首页

> 学术论文知识库

首页 学术论文知识库 问题

黑洞论文参考文献

发布时间:

黑洞论文参考文献

黑洞是根据现代的物理理论和天文学理论,所预言的在宇宙空间中存在一种天体区域.黑洞是由一个质量相当大的天体,在核能耗尽死亡后发生引力塌缩后形成.根据牛顿万有引力定理,由于黑洞的第一宇宙速度过大连光也逃逸不出,故名黑洞.在此区域内的万有引力非常强大,任何物质都不可能从此区域内逃逸出去,甚至光线都被它强大的引力拉回.因此黑洞不会发光,不能用天文望远镜看见,它是黑漆的天体,但天文学家可借观察黑洞周围物质被吸引时的情况,找出黑洞位置

物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然科学认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。随着科学技术的发展,社会的进步,物理已渗透到人类生活的各个领域。 在汽车上驾驶室外面的观后镜是一个凸镜利用凸镜对光线的发散作用和成正立、缩小的虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 汽车头灯里的反射镜是一个凹镜。 它是利用凹透镜能把放在其焦点上的光源发出的光反射成平行光射出的性质做的。 轿车上装有太阳膜,行人很难看清车中人的面孔,太阳膜能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔放射足够的光头到玻璃外面。由于车内光线较弱,没有足够的光透出来,所以很难看清乘客的面孔。 当汽车的前窗玻璃倾斜时,反射成的像在过的前上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,及时前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度上,所以司机也不会将乘客在窗外的相遇路上的行人相混。 现在,人类所有令人惊叹的科学技术成就,如克隆羊、因特网、核电站、航天技术等,无不是建立在早期的科学家们对身边琐事进行观察并研究的基础上的,在学习中,同学们要树立科学意识,大处着眼、小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的甚或打下坚实的基础

黑洞的产生过程类似于中子星的产生过程:某一个恒星在准备灭亡,核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸。

当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,连中子间的排斥力也无法阻挡。

中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的引力,使得任何靠近它的物体都会被它吸进去。

黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。

已观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以是中央延展物质系统的流动。

吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。

黑洞这一术语是不久以前才出现的。它是1969年美国科学家约翰·惠勒为形象描述至少可回溯到200年前的这个思想时所杜撰的名字。那时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。 1783年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上发表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。它是名符其实的——在空间中的黑的空洞。几年之后,法国科学家拉普拉斯侯爵显然独自提出和米歇尔类似的观念。事实上,因为光速是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很不协调。(从地面发射上天的炮弹由于引力而减速,最后停止上升并折回地面;然而,一个光子必须以不变的速度继续向上,那么牛顿引力对于光如何发生影响呢?)直到1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至又过了很长时间,这个理论对大质量恒星的含意才被理解。 为了理解黑洞是如何形成的,我们首先需要理解一个恒星的生命周期。起初,大量的气体(大部分为氢)受自身的引力吸引,而开始向自身坍缩而形成恒星。当它收缩时,气体原子相互越来越频繁地以越来越大的速度碰撞——气体的温度上升。最后,气体变得如此之热,以至于当氢原子碰撞时,它们不再弹开而是聚合形成氦。如同一个受控氢弹爆炸,反应中释放出来的热使得恒星发光。这增添的热又使气体的压力升高,直到它足以平衡引力的吸引,这时气体停止收缩。这有一点像气球——内部气压试图使气球膨胀,橡皮的张力试图使气球缩小,它们之间存在一个平衡。从核反应发出的热和引力吸引的平衡,使恒星在很长时间内维持这种平衡。然而,最终恒星会耗尽了它的氢和其他核燃料。貌似大谬,其实不然的是,恒星初始的燃料越多,它则燃尽得越快。这是因为恒星的质量越大,它就必须越热才足以抵抗引力。而它越热,它的燃料就被用得越快。我们的太阳大概足够再燃烧50多亿年,但是质量更大的恒星可以在1亿年这么短的时间内用尽其燃料,这个时间尺度比宇宙的年龄短得多了。当恒星耗尽了燃料,它开始变冷并开始收缩。随后发生的情况只有等到本世纪20年代末才初次被人们理解。 第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。 兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英哩左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们才被观察到。 另一方面,质量比强德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会发生。怎么知道它必须损失重量呢?即使每个恒星都设法失去足够多的重量以避免坍缩,如果你把更多的质量加在白矮星或中子星上,使之超过极限将会发生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。 现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。 当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟发一信号到一个绕着该恒星转动的空间飞船上去。在从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。 但是由于以下的问题,使得上述情景不是完全现实的。你离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差就已经将我们的航天员拉成意大利面条那样,甚至将他撕裂!然而,我们相信,在宇宙中存在质量大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到。但是,随着这区域继续坍缩,只要在几个钟头之内,作用到他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。 罗杰·彭罗斯和我在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中必然存在无限大密度和空间——时间曲率的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和我们预言将来的能力都失效了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出发的不管是光还是任何其他信号都不能到达他那儿。这令人惊奇的事实导致罗杰·彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。” 事件视界,也就是空间——时间中不可逃逸区域的边界,正如同围绕着黑洞的单向膜:物体,譬如不谨慎的航天员,能通过事件视界落到黑洞里去,但是没有任何东西可以通过事件视界而逃离黑洞。人们可以将诗人但丁针对地狱入口所说的话恰到好处地用于事件视界:“从这儿进去的人必须抛弃一切希望。”任何东西或任何人一旦进入事件视界,就会很快地到达无限致密的区域和时间的终点。黑洞根本不是真正黑的,它们像一个热体一样发光,它们越小则发热发光得越厉害。所以看起来荒谬,而事实上却是,小的黑洞也许可以比大的黑洞更容易地被探测到。

黑洞论文带参考文献

初二的话应该没有什么格式的,一开始写出问题是什么,然后写出原理和结论就行了,如果你有心的话中间还可以加一些实验的过程。我们也布置了这个作业,写了两篇,你看看好了,我也不是很规范的哈……《《《《《《《《《《《第一篇》》》》》》》》》》》关于反光的疑问记得在八年级上班学期学习物理“光学”知识时就提到了“反光”,也就是光线经光滑表面反射进入人们的眼睛而被看到。在学习“光谱”的相关知识时也有讲到,白色的表面反射所有色光,红色的表面只反射红色光而吸收其他色光,蓝色的表面只反射蓝色光……而黑色表面能吸收各种色光。但是在生活中却出现种种疑问:上课时黑色的黑板理应吸收所有色光,但时常会看到白色的反光而看不清字;使用黑色的鼠标、钢笔时若有光线照射也可以看到白色的反光……在上网查了一些资料之后,对这个问题的解答才似乎有了眉目:物理学上的绝对黑体是不反光的,绝对黑色只要你能制造出来也是任何光线都不反射的,只可惜那是理论化的,事实上根本不存在绝对黑体和黑色,所以至少地球上的任何物体都会反光,包括你看着非常非常“黑”的东西。而据现有知识所知,绝对的黑体只有黑洞。黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,光也无法幸免。黑洞就变得像真空吸尘器一样既然光也无法幸免地被黑洞吸进去,射进去的光便无法反射回来,我们的眼睛就看不到任何东西。而我们生活中那些“黑色”的物体只是对可见光频域内更种光线反射率都比较小,但也决不是黑体。理论上只有绝对不反光(反射率为0)的物体才可以称作“黑体”,从而吸收所有的光。至于生活中为什么不存在绝对的黑体……虽然网上有资料,但是我也看不懂,只能通过以后的物理学科学习来解答了。《《《《《《《《《《《第二篇》》》》》》》》》》》关于洗手后被风吹为什么会感到凉的疑问平时经常注意到一个现象(特别是冬天),洗好手从洗手间走出来,如果外面有风,还未擦干的手被风吹到就会感到特别的凉。与此近似的例子还有很多,比如身上被雨淋湿的时候别人会警告你“这样容易感冒”;夏天在泳池里游泳出来会感到很凉。一开始我以为水在相同情况下降低的温度比皮肤要多,所以沾了水会感到冷。但是在学习比热容的知识之后发现,由于水的比热容较高,其实放出相同的热量,水降低的温度不会比皮肤多。那究竟是什么原因,导致洗手后被风吹为什么会感到凉呢?去医院的经历大家应该都有,而护士在胳膊上抹酒精的那个片段应该是不会忘记的(因为小时候害怕打针)。那个时候肯定会有这种感觉,酒精涂在胳膊上,会觉得被涂的那块地方很清凉。其实并不是因为涂上的酒精温度很低,而是因为酒精是挥发性很强的物质,它挥发需要吸收一部分热量的,所以吸收了你的体温,你就感觉清凉了,当挥发没有了之后,所以你会感觉清凉,你的身体会继续吸收外在环境的热量,所以你只是感觉只是一阵清凉而已。而并不只是酒精会挥发,水也是会挥发的。而酒精的要比水的吸收热量高不知道多少倍,所以和酒精相比,水的降温就显得不那么明显。在综合科学学科中我们就已经学到过液体挥发与哪些因素有关。物质的挥发是因为组成物质的分子摆脱了物质的一些束缚力跑到空气中,因此他与分子的活动能力有关。温度高,分子运动就剧烈,挥发速度就快。表面积越大大,向外逃逸的分子越多,挥发速度也越快。接触面的空气流动速度越大,挥发出的分子会飘到别的地方,使物体周围的分子浓度下降,挥发速度越快(这段是摘抄的,我也不太懂是什么意思)。也许在平时水的降温效果不如酒精明显,但在寒冷的冬天,冷水就十分地刺骨。这个时候,要是再让它带走人体的热量,哪怕并不多,也会让人立即感觉到。这个时候一阵寒风吹来,空气流通,手上的水挥发速度就加快了。本来就很冷的手再被挥发的水带去那么多的热量,当然感到特别凉了。

