反复的观察,发现了风向与爸爸咳嗽有着十分密切的关系,并查出了“罪魁祸首”--湖南橡胶厂的大烟囱里飘来很多烟气,里面含有二氧化硫,爸爸一闻到它,咽喉部就产生过敏反应,反射性地引起咳嗽。他的《爸爸的咳嗽》这篇小论文主要是利用观察这一研究方式得出结论,属于科学观察小论文,获得了第二届全国青少年科学讨论会三等奖。 需要注意的是,科学观察小论文中研究的对象是客观存在的自然事物或现象,是在自然发光的条件下不加以人为控制发生的,所以文中所描述的内容应是作者所观察的对象、过程和它产生的条件、各种现象,不能附加人为的任何条件或个人偏见。另外,观察是一项长期的、系统的、反复进行的活动,需要作者耐心、细致、锲而不舍的精神。 (二)科学实验小论文 科学实验小论文,有时也称“实验报告”,是青少年对研究的对象创设特定的条件,经过反复实验,对获取的材料和数据进行分析、综合得出结论而写出的文章。它着眼于对实验过程的客观叙述以及实验现象的科学解释。 爬山虎能爬墙,这是许多同学所知道的。但是,爬山虎为什么能爬墙呢?武汉的熊斌同学通过观察发现这与爬山虎的“触角”有关,接着他测算了平均每一米长的爬山虎茎干上有25个吸附在墙上的“触角”,并作了“触角的拉力测定和吸附作用”实验,实验目的明确,实验步骤详尽,数据准确,说明力强,得出的结论真实可信,不失为一篇优秀的科学实验小论文。 (三)科学考察小论文 你想研究某一与人们生活息息相关的水域污染程度、某地的空气污染源,弄清某奇石奇山的演化过程、某范围动植物资源及分布情况等,你就得实地考察。通过调查、访问、实地勘探等考察方式为主要研究手段写出的小论文称为科学考察小论文。有时也称为“科学考察报告”、“科学调查报告”。 荣获第五届全国青少年科学讨论会一等奖的《愿胜天水库的水常绿》一文中,小作者们对水库的地理生态环境、库容等作了实地考察,并力所能及地进行了实测,找出水库存在的隐患,提出了较为合理的建议。文中除写明了考察时间、对象、内容及综合分析得出的结论外,还绘出了“胜天水库集雨图”、“强烈侵蚀中山示意图”,加上一些实际数据,使读者对考察对象有比较概括清晰的认识。 写科学考察小论文时,有时还应将有关动植物、岩石、土壤等标本或照片附在文后,以增强说服力。 (四)科学说明小论文 科学说明小论文是指作者通过利用翔实可靠的资料对某一自然现象或自然事物进行解释和说明的一类小论文。一般来说,它并不直接采用观察、实验、考察等研究手段,而主要是从书刊资料、师长等地方获取丰富的第二手材料,并经过自己的综合分析、逻辑推理,用自己所理解的语言阐明某一观点。 《为什么说贵阳是祖国的第二春城》是获第二届全国青少年科学讨论会三等奖的小论文,该文作者的研究方法有其特别之处,一是利用广播、电视,坚持记录整理贵阳与昆明两地的天气和温度;二是利用现成的科研成果《中国气候图集》找出有代表性的重庆、北京的气温情况来同贵阳、昆明相比较;三是从书上查证昆明与贵阳1、4、7月和10月的平均气温,进而综合分析得出结论。 这类文章虽然没有前三类的亲自实践得到论据,但它毕竟是通过作者精心地收集整理资料,综合分析提出了新的观点,新的见解,所以也承认它是科学小论文。 特别提醒的是,写科学说明小论文是,千万不要提出一个问题后就赶忙查资料,再不加分析地原本照抄、作出解释,这样没有新意,没有新的见解的文章只能算是一般性科普文章,不能称为科学小论文,更不能培养自己研究问题的能力。满意请采纳
蚂蚁为什么不会迷路? 蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢? 带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。 我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。 过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。 通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。 知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方。