黑洞(Black hole)是现代广义相对论中,宇宙空间内存在的一种超高密度天体,由于类似热力学上完全不反射光线的黑体,故名为黑洞。黑洞是时空曲率大到光都无法从其视界逃脱的天体。[1-3]黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而“死亡”后,发生引力坍缩产生的。黑洞的质量极其巨大,而体积却十分微小,它产生的引力场极为强劲,以至于任何物质和辐射在进入到黑洞的一个事件视界(临界点)内,便再无力逃脱,甚至传播速度最快的光(电磁波)也逃逸不出。黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因高热而放出紫外线和X射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行黑洞轨迹,来取得位置以及质量。[4]2013年11月30日,两名中国科学家首次制造出可以吸收周围光线的人造电磁“黑洞”。这个黑洞可以在微波频率下工作,预计不久后它就能够吸收可见光,一种把太阳能转化为电能的全新方法可能因此产生。但是在2014年1月24日英国著名科学家斯蒂芬霍金教授再次以其与黑洞有关的理论震惊物理学界。他在日前发表的一篇论文中承认,黑洞其实是不存在的,不过“灰洞”的确存在[5-6]。该说法在学术界反响不一。

论文格式1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容: a.提出问题-论点; b.分析问题-论据和论证; c.解决问题-论证方法与步骤; d.结论。 6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。按照上边的论文格式来写,可以使你的论文更加容易被读者了解,被编辑采纳。论文格式模版(天头留出25毫米空白)分类号 密级 U C D___________ 编号1 0 4 8 6 (此处间隔20毫米) (以上四项用仿宋标4号)武 汉 大 学硕 士 学 位 论 文(论文题目与上一行间隔为25毫米) (以上二行用宋体标2号字)论 文 题 目(题目用楷体标1研 究 生 姓 名:指导教师姓名、职称:学 科、专 业 名 称:研 究 方 向:(以上四项用宋体标4号字)(此处间隔为25毫米) 二00八年四月 (黑体标3号字)(地脚留出25毫米空白边缘)分类号 密级 U C D 编号 1 0 4 8 6 武 汉 大 学硕 士 学 位 论 文大为•卡坦文化框架理论关涉下的林语堂翻译研究研 究 生 姓 名:指导教师姓名、职称:学 科、专 业 名 称:英语语言文学研 究 方 向:翻译理论与实践二00八年四月(地脚留出25 毫米空白边缘)A Study of Lin Yutang’s TranslationsUnder David Katan’s Theory of Cultural Frames(Times New Roman 小二加粗)A ThesisSubmitted in Partial Fulfillment of the RequirementsFor the Master’s Degree of Artsin English Language and Literature(Times New Roman 四号)Candidate: Supervisor: Academie Title: Professor(Times New Roman 四号)April 2008Graduate Program in English Language and LiteratureWuhan University(Times New Roman 四号)郑 重 声 明(宋体四号) 本人的学位论文是在导师指导下独立撰写并完成的,学位论文没有剽窃、抄袭,造假等违反学术道德、学术规范和侵权行为,本人愿意承担由此产生的法律责任和法律后果,特此郑重声明。(宋体小四号)学位论文作者 (签名):(宋体小四号)2008年4月30日(宋体小四号)摘 要(黑体标准小二号)Abstract(Times New Roman 黑体标准小二号)说 明:外文内封按论文格式的规定要求打印,但各专业语种可根据本专业的实际而定。分类号:英语H31、俄语 H35、法语 H32、德语 H33、日语 H36。