我学习数学已经有六年多了,这条学习的道路是坎坷的,是困难重重的。 记得在小学三、四年级时,我的数学成绩不证明好,总是在八十多分上下浮动,或许是因为我心里比较害怕数学对这一学科有抵触情绪。到了六年级时面对着严峻的毕业考试,我才不得不硬着头皮去认真学习数学。直到那时,我才发现,原来数学并不像我想象中的那么可怕。我也才发现,数学其实是所有科目中最有趣的一科。进入中学以后,我才真正发现了数学的神奇。它可以给我们带来无穷的乐趣。我在小学的数学基础又弄懂了许许多多的知识:代数式、有理数、整式、一元一次方程、二元一次方程组……在学习的过程中,难免会遇到一些挫折,由于自己的一点儿不慎而造成的遗憾,更是数不胜数。那些调皮的小精灵们利用你的一点儿弱点或缺陷,让你一败涂地。 在数学上,我最大的缺点是粗心。正是由于粗心,使我多次单元测试的成绩不尽人意;正是由于粗心,使我在期中考试中与年段第一名失之交臂,正是由于粗心,使我在各科的竞赛中成绩不佳……或许还有许多许多由粗心造成的遗憾,已消失在我的脑海中了。令我最苦恼的,也正是无法彻底地改掉粗心这个缺点。在这次数学期末考试中,我又重犯了粗心的毛病,马马虎虎,致使我的数学成绩比年段最好成绩低了6分之多。虽然,我知道只有改掉这个缺点,我的数学成绩才能有明显的提高,但是,至今我还无法彻底改掉这个缺点。 我相信,以我真正的实力,学好数学不是不可能的。但是,不知道为什么,课内学习数学、做作业,我还能对付。可我一拿起课外的数学书,总觉挺难的,看不懂,尤其是几何图形方面,难以弄明。
三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。
《豆科植物与根瘤菌共生》空气中存在着大量的分子态氮,它们约占空气成分的百分之八十。估计在整个大气层中,约有四千多吨的分子态氮。然而,绝大多数的植物只能从土壤中吸收结合态氮,用来合成自身的含氮化合物,如蛋白质等。土壤中的含氮化合物,不是土壤本身固有的,而是在生物生命活动过程中逐渐积累起来的,其中很大一部分来自微生物的生物固氮。据估计,地球表面上每年生物固氮的总量约为一百吨,其中豆科植物体内根瘤菌的固氮量约为五十五屯,占生物固氮总量的百分之五十五左右。在植物根系上生长的特殊的瘤,因寄生组织中建成共生的固氮细菌而形成。用来合成自身的含氮化合物。根瘤菌在皮层细胞中迅速分裂繁殖,同时皮层细胞因根瘤侵入的刺激,也迅速分裂和生长,而使根的局部体积膨大,形成瘤状突起,就是根瘤。豆科植物能肥田,是由于根瘤菌的固氮作用。豆科植物与根瘤菌的共生因得到氮素而获高产;同时由于根瘤的脱落,具有根瘤的根系或残株遗留在土壤中,能增加土壤的肥力。根瘤菌从根瘤细胞中摄取它们生活所需要的水分和养料,它能固定游离氮、合成含氮化合物,为豆科植物所利用。
范文1:树干为什么是圆的在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。范文2:皮鞋为什么越擦越亮每到星期天,我总要完成妈妈交给我的擦鞋任务。告诉你,这可是我一星期零花钱的来源哦!拿到沾满灰尘的皮鞋后,我先把鞋面的灰尘擦掉,然后涂上鞋油,仔仔细细地擦一擦,皮鞋就会变得又亮又好看了。可这是为什么呢? 我找了同样牌子同样款式的新旧两双皮鞋进行对比观察。我先用手触摸两双皮鞋的鞋面,发现新皮鞋的表面比旧皮鞋的表面光滑得多。旧皮鞋涂上鞋油,仔细擦过后,虽然亮了许多,但仍无法与新皮鞋相比。皮鞋的亮度是否与鞋面的光滑程度有关呢? 