黑洞已不是完全“黑”的,也不单纯是个“洞”,它既可以通过吸积物质使质量增加,也可以向外发射物质,而使质量减小。在量子力学里,真空并不意味着没有任何场,粒子或能量。量子真空是一种能量为最低的状态,它只是被称作“真空”而已,实际上能量为零的状态是不存在的。真空不空时间和能量的测不准原理解释了为什么真空不空。由于质量与能量的等价性,真空中的能量涨落就可以导致基本粒子的生成。1928年,保罗.狄拉克发现,每一种基本粒子都有一种对应的反粒子,二者质量相同,其他性质呈“镜像”对称。两者相遇,就会相互湮灭,将质量转化为能量。因此,一个粒子和它的反粒子就表示相当于它的静质量的两倍的能量,反过来,一定的能量也可以被看作是一对正反粒子。于是,由于能量涨落而躁动的量子真空就成了所谓“狄拉克海”,其中遍布着自发出现而又很快湮没的正反粒子对。在不存在任何力的量子真空里,粒子对不断地产生和消灭,所以平均而言,就没有任何粒子或反粒子真正产生或是消灭。由于这些粒子瞬时存在而不能被直接观测到,所以被称为虚粒子(可以是虚光子,虚电子,虚质子等)。其实虚粒子和实粒子并没有本质的区别,只是虚粒子没有足够的能量,存在的时间极短。如果它能从外界获得能量,就可以存在足够长的时间而升格为实粒子。设想,有一电场,作用在真空上。当一对正负电子在正空中出现时,它们就会被电场沿相反的方向分离。如果电场足够强,它们就会分离的足够远,以致于不能再相互碰撞和湮灭。这时的虚粒子就成为实粒子,这时的真空就被称为是极化的。但是,真空是不容易被极化的,需要有很高的能量密度才能使虚粒子对分离和实粒子出现。而产生极化所需的能量的形式并不重要,它们可以是电能,磁能,热能,引力能等。遇到的问题不确定性原理告诉我们,真空中到处存在着虚粒子的海洋。这种紧张的量子行为的虚粒子海洋同样也出现在黑洞事件视界周围的空间区域。不确定性定理说明,如果一个粒子的位置被确定,它的速度就会变得不确定。如果一个粒子落入黑洞,它的位置已经被确定(在奇点),所以它的速度就不确定,甚至超过光速而逃出视界。由于所有形式的能量都等价于质量,所以我们当然会想到引力能也会被自发地转变成粒子。霍金发现,对于微黑洞来说,量子真空会被它周围的强引力场所极化(这一点是至关重要的),在狄拉克海里,虚粒子对在不断产生和消失,一个粒子和它的反粒子会分离一段很短的时间,于是就有四种可能性:两个伙伴重新相遇,并相互湮灭(过程I);反粒子被黑洞捕获,而正粒子在外部世界显形(过程II);正粒子被捕获而反粒子逃出(过程III);双双落入黑洞(过程IV)。霍金计算了这些过程发生的几率,结果发现过程II最为常见。由于有倾向地捕获反粒子,黑洞自发地损失了能量,也就是损失了质量。由于微黑洞的尺度与基本粒子相当,能量的“跃迁”可能足以使粒子运动一段大于视界半径的距离,其结果就是粒子逃出,在外部观测者看来,黑洞在蒸发,即发出粒子流。其实粒子并没有真的跳过视界“墙”,而是从一个由不确定性原理短暂地打通的“遂道”穿过。这样的过程反反复复在黑洞视界的周围发生,从而,形成一股不断的辐射流,黑洞发光了。霍金计算霍金的计算表明,黑洞的蒸发辐射具有黑体的所有特征。它赋予了黑洞一个真实的,在整个视界上同一的,直接由视界处的引力场强度来决定的温度。对史瓦西黑洞来说,温度与质量成反比。质量与太阳一样的黑洞,其温度是微不足道的,开氏(即绝对零度以上)十的负七次方度。不是零,但小的可怜;黑洞并不是完全的黑,但一点也不亮。很遗憾,这样低温的辐射实在太微弱了,是不可能在实验室中探测出来的。霍金的计算还有一个重要发现:黑洞的质量越小,温度越高,辐射也越强。显然,蒸发只有对微型黑洞来说才有特别的影响,而微型黑洞的温度是很高的。在黑洞中,质量越大的黑洞,温度越低,蒸发的越慢;质量越小的黑洞,温度越高,蒸发的也越快。对于微黑洞来说,温度非常之高,可达千万开甚至上亿开,随着蒸发的加剧,质量丢失的很快,温度会迅猛地上升,随着温度上升的加快,质量丢失的就更厉害,这中过程会以疯狂的形式演变,最终黑洞被摧毁,以猛烈的爆发而告终,所有粒子都得到了大赦(对巨型黑洞来说发射粒子的过程十分缓慢,相当于蒸发;而对微黑洞来说,发射粒子的过程十分迅猛,相当于爆发)。对于星系中心的巨型黑洞来说,其蒸发的过程将远远超出宇宙的年龄,假定宇宙有足够长的寿命,并且不回缩,那么这类黑洞最终也还是要蒸发掉。不过这类黑洞目前还是吸积远大于蒸发,以吸积为主。只有当宇宙后来的温度降到比这类黑洞的温度还低时,它们才开始以蒸发为主。然而这个过程太慢长了,等到它们开始蒸发,也将远远超出宇宙的年龄,而它们要蒸发完毕,大约要十的九十九次方年。

关于黑洞的论文参考文献

黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。 根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。 等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。 那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。 我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。 质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。 这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。 与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。 在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。黑洞”是一种天体:它的引力场强大得就连光也不能逃脱出来。根据广义 相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没 什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半 径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间 返回恒星表面。 等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表 面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像 宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真 正是“隐形”的,下面将会叙述。 黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒 星演化而来的。我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗 恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已 经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳 的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力 与压力平衡。 质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子 星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过 了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。 这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一 个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度 (史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向 外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。 与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无 法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎 么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传 播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯 曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线, 而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏 离了原来的方向。 在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围, 空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部 分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。 所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样, 这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它 方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能 看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多 科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过, 这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。根据科学家的猜想,物质将不可阻挡地向着中心点收缩,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(小于史瓦西半径),巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

简单一点来说,就是 “银心”。

1975年,霍金以数学计算的方法证明黑洞由于质量巨大,进入其边界的物体都会被其吞噬而永远无法逃逸。黑洞形成后就开始向外辐射能量,最终将因为质量丧失殆尽而消失。而这种辐射并不包含黑洞内部物质的信息。这些信息应当在黑洞中保留下来。但是一旦黑洞消失,这些信息也就丧失了。这些信息的去向之谜就构成了所谓的“黑洞悖论”。而该假说与量子物理学的理论背道而驰。量子物理学认为,类似黑洞这样质量巨大物体的信息是不可能完全丧失的。 美国科学家质疑相对论宇宙中并不存在“黑洞”?据美国媒体报道,美国加州劳伦斯·利弗莫尔国家实验室物理学家乔治·卓别林(GeorgeChapline)表示,宇宙中并不存在着所谓的“黑洞”,并认为人们通常所指的黑洞神秘物 质实际上是“黑能(dark-energy)星体”。长期以来,黑洞已经成为了科幻小说中的重要材料之一。不少人认为,天文学家可以通过间接方式来观察到黑洞的存在,而巨型恒星死亡后就会形成黑洞。但卓别林认为,恒星死亡只会形成“黑能”物质。过去数年中,天文学家对银河系的观察表明,宇宙的70%左右是一种奇怪的“黑能”所组成,正是它们在加速着宇宙的膨胀。卓别林说:“几乎可以肯定地说,宇宙中并不存在着黑洞。”黑洞是爱因斯坦广义相对论中最为著名的预言之一。广义相对论解释了受巨型恒星重力影响,会导致时空结构产生扭曲的现象。该理论认为,当某颗恒星死亡后,会受自己的重力影响而缩成一个点。但卓别林却认为,爱因斯坦本人也不相信黑洞的存在。1975年,量子力学专家们表示,黑洞边界确实发生了一些奇怪的事情:遵守量子法则的物质对轻微干扰变得极为敏感。卓别林说:“这个发现很快就被大家忘记了,因为它不符合广义相对论的预言。然而今天看来,它却是完全正确的发现。”他认为,这种奇怪的活动正是时空“量子阶段转变”的证据。卓别林认为,死亡后的恒星并不会简单地形成一个黑洞,而是在该时空内部,它却充斥着黑能,并具备重力影响。卓别林称,在某颗黑能星的“表面”,它看起来很像一个黑洞,并能制造强大的重力牵引。然而在它的内部,黑能的“负”重力又有可能将物质重新弹出来。如果某颗黑能星体积很大,任何反弹出来的电子转变成了正电子,然后会在高能辐射中消灭其他电子

黑洞论文题目

请别把科普小品文、娱乐猎奇文章和论文弄混淆了, 论文是不适合给大众看的。

科普小品文、娱乐猎奇文章和论文等文学创作。有需要可以call我。

尽管黑洞有强大的重力场,但对于质量相当小的物体黑洞的引力对它的影响不大。比如:据科学家观测,黑洞周围的气体尘埃在以相当大的速度向外扩散

看时间简史的第6章!

黑洞的研究现状论文

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。 根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。 等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。 那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。 我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。 质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。 这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。 与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。 在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

黑洞理论1975年,霍金创立了闻名世界的理论体系,让黑洞的概念家喻户晓。量子理论在原子的水平上对宇宙加以描述,推断出信息是从来不会丢失的。如今,霍金已修改了黑洞理论,认为黑洞是可以“重新开放”的,所吞噬的信息可以以另一种形式释放出来,就像我们生活中的燃烧一样,只是信息的转化而已。经过29年的思考,斯蒂芬·霍金表示、他以前对黑洞的看法是错误的。2004年7月14日,这位剑桥大学的著名物理学家正式发表了一篇论文,认为黑洞这种由星体残骸演化成的漩涡会保留被吞噬物体的痕迹、而且终将释放出少量被撕碎的物质。霍金激进的新理论颠覆了他30年来为了科学地解释黑洞悖论而进行的努力:被吸入黑洞的物体怎样才能真正消失,不留一点痕迹呢长期以来他一直是这样认为的,而亚原子理论认为物质的形式可以相互转换,但不可能完全消失。此前、霍金坚持认为、黑洞会摧毁其中所包含的一切微小信息,然后只是正常向外辐射能量。在第17届国际广义相对论和万有引力大会上,霍金提出了令人难以置信的新的计算结果,认为黑洞能够将吞噬的物质慢慢释放出来,而且吸收和释放的方式都只有一种。62岁的霍金说他不再相信20世纪80年代的理论、当时的理论认为黑洞可能可以通往另一个宇宙空间,这正好可以用来解释被黑洞吞噬的物质和能量去了哪里。霍金站在粒子物理学家一边、长期以来,粒子物理学家们坚持认为任何被黑洞吞噬的物质都不会凭空消失,最后必然以一种特殊的方式释放出来。霍金面对来自50个国家的大约800名物理学家和其他科学家发表了演讲,他说:(黑洞里)没有我曾设想过的子宇宙分支,物质信息仍然牢牢地保存在这个宇宙里。我很遗憾这让科幻迷们失望了,但如果物质信息被保存了,就不可能利用黑洞去别的宇宙空间旅行。如果跳进一个黑洞,物质能量将以一种被撕裂的形式返回到宇宙中、其中包含以前的信息,但是已经处于无法辨认的状态。霍金的新理论在物理学权威中激起了怀疑和困惑的浪潮。霍金在发表演讲时,其中的两位领军人物美国哥伦比亚大学的威廉·翁鲁和芝加哥大学的罗伯特·沃尔德不断耸肩摇头表示怀疑。黑洞专家沃尔德说:霍金完全改变了他自己以前的观点、霍金以前认为进入黑洞的一切都会被冲走。他相信从黑洞释放出的任何物质都能追溯到来源。他已经偏离了仍然坚信的理论。折叠编辑本段研究历史上世纪70年代,霍金提出的“黑洞热辐射”理论是20世纪最杰出的理论物理成就之一,但当时这一理论的一些观点受到了量子物理学者的质疑,科学家们认为被黑洞“吞掉”的物质的信息最终将会随黑洞一起消失,在量子物理的角度上是无法解释的。为此,30年来学术界一直存在着争论,此次霍金提出的新观点―――黑洞在某一时间,将会把它吞掉的信息释放出来,从表面上看弥补了他以前理论的缺陷,但是这也不足以肯定这一理论就是正确的。赵教授解释,物质所包含的信息并不像质量或能量一样具有守恒的性质,因此霍金此前的信息消失理论并不是完全无法接受的。从20世纪60年代到80年代,黑洞研究取得了重大进展。最初人们认为黑洞是一颗死亡了的星体,什么东西都可以掉进去,但任何东西都跑不出来。1974年霍金证明黑洞有温度、有辐射。霍金辐射的发现使黑洞和霍金本人都变得家喻户晓。20世纪80年代以后,黑洞研究的重点逐渐从温度转向信息佯谬。人们早已知道,黑洞外部观测者会失去形成黑洞以及后来落入黑洞的物质的几乎全部信息,这就是“无毛定理”。所谓“毛”是指“信息”。黑洞只剩下总质量、总电荷和总角动量3根“毛”可以被外界探知。人们最初认为,虽然外部观测者不能探知黑洞内部物质的信息,但这些信息并没有从宇宙中消失,只不过隐藏在了黑洞的内部。霍金辐射发现之后,人们知道黑洞中的物质最后将全部转化为热辐射,而热辐射几乎不带出任何信息。这样,形成和落入黑洞的物质的信息将从宇宙中消失,信息不再守恒,不仅重子数守恒、轻子数守恒等定律不再成立,量子论的幺正性也将受到破坏。面对如此严重的理论困难,物理学家展开了激烈的争论。理论物理学家大都相信信息守恒,坚信幺正性这一量子论的基石不会被破坏。总之,信息应该守恒。以霍金和索恩为代表的相对论专家则认为信息不一定守恒,幺正性完全有可能被破坏。为此,霍金和索恩与坚信信息守恒的普瑞斯基打赌。"这种理论从诞生之初就遇到了麻烦:它同很多科学家坚持的"信息守恒定律"互为矛盾.这一度被人们称为"黑洞悖论".如同19世纪的科学家断定了能量守恒定律一样,20世纪的许多科学家提出了信息守恒一说——假如这个说法成立,那么"信息守恒定律"无疑将成为科学界最为重要的定律,也许比物质,能量守恒定律的意义更为深远.霍金的黑洞理论引起的激烈争执就是"信息"在黑洞中是否能够保存,守恒."折叠编辑本段理论产生所谓黑洞,是时空的一个区域,这个区域内的引力非常强大,以至于任何东西,甚至光都不能从中逃逸出来。长期以来,科学家们认为黑洞会吞噬一切。但1974年,霍金提出,黑洞一旦形成,就会“蒸发”辐射出能量,同时损失质量,这种辐射亦称为“霍金辐射”。霍金这一理论是黑洞研究中的一个重大进展。但与此同时,他又制造出了一个新的难题。霍金在1976年的另一篇论文中对此做出阐述:黑洞辐射并不含有任何黑洞内部的信息,在黑洞损失殆尽之后,所有信息都会丢失。而根据量子力学的定律,信息是不可能被彻底抹掉的,霍金的说法产生了矛盾,这就是“黑洞信息悖论”。当时霍金辩称,黑洞的引力场过于强大,量子力学的定律并不适用,但他这种解释并不令学术界感到信服。哈佛大学物理学家施特勒明格就直言“我并不相信霍金1976年的理论,尽管我不知道他的计算到底错在哪里”。折叠编辑本段理论推翻霍金悖论 霍金自己推翻自己的理论1976年,霍金称自己通过计算得出结论,他认为黑洞在形成过程中,其质量减少的同时还不断在以能量的形式向外界发出辐射。这就是著名的“霍金辐射”理论。但是,理论中提到的黑洞辐射中并不包括黑洞内部物质的任何信息,一旦这个黑洞浓缩并蒸发消失后,其中的所有信息就都随之消失了。这便是所谓的“黑洞悖论”。这种说法与量子力学的相关理论出现相互矛盾之处。因为现代量子物理学认定这种物质信息是永远不会完全消失的。近30年来,霍金试图以各种推测来解释这一自相矛盾的观点。霍金曾表示,黑洞中量子运动是一种特殊情况,由于黑洞中的引力非常强烈,量子力学在此时已经不再适用了。但是霍金的这种说法并没有得到科学界众多持怀疑态度学者的信服。如今,霍金终于给了这个当年自相矛盾观点一个更具有说服力的答案。霍金称,黑洞从来都不会完全关闭自身,他们在一段漫长的时间里逐步向外界辐射出越来越多的热量,随后黑洞将最终开放自己并释放出其中包含的物质信息。这一重大研究成果还没有公开以论文的形式发表,已经在学术界引起了轩然大波。霍金在剑桥大学的同事、著名的物理理论学家马尔科姆·佩里博士表示,“霍金在这次研讨会上提出的观点也许是一种可行的解决方案。但是具体是否能得到最终认可,我看还需要由大家说了算。”但他认为,霍金最新的研究成果将可以和30年前发表的“霍金辐射”相媲美。物理学家科特·卡特勒在接受《新科学家》杂志的访问时说:“霍金发出了一个信息,他似乎在说‘我已经解决了黑洞理论中的矛盾之处,我想就此发表一些新的看法’。但是我们作为该信息的接受者,预先却并没有看到任何有关的书面阐述。作为对霍金本人的尊重,根据他的名誉,我只能暂且先接受这种说法。”。2004年7月21日,在爱尔兰的都柏林举行“第17届国际广义相对论和万有引力大会”上,英国传奇科学家斯蒂芬·霍金教授宣布了他对宇宙黑洞的最新研究结果,霍金的态度来了个180度转弯,表示自己原来的观点错了,信息应该守恒:黑洞并非如他和其他大多数物理学家以前认为的那样,对其周遭的一切“完全吞食”,事实上被吸入黑洞深处的物质的某些信息可能会在某个时候释放出来:信息守恒。原因是先前把黑洞想得太理想化了,把黑洞热辐射也想得太理想化了。不过,霍金一直没有给出严格的证明来支持自己的新观点。索恩表示此事不能由霍金一个人说了算,他仍坚持信息不守恒的看法。普瑞斯基则表示没有听懂霍金的演讲,不明白自己为什么赢了。这一牵扯到量子论基础的敏感问题还远未解决。黑洞不是一颗死亡了的星体,它具有丰富的内涵。黑洞的霍金辐射理论表明,黑洞不仅具有一般的力学性质,而且具有量子性质和热性质。如果黑洞的辐射谱为严格的黑体谱,则黑洞辐射过程中信息丢失。Parikh和Wilczek认为,黑洞的霍金辐射的确可以看成是一种量子效应,但辐射粒子贯穿的势垒不是预先存在的,而是由出射粒子自身产生的。他们的研究结果支持信息守恒。黑洞理论的研究已经超出了黑洞本身,它不仅通过信息疑难触及了量子论的重要基石——幺正性,而且掀开了探讨时间性质的新篇章。黑洞内部有一个奇点,那是时间终结的地方。大爆炸宇宙有一个初始奇点,那是时间开始的地方。彭若斯和霍金曾经证明过一个“奇性定理”,该定理表明,任何一个真实的时空都一定存在奇点,即一定存在时间有开始或终结的过程。时间有没有开始和结束,原本是哲学家和神学家议论的话题,经过对黑洞和宇宙的研究,这一话题被纳入了物理学的领域。宇宙学家相信,太空中有许多类型的黑洞,从质量相当于一座山的小黑洞,到位于星系中央的超级黑洞,不一而足。科学家过去认为,从巨大的星体到星际尘埃等,一旦掉进去,就再不能逃出,就连光也不能“幸免于难”。而霍金教授关于黑洞的最新研究有可能打破这一结论。经过长时间的研究,他发现,一些被黑洞吞没的物质随着时间的推移,慢慢地从黑洞中“流淌”出来。霍金关于黑洞的这一新理论解决了关于黑洞信息的一个似是而非的观点,他的剑桥大学的同行都为此兴奋不已。过去,黑洞一直被认为是一种纯粹的破坏力量,而现在的最新研究表明,黑洞在星系形成过程中可能扮演了重要角色。2016年1月,斯蒂芬·霍金等人提出了新解释:落入黑洞的粒子的信息部分被位于视界线(黑洞边界)的粒子组成的“柔软毛发”所“俘虏”,这些信息并没有消失,但很难还原和破解。相关研究发表在arXiv上。[1]