我取来一双没擦过的旧皮鞋,在放大镜下鞋面显得凹凸不平的。然后,我再在皮鞋上圈出两块表面都比较粗造的A区和B区,A区涂上鞋油并仔细擦拭,B区不涂鞋油作空白对照。我发现A区擦拭后,表面明显变光滑了许多,而且放在阳光下也比B区有光泽。为什么两者会产生这样的差别呢? 我想到在物理课上老师曾经讲过:影剧院墙壁的表面是凹凸不平的,这样可以使声音大部分被吸收掉,让观众不受回声的干扰。同样道理,光线照到任何物体的表面都会产生反射,假如这个平面是高低不平的,光线就会向四面八方散射掉;假如这个平面是光滑的,那么我们就可以在一定的方向上看到反射光。 皮鞋的表面原来就不是绝对的光滑,如果是旧皮鞋,它的表面当然更加的不平,这样它就不能使光线在一定的方向上产生反射,所以看上去没有什么光泽。而鞋油中有一些小颗粒,擦鞋的时候这些小颗粒正好可以填入皮鞋表面的凹坑中。如果再用布擦一擦,让鞋油涂得更均匀些,就会使皮鞋的表面变得光滑、平整,反射光线的能力也加强了。 通过实验,我终于知道了皮鞋越擦越亮的秘密啦!范文3:醋对花卉有什么影响醋是生活中常用的调味品,花卉则能净化生态环境,并美化我们的生活。 你是否想到过,醋和花卉有什么关系呢?我们怀着好奇心,开展了这个课题的探究。据富有种花经验的人告诉我们,对盆栽花卉施些醋溶液,可改善盆花的生长,增加花朵,而且花艳叶茂。这一点我们在实验中很快就证实了。 浓度不同的醋溶液,对花卉有不同的影响吗?这是我们第二阶段的实验。我们选取长势相同的满天星、报春花、月亮花各四盆,分为四组,每组(三盆)各有三种花卉,分别编号、贴上标签。同时,我们取食用白醋配制成1%(pH值为2~3)、0.01%(pH值≈4)、0.0001%(pH值≈6)三种浓度不同的溶液,每天分别给三组盆花固定喷洒一种醋液,第四组盆花洒不含醋的清水。每五天观察记录花卉的生长情况。 这项实验的结果是:喷洒低浓度醋液(pH值≈6)对这几种花卉没有明显影响;喷洒中等浓度醋液(pH值≈4)的花卉明显长得比其他几组好,花苞多,开花期提前,而且花色较浓艳,花期也延长了;喷洒pH值2-3的高浓度醋液后,反而使花朵过早凋萎。 通过这次实验,我们可以告诉你:种花时适当喷洒一些醋液,可使花卉长得更好。不过要掌握好醋液的浓度,醋酸过浓则会伤害花卉。
树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。
一天早晨,我看见妈妈在给花浇水,就问妈妈:“妈妈,你浇水了,那些花就会生长,这是为什么呢?”“孩子,这是因为植物根茎在给花输送养料呀!” 可是,听了妈妈的话,我还是不太明白,妈妈看见我还是不懂,就跟我说:“没关系,我给你做个一小实验,怎么样?”一听到做实验,我就高兴得手舞足蹈,大声叫道:“好!太棒了!我最喜欢做实验了!” 我们准备了蓝墨水、橡皮泥、一棵带根开白花的植物、滴管、记号笔、杯子还有水。妈妈对我说:“千万要小心,不要打碎杯子!”“一定!”我保证地说,实验开始了,妈妈先把水到入杯子里,我又用滴管吸了红墨水,滴入装了水的杯子,妈妈然后把那棵带根开白花的植物浸入水中,顿时,根的底部开始变红了,我用橡皮泥把杯口“封”住,妈妈最后在杯外用记号笔做上记号,就Ok了! 妈妈又说:“记住要在一个星期后再观察。”“Yes!”我叫道。我真是太期待了!连做梦都在做有关于这个实验的故事。 时间如流水,一个星期马上就过了,今天,要真相大白了!我太高兴了,我们一走到那个做实验的杯子,立刻就看见花已经变红了,杯子里的水也都少去了,最后一步,就是切开茎,于是,妈妈拿着小刀小心翼翼地切开植物的茎,哇!茎突然变红了,根也随之变红了!太奇妙了!妈妈说:“之所以花变红了,是因为植物的茎会输送水分和养料,植物的根会吸收水分和养料,” 就是这句话使我懂得了那些花会生长,是茎和根的作用,还有水的作用,现在我彻底得懂了,不知道在坐的懂了没?