黑洞是什么 黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。 因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里? 黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样 为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。 让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。 爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。 同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。 如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。 现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。 现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。 我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。 处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。 我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,也就是说,黑洞可能并没有想象中那样黑。 霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。 霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。 所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。 根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。 但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间 黑洞 谈黑洞是在普遍没有了解引力场本质的情况下谈黑洞。 如果按照黑洞定义谈黑洞,那宇宙中的黑洞是不存在的。 因为宇宙中的物质具有物质的本质特性。 按照宇宙中物质本质特性,不可能恒星发出的光又会被恒星吸收回恒星。 黑洞是一种体积极小,质量极大的恒星,在其强大的引力下,连光也无法逃逸———从恒星表面发出的光,还没有到达远处即被该恒星自身的引力吸引回恒星。 一团物质,如果其引力场强大到足以使时空完全弯曲而围绕它自身,因而任何东西,甚至连光都无法逃逸,就叫做黑洞.不太多的物质被压缩到极高密度(例如将地球压缩到一粒豌豆大小),或者,极大的一团较低密度物质(例如几百万倍于太阳的质量分布在直径与太阳系一样的球中,大致具有水的密度),都能出现这种情形. 第一位提出可能存在引力强大到光线不能逃离的'黑洞'的人是皇家学会特别会员约翰·米切尔,他于1783年向皇家学会陈述了这一见解.米切尔的计算依据是牛顿引力理论和光的微粒理论.前者是当时最好的引力理论.后者则把光设想为有如小型炮弹的微小粒子(现在叫做光子)流.米切尔假定,这些光粒子应该像任何其他物体一样受到引力的影响.由于奥利·罗默(Ole Romer)早在100多年前就精确测定了光速.所以米切尔得以计算一个具有太阳密度的天体必须多大,才能使逃逸速度大于光速. 如果这样的天体存在,光就不能逃离它们,所以它们应该是黑的.太阳表面的逃逸速度只有光速的,但如果设想一系列越来越大但密度与太阳相同的天体,则逃逸速度迅速增高.米切尔指出,直径为太阳直径500倍的这样一个天体(与太阳系的大小相似),其逃逸速度应该超过光速. 皮埃尔·拉普拉斯(Pierre Laplace)独立得出并于1796年发表了同样的结论.米切尔在一次特具先见之明的评论中指出,虽然这样的天体是看不见的,但'如果碰巧任何其他发光天体围绕它们运行,我们也许仍有可能根据这些绕行天体的运动情况推断中央天体的存在.换言之,米切尔认为,如果黑洞存在于双星中,那将最容易被发同.但这一有在黑星的见解在19世纪被遗忘了,直到天文学家认识到黑洞可经由另一途径产生,在研讨阿尔伯特·爱因斯坦的广义相对论时才重新提起. 第一次世界大战时在东部战线服役的天文学家卡尔·史瓦西(Karl Schwarzschild)是最先对爱因斯坦理论结论进行分析的人之一.广义相对论将引力解释为时空在物质近旁弯曲的结果.史瓦西计算了球形物体周围时空几何特性的严格数学模型,将它的计算寄给爱因斯坦,后者于1916年初把它们提交给普鲁士科学院.这些计算表明,对'任何'质量者存在一个临界半径,现在称为史瓦西半径,它对应时空一种极端的变形,使得如果质量被挤压到临界半径以内,空间将弯曲到围绕该物体并将它与宇宙其余部分隔断开来.它实际上成为了一个自行其是的独立的宇宙,任何东西(光也在内)都无法逃离它. 对于太阳史瓦西半径是公里对于地球,它等于厘米.这并不意味太阳或地球中心有一个大小合适现在称为黑洞(这个名词是1967年才首次由约翰·惠勒用于这一含义的东西存在.在离天体中心的这一距离上,时空没有任何反常.史瓦西计算表明的是,如果太阳被挤压进半径公里的球内,或者,如果地球被挤压进半径仅厘米的球内,它们就将永远在一个黑洞内而与外部宇宙隔离.物质仍然可以掉进这样一个黑洞但没东西能够逃出来. 这些结论被看成纯粹数学珍藏品达数十年之久,因为没有人认为真正的、实在的物体能够坍缩到形成黑洞所要求的极端密度。1920年代开始了解了白矮星,但即使白矮星也拥有与太阳大致相同的质量而大小却与地球差不多,其半径远远大于3公里。人们也未能及时领悟到,如果有大量的一般密度物质,也可以造出一个本质上与米切尔和拉普拉斯所想像的相同的黑洞。与任意质量M对应的史瓦西半径由公式2GM/c2给出,其中G是引力常数。c是光速。 1930年代,萨布拉曼扬·昌德拉塞卡(Subrahmanyan Chandrasekhar)证明,即使一颗白矮星,也仅当其质量小于倍太阳质量时才是稳定的,任何死亡的星如果比这更重,必将进一步坍缩。有些研究家想到了这也许会导致形成中子星的可能性,中子星的典型半径仅约白矮星的1/700,也就是几公里大小。但这个思想一直要等到1960年代中期发现脉冲星,证明中子星确实存在之后,才被广泛接受。 这重新燃起了对黑洞理论的兴趣,因为中子星差不多就要变成黑洞了。虽然很难想像将太阳压缩到半径公里以内,但现在已经知道存在质量与太阳相当、半径小于10公里的中子星,从中子星到黑洞也就一步之遥了。 理论研究表明,一个黑洞的行为仅由其三个特性所规定——它的质量、它的电荷和它的自转(角动量)。无电荷、无自转的黑洞用爱因斯坦方程式的史瓦西解描述;有电荷、无自转的黑洞用赖斯纳—诺德斯特罗姆解描述;无电荷、有自转的黑洞用克尔解描述;有电荷、有自转的黑洞用克尔—纽曼解描述。黑洞没有其他特性,这已由‘黑洞没有毛发’这句名言所概括。现实的黑洞大概应该是自转而无电荷,所以克尔解最令人感兴趣。 现在都认为,黑洞和中子星都是在磊质量恒星发生超新星爆发时的临死挣扎中产生的。计算表明,任何质量大致小于3倍太阳质量(奥本海默—弗尔科夫极限)的至密超新星遗迹可以形成稳定的中子星,但任何质量大于这一极限的致密进退新星遗迹将坍缩为黑洞,其内容物将被压进黑洞中心的奇点,这正好是宇宙由之诞生的大爆炸奇点的镜像反转。如果这样一个天体碰巧在绕一颗普通恒星的轨道上,它将剥夺伴星的物质,形成一个由向黑洞汇集的热物质构成的吸积盘。吸积盘中的温度可以升至极高,以致它能辐射X射线,而使黑洞可被探测到。 1970年代初,米切尔的预言有了反响:在一个双星系统中发现了这样一种天体。一个叫做天鹅座X—1的X射线源被证认为恒星HDE226868。这个系统的轨道动力学特性表明,该源的X射线来自围绕可见星轨道上一个比地球小的天体,但源的质量却大于奥本海默—弗尔科夫极限。这只可能是一个黑洞。此后,用同一方法又证认了其他少数几个黑洞。而1994年天鹅座V404这个系统成为迄今最佳黑洞‘候选体’,这是一个质量为太阳质量70%的恒星围绕大约12倍太阳质量的X射线源运动的系统。但是,这些已被认可的黑洞证认大概不过是冰山之尖而已。 这种‘恒星质量’黑洞,正如米切尔领悟的,只有当它们在双星系统中时才能探测到。一个孤立的黑洞无愧于它的名称——它是黑暗的、不可探测的。然而,根据天体物理学理论,很多恒星应该以中子星或黑洞作为其生命的结束。观测者在双星系统中实际上探测到的合适黑洞候选者差不多与他们发现的脉冲双星一样多,这表示孤立的恒星质量黑洞数目应该与孤立的脉冲星数目相同,这一推测得到了理论计算的支持。 我们银河系中现在已知大约500个活动的脉冲星。但理论表明,一个脉冲星作为射电源的活动期是很短的,它很快衰竭成无法探测的宁静状态。所以,相应地我们周围应该存在更多的‘死’脉冲星(宁静中子星)。我们的银河指法含有1000亿颗明亮的恒星,而且已经存在了数十亿年之久。最佳的估计是,我们银河指法今天含有4亿个死脉冲星,而恒星质量黑洞数量的甚至保守估计也达到这一数字的¼——1亿个。如果真有这么多黑洞,而黑洞又无规则地散布在银河系中的话,则最近的一个黑洞也离我们仅仅15光年。既然我们银河系没有什么独特之处,那么宇宙中每个其他的星系也应该含有同样多的黑洞。Ic 星系也可能含有某种很像米切尔的拉普拉斯最初设想的‘黑星’的天体。这样的天体现在称为‘特大质量黑洞’,被认为存在于活动星系和类星体的中心,它们提供的引力能可能解释这些天体的巨大能量来源。一个大小如太阳系、质量数百万倍于太阳质量的黑洞,可以从周围每年食掉一到两颗恒星的物质。在这个过程中,很大一部分恒星质量将遵照爱因斯坦分工E=mc2转变成能量。宁静的超大质量黑洞可能存在于包括我们银河系在内的所有星 一团物质,如果其引力场强大到足以使时空完全弯曲而围绕它自身,因而任何东西,甚至连光都无法逃逸,就叫做黑洞.不太多的物质被压缩到极高密度(例如将地球压缩到一粒豌豆大小),或者,极大的一团较低密度物质(例如几百万倍于太阳的质量分布在直径与太阳系一样的球中,大致具有水的密度),都能出现这种情形. 第一位提出可能存在引力强大到光线不能逃离的'黑洞'的人是皇家学会特别会员约翰·米切尔,他于1783年向皇家学会陈述了这一见解.米切尔的计算依据是牛顿引力理论和光的微粒理论.前者是当时最好的引力理论.后者则把光设想为有如小型炮弹的微小粒子(现在叫做光子)流.米切尔假定,这些光粒子应该像任何其他物体一样受到引力的影响.由于奥利·罗默(Ole Romer)早在100多年前就精确测定了光速.所以米切尔得以计算一个具有太阳密度的天体必须多大,才能使逃逸速度大于光速. 如果这样的天体存在,光就不能逃离它们,所以它们应该是黑的.太阳表面的逃逸速度只有光速的,但如果设想一系列越来越大但密度与太阳相同的天体,则逃逸速度迅速增高.米切尔指出,直径为太阳直径500倍的这样一个天体(与太阳系的大小相似),其逃逸速度应该超过光速. 皮埃尔·拉普拉斯(Pierre Laplace)独立得出并于1796年发表了同样的结论.米切尔在一次特具先见之明的评论中指出,虽然这样的天体是看不见的,但'如果碰巧任何其他发光天体围绕它们运行,我们也许仍有可能根据这些绕行天体的运动情况推断中央天体的存在.换言之,米切尔认为,如果黑洞存在于双星中,那将最容易被发同.但这一有在黑星的见解在19世纪被遗忘了,直到天文学家认识到黑洞可经由另一途径产生,在研讨阿尔伯特·爱因斯坦的广义相对论时才重新提起. 第一次世界大战时在东部战线服役的天文学家卡尔·史瓦西(Karl Schwarzschild)是最先对爱因斯坦理论结论进行分析的人之一.广义相对论将引力解释为时空在物质近旁弯曲的结果.史瓦西计算了球形物体周围时空几何特性的严格数学模型,将它的计算寄给爱因斯坦,后者于1916年初把它们提交给普鲁士科学院.这些计算表明,对'任何'质量者存在一个临界半径,现在称为史瓦西半径,它对应时空一种极端的变形,使得如果质量被挤压到临界半径以内,空间将弯曲到围绕该物体并将它与宇宙其余部分隔断开来.它实际上成为了一个自行其是的独立的宇宙,任何东西(光也在内)都无法逃离它. 对于太阳史瓦西半径是公里对于地球,它等于厘米.这并不意味太阳或地球中心有一个大小合适现在称为黑洞(这个名词是1967年才首次由约翰·惠勒用于这一含义的东西存在.在离天体中心的这一距离上,时空没有任何反常.史瓦西计算表明的是,如果太阳被挤压进半径公里的球内,或者,如果地球被挤压进半径仅厘米的球内,它们就将永远在一个黑洞内而与外部宇宙隔离.物质仍然可以掉进这样一个黑洞但没东西能够逃出来. 这些结论被看成纯粹数学珍藏品达数十年之久,因为没有人认为真正的、实在的物体能够坍缩到形成黑洞所要求的极端密度。