物理小论文生活中有很多的物理现象,许多简单的现象可以用所学知识去解答。现象一:飞快的火车有一个安全距离,当我们在公路上步行时,不宜靠中太近,除了害怕离线的车会撞到之外。还有一个意料之外的原因,对此本文将作出解答。现象二:取两片很薄的纸,将他们贴近,用力的吹,我们并不能将纸吹开,反而出现被“吹拢”的情况。现象三:,对于相同流量的水而言,口径大的水龙头,水的流速很慢,但是对于口径小的水龙头,可以明显的看到流速加快了。这是什么原因呢?总结来看,空气和水都是流体,在两者之间有着一定的共同点,都遵循流体的基本性质,在流体的学习中有两个很重要的方程叫:伯努利方程和连续性方程。用它们就可以很简单的解释上面三个现象。首先,伯努里方程的基本表达式为:P+1/2pv+pgh=恒量。P指流体周围的压强大小,p指流体本身的密度,v指流体的速度。在上述但现象中,可把水和空气近似的看作理想流体,且它们作常流动。在以上前两种情况中,都可以将pgh看作是不变的,所以我们很容易的就得到P+1/2pv=恒量。容易得出压强和速度成反相关。下面将对三个现象作出具体的解释。解释现象一:其中提到一个意外的原因就是很有可能身边的空气将我们“推”向汽车而发生意外。为什么这么说?当车飞快的从我们身边开过的时候,对周围的空气造成了影响:使它们的速度加快,在这样的情况下,根据上面的推倒易知:速度过快造成周围空气的压强减小,在汽车周围形成一个压强差,在车周围的事物就容易被“压”到车下。这是相当危险的,所以步行要尽量的靠边走。解释现象二:当两片薄纸靠近,我们将它们看成和外面的空气分开,当我们吹气时,使得两纸间少量的空气流速加大,压强减小,外围的空气使得纸片贴在一起。解释现象三:同流量即体积相同,所以易知SV=S V。这就是理想流体的连续性方程。它表示理想流体作定常流动时,流体的速率与流管截面积的乘积是一个恒量。由此可知,当我们将口径边小时,必然导致流速加快。根据个原理在科技上也有很大的运用,比如切割水枪,对于一样的出水量,这种水枪的口径很微小,使得出水的速度极快,所含动能极大,在生产上有很大的运用。
因为所以科学道理自己
1.选题 翻翻你物理课本选一个试验来写(水泥加水后搅拌成泥浆)2.然后写 自己通过做试验来证明1.题目(为什么要选择这个试验)2.准备工作(材料准备,时间准备)3.试验开始:拿出水泥,然后加入水4.得出结论5.做记录--我只是随便给你提出一个试验,具体写什么,你自己来定,就按照我上面的流程写,就对了。
自己写巴。。类似于对学习的感想之类的 不需要太多的学术知识也可以
你不拿货卖是ヾ(❀╹◡╹)ノ~ヾ(●´∇`●)ノ哇~哦利润空间锁困了就进入太用力酷我极速蜗牛太庸俗哦空
关于数学的小论文:
以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。
然而,有一件事却改变了我的看法。
那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。
此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”
爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。
因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
好玩的消元法 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。 这不,老师今天就出了一道数学思考题,是这样的:一位同学买了3支自动铅笔和2只普通铅笔,一共元;另一位同学买同样的5只自动铅笔和2只普通铅笔一共付元,请问:一支自动铅笔多少元?一支普通铅笔多少元? 这可难不倒我,我是这样算的,你听:通过两组条件的对比,我们可以发现第二位同学比第一位同学多付了–(元), 是因为第二位同学比第一位同学多买了两只同样的自动铅笔,所以我们可以列下面的等量关系。 3只自动铅笔+2只普通铅笔= (元) 5只自动铅笔+2只普通铅笔= (元) 所以我们知道,2支自动铅笔=元,由此可以求出自动铅笔的单价,再求出普通铅笔的单价为: (–*3)➗2=(元) 答:一支自动铅笔是元,已知普通铅笔是元。 第二天,老师又出了变式数学思维题:学校食堂第一次运进大米5袋,面粉7袋,共重1350千克;第二次运进大米3袋,面粉5袋,共重850千克。1袋大米和1袋面粉各重多少千克? 这我就想不出来了,后来我问妈妈才知道:我们可以列出这样的等量关系: ①5袋大米+7袋面粉=1350(kg) ②3袋大米+5袋面粉=850 (kg)比较这两个等式,我们发现这两道算式之间没有一定的联系,因此创造条件时,两次运进的大米和面粉袋数相等,然后再去抵消。 因此将①乘上3,②乘上5后可以得到以下式子: 15袋大米+21袋面粉=4050(kg) 15袋大米+25袋面粉=4250(kg) 现在我们可以求出 4袋面粉的重量=200(kg) 那么一袋面粉的重量是200➗4=50(kg)。 所以一袋大米的重量为:(1350–50*7)➗5=200(kg)
容易忽略的答案 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。