1920年代开始了解了白矮星,但即使白矮星也拥有与太阳大致相同的质量而大小却与地球差不多,其半径远远大于3公里。人们也未能及时领悟到,如果有大量的一般密度物质,也可以造出一个本质上与米切尔和拉普拉斯所想像的相同的黑洞。与任意质量M对应的史瓦西半径由公式2GM/c2给出,其中G是引力常数。c是光速。 1930年代,萨布拉曼扬·昌德拉塞卡(Subrahmanyan Chandrasekhar)证明,即使一颗白矮星,也仅当其质量小于倍太阳质量时才是稳定的,任何死亡的星如果比这更重,必将进一步坍缩。有些研究家想到了这也许会导致形成中子星的可能性,中子星的典型半径仅约白矮星的1/700,也就是几公里大小。但这个思想一直要等到1960年代中期发现脉冲星,证明中子星确实存在之后,才被广泛接受。 这重新燃起了对黑洞理论的兴趣,因为中子星差不多就要变成黑洞了。虽然很难想像将太阳压缩到半径公里以内,但现在已经知道存在质量与太阳相当、半径小于10公里的中子星,从中子星到黑洞也就一步之遥了。 理论研究表明,一个黑洞的行为仅由其三个特性所规定——它的质量、它的电荷和它的自转(角动量)。无电荷、无自转的黑洞用爱因斯坦方程式的史瓦西解描述;有电荷、无自转的黑洞用赖斯纳—诺德斯特罗姆解描述;无电荷、有自转的黑洞用克尔解描述;有电荷、有自转的黑洞用克尔—纽曼解描述。黑洞没有其他特性,这已由‘黑洞没有毛发’这句名言所概括。现实的黑洞大概应该是自转而无电荷,所以克尔解最令人感兴趣。 现在都认为,黑洞和中子星都是在磊质量恒星发生超新星爆发时的临死挣扎中产生的。计算表明,任何质量大致小于3倍太阳质量(奥本海默—弗尔科夫极限)的至密超新星遗迹可以形成稳定的中子星,但任何质量大于这一极限的致密进退新星遗迹将坍缩为黑洞,其内容物将被压进黑洞中心的奇点,这正好是宇宙由之诞生的大爆炸奇点的镜像反转。如果这样一个天体碰巧在绕一颗普通恒星的轨道上,它将剥夺伴星的物质,形成一个由向黑洞汇集的热物质构成的吸积盘。吸积盘中的温度可以升至极高,以致它能辐射X射线,而使黑洞可被探测到。 1970年代初,米切尔的预言有了反响:在一个双星系统中发现了这样一种天体。一个叫做天鹅座X—1的X射线源被证认为恒星HDE226868。这个系统的轨道动力学特性表明,该源的X射线来自围绕可见星轨道上一个比地球小的天体,但源的质量却大于奥本海默—弗尔科夫极限。这只可能是一个黑洞。此后,用同一方法又证认了其他少数几个黑洞。而1994年天鹅座V404这个系统成为迄今最佳黑洞‘候选体’,这是一个质量为太阳质量70%的恒星围绕大约12倍太阳质量的X射线源运动的系统。但是,这些已被认可的黑洞证认大概不过是冰山之尖而已。 这种‘恒星质量’黑洞,正如米切尔领悟的,只有当它们在双星系统中时才能探测到。一个孤立的黑洞无愧于它的名称——它是黑暗的、不可探测的。然而,根据天体物理学理论,很多恒星应该以中子星或黑洞作为其生命的结束。观测者在双星系统中实际上探测到的合适黑洞候选者差不多与他们发现的脉冲双星一样多,这表示孤立的恒星质量黑洞数目应该与孤立的脉冲星数目相同,这一推测得到了理论计算的支持。 我们银河系中现在已知大约500个活动的脉冲星。但理论表明,一个脉冲星作为射电源的活动期是很短的,它很快衰竭成无法探测的宁静状态。所以,相应地我们周围应该存在更多的‘死’脉冲星(宁静中子星)。我们的银河指法含有1000亿颗明亮的恒星,而且已经存在了数十亿年之久。最佳的估计是,我们银河指法今天含有4亿个死脉冲星,而恒星质量黑洞数量的甚至保守估计也达到这一数字的¼——1亿个。如果真有这么多黑洞,而黑洞又无规则地散布在银河系中的话,则最近的一个黑洞也离我们仅仅15光年。既然我们银河系没有什么独特之处,那么宇宙中每个其他的星系也应该含有同样多的黑洞。Ic 星系也可能含有某种很像米切尔的拉普拉斯最初设想的‘黑星’的天体。这样的天体现在称为‘特大质量黑洞’,被认为存在于活动星系和类星体的中心,它们提供的引力能可能解释这些天体的巨大能量来源。一个大小如太阳系、质量数百万倍于太阳质量的黑洞,可以从周围每年食掉一到两颗恒星的物质。在这个过程中,很大一部分恒星质量将遵照爱因斯坦分工E=mc2转变成能量。宁静的超大质量黑洞可能存在于包括我们银河系在内的所有星系星系的中心。 1994年,利用哈勃空间望远镜,在离我们银河系1500万秒差距的星系M87中,发现了一个大小约15万秒差距的热物质盘,在绕该星系中心区运动,速率达到约2百万公里每小时(约5*10-7 5乘于10的7次方,厘米/秒,几乎是光速的)。从M87的中心‘引擎’射出一条长度超过1千秒差距的气体喷流。M87中心吸积盘中的轨道速率决定性地证明,它是一个拥有30亿倍太阳质量的超大质量黑洞引力控制之下,喷流则可解释为从吸积系统的一个极区涌出来的能量。 也是在1994年,牛津大学和基尔大学的天文学家,在称为天鹅座V404的双星系统中证认了一个恒星质量黑洞。我们已经指出,该系统的轨道参数使他们得以给黑洞准确‘量体重’,得出黑洞质量约为太阳的12倍,而围绕它运动的普通恒星仅有太阳质量的70%左右。这是迄今对‘黑星’质量有最精确测量,因而它也是关于黑洞存在的最佳的、独特的证明. 有人推测,大爆炸中可能已经产生了大量的微黑洞或原始黑洞,它们提供了宇宙质量的相当大部分。这种微黑洞典型大小同一个原子相当,质量大概是1亿吨(10-11, 10的11次方千克)。没有证据表示这种天体确实存在,但也很难证明它们不存在。系的中心。 1994年,利用哈勃空间望远镜,在离我们银河系1500万秒差距的星系M87中,发现了一个大小约15万秒差距的热物质盘,在绕该星系中心区运动,速率达到约2百万公里每小时(约5*10-7 5乘于10的7次方,厘米/秒,几乎是光速的)。从M87的中心‘引擎’射出一条长度超过1千秒差距的气体喷流。M87中心吸积盘中的轨道速率决定性地证明,它是一个拥有30亿倍太阳质量的超大质量黑洞引力控制之下,喷流则可解释为从吸积系统的一个极区涌出来的能量。 也是在1994年,牛津大学和基尔大学的天文学家,在称为天鹅座V404的双星系统中证认了一个恒星质量黑洞。我们已经指出,该系统的轨道参数使他们得以给黑洞准确‘量体重’,得出黑洞质量约为太阳的12倍,而围绕它运动的普通恒星仅有太阳质量的70%左右。这是迄今对‘黑星’质量有最精确测量,因而它也是关于黑洞存在的最佳的、独特的证明. 有人推测,大爆炸中可能已经产生了大量的微黑洞或原始黑洞,它们提供了宇宙质量的相当大部分。这种微黑洞典型大小同一个原子相当,质量大概是1亿吨(10-11, 10的11次方千克)。没有证据表示这种天体确实存在,但也很难证明它们不存在

有啊,现在的理论已经证明了,你可以再找相关资料看一下.宇宙黑洞包括物理黑洞和暗能量黑洞两种。物理黑洞有巨大的质量,但暗能量黑洞只有巨大的暗能量而没有巨大的质量。目前每个星系中心的黑洞都是暗能量黑洞。暗能量黑洞的引力与它内部的暗能量和它的旋转速度的乘积成正比,与它的体积成反比。1.宇宙黑洞的研究现状天文学家通过长期观测发现,在宇宙中有一些引力非常大却又看不到任何天体的区域,称之为黑洞。黑洞是位居宇宙空间和时间构造中的一些深不见底的类似井状的东西,具有极大的吸引力,包括光在内的任何物体都无法逃脱被吸入的命运。这就使得人们对于黑洞的研究变得异常困难:它既不向外散发能量,也不表现出任何形式的能量,人们根本无法看到它。因此,人们对于黑洞的研究就象是对一种看不见的东西进行研究。科学家们认为,黑洞由一颗或多颗天体坍缩形成,当一颗质量相当大的星体核能(氢)耗尽后,没有辐射压力去抵抗重力,平衡态不再存在时,这个星体将全面塌缩。质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。根据科学家的计算,当中子星的总质量超过三倍太阳的质量时将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。若其质量仍大于3个太阳质量时,那么连中子的气体压力也不能平衡重力,星体将继续塌缩至它的重力半径范围之内。这时,引力之大足以使一切粒子,包括光子,都被引回星体本身,不能外逸,就形成了引力极强的黑洞。黑洞可以吞噬附近的一切物质,它先将物质吸引到附近围绕它们高速旋转;随着转速的加快,物质变为炙热的等离子体,并逐渐靠近黑洞旋转中心;当它们最终接近黑洞时,就会被吞噬。通常,黑洞是无法被发现的,但是也有例外:如果在它附近有气团,则会产生飞向黑洞的气流,于是气流也暴露了黑洞的位置。众所周知,在压缩时气体物质会被加热到几百万度,同时产生强烈的X射线辐射。用X射线观测望远镜就可以探测到黑洞的存在。2004年,著名的“钱德拉”X射线观测望远镜发现了一颗巨大黑洞的X射线,并将其命名为“SDSSpJ306”,它位于距离我们地球26亿光年的MS0735星团。天文学家通过对这些X射线和其所在星系的重力影响一起进行检测,推测它“出生”于127亿年前———而宇宙大爆炸发生在137亿年前。这说明,黑洞与星系同时演化,两者谁也不会单独主导早期宇宙中星体的快速诞生。 在此次观测中,天文学家们还在处于星系中心的“SDSSpJ306”黑洞的周围发现了许多新生星体,而且更多的星体正在形成之中。该发现给新出现的星系形成演化理论提供了重要的直接证据。科学家们认为,黑洞是有质量的。黑洞一般被旋转的热气体圆盘所包围,这些热气体在以螺旋运动逐渐被黑洞吸收时会发出大量的电磁辐射。黑洞附近发光的氢原子谱线宽度与旋转速度有关。旋转速度越快,氢原子发出的谱线越宽,说明黑洞的质量越大。通过对氢原子谱线研究发现,“SDSSpJ306”黑洞有10亿个太阳重,所产生的能量更是太阳的20万亿倍。这个黑洞如此之大,以致它的引力作用范围大小与银河系相当。在这个黑洞吞噬星团的同时,还将一些热气体以射流形式喷还给宇宙,形成了两个巨大洞穴,每个洞穴的直径大约为65万光年。黑洞再次喷发出来的气体质量,相当于1万亿个太阳质量,这种喷射已经持续了1亿年之久。 黑洞有大有小。超巨黑洞的质量达到太阳的数百万甚至数十亿倍。小黑洞的质量与太阳基本处于一个数量级,主要由质量相当于太阳10倍左右的恒星发生超新星爆炸形成。超巨黑洞位于星系中心,据推测每个星系都有,质量一般约为星系总质量的。2002年10月,欧洲科学家宣布了银河系中心存在超巨黑洞的最佳证据。他们说,过去20年中,科学家们一直在观测银河系中心一些星体的活动情况,尤其对一颗名为S2的星体的运行轨道进行了跟踪研究,最终得出结论:S2附近确实存在一个巨型黑洞。质量是太阳7倍的S2,以每小时亿公里的高速每年绕银河系中心一周。之所以如此高速,是因为它周围存在黑洞,“害怕”被黑洞“吞噬”。经过计算,这一黑洞距地球万光年,质量是太阳的370万倍。 银河系中心黑洞每年“食量”不足地球质量的1%。黑洞“食量”是根据它吞噬“食物”时发出X射线的强弱程度计算出来的。科学家还提出,如果黑洞获得了源源不断的“食物供给”,就可能从相对安静的状态中“醒来”,处于活跃状态中。 2.黑洞的种类按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。但物理黑洞的体积却非常小,它可以缩小到一个奇点。 3.暗能量黑洞的形成 根据科学家们的推算,宇宙大爆炸大约发生在137亿年以前。宇宙大爆炸之后,就形成了宇宙。它由两部分组成。一是由暗能量组成的世界,称之为黑暗世界;二是物质组成的世界,称之为物质世界。黑暗世界以旋涡场的形式存在,整个宇宙空间都被各种不同大小的旋涡场所充满。而物质世界则主要是以宇宙尘埃的形式存在,它们不均匀分布在各个旋涡场之中。在一个如星系般大小的旋涡场中,以Ep来表示宇宙尘埃绕它的旋涡中心运动的总动能。该旋涡场内的暗能量则分为两部分。一部分为旋涡中心的暗能量,以En1来表示。另一部分为旋涡中心之外的暗能量,用En2来表示。以En来表示星系的总暗能量,则有En=En1+En2。宇宙尘埃的运动是由暗能量来推动的。当En=Ep时,暗能量将全部转化为宇宙尘埃运动的动能。在这种情况下,旋涡场处于一种平衡状态,它既不收缩,也不膨胀。 下面分几种情况进行讨论。(1).恒星的形成 当旋涡场内的宇宙尘埃很多时,Ep值比En大很多,即暗能量的旋转负荷太重。在旋涡场的旋转角速度不变的情况下,我们可以得到宇宙尘埃绕旋涡中心运动的总动能公式,如下所示: Ep=MpVp2/2=Mp(ωR)2/2…………(6) 上式中,Vp为宇宙尘埃绕旋涡中心运动的平均速度,Mp为旋涡场中宇宙尘埃的总质量,ω为旋涡场的旋转角速度,R为宇宙尘埃到旋涡中心的平均距离。根据这条公式,当宇宙尘埃向旋涡中心靠近时,Ep值就会减少。当Ep值比En大很多时,旋涡场的转动负荷太重。在这种情况下,旋涡场必定收缩,宇宙尘埃必定向旋涡中心靠近,最后沉积到旋涡中心处变成沉积物。随着时间的推移,旋涡中心处的沉积物越来越多,最后变成了一颗恒星。恒星形成之后,当En=Ep时,其余的宇宙尘埃就再也不能沉积到旋涡中心。这些余下的宇宙尘埃就会在较小的旋涡场中形成围绕恒星运动的自转行星。 (2).星系的形成当旋涡场很大,宇宙尘埃很多,En值与Ep相差不多时,旋涡场就处于一种平衡状态。在这种情况下,这些宇宙尘埃就无法靠近旋涡中心。这个大旋涡场中有无数个较小的旋涡场。象上述(1)所说的那样,每个小旋涡场形成一个恒星,无数个小旋涡场就会形成无数个恒星。这些小旋涡场都跟随大旋涡场旋转,由此而形成星系。(3).宇宙旋涡的形成当旋涡场内没有宇宙尘埃,即Ep=0时,旋涡场会不断地膨胀。当旋涡场内的宇宙尘埃很少时,它的总动能与暗能量相差太远,不足以阻止旋涡场的膨胀,结果,它会被旋涡场的旋转离心力抛出场外。到最后,旋涡场内将不存在任何宇宙尘埃。内部没有宇宙尘埃的旋涡场,它的旋转角速度是均匀的。旋涡场在离心力的作用下不断膨胀,它边缘的暗能量的运动速度也在不断增加。但当它的周围都有大小与它相差不多的旋涡场时,它的膨胀就会受阻。在这种情况下,旋涡场旋转的角速度以及暗能量运动的速度就相对稳定了下来,由此而形成一个不停地转动的宇宙旋涡。当星体顺着这种宇宙旋涡的旋转方向进入时,它就会被旋涡场的旋转之力弯转1800。接着,旋涡场用离心力推动它按原路返回。离开太阳系很远的慧星之所以能够返回太阳附近,所依赖的就是这种宇宙旋涡的力量。(4).旋涡场的分类我们把宇宙旋涡场按大小分为如下八种:U旋涡场:又叫宇宙旋涡场,它的范围包括整个宇宙。S旋涡场:又叫星糸团旋涡场,它的范围包括整个星糸团。A旋涡场:又叫叫星系旋涡场,它的范围包括整个星系。B旋涡场:又叫星团旋涡场,它的范围包括整个星团。C旋涡场:又叫恒星旋涡场,它的范围被局限于恒星周围,包括所有行星的运行轨道。D旋涡场:又叫行星旋涡场,它的范围被局限于行星周围,包括所有卫星的运行轨道。E旋涡场:又叫卫星旋涡场,它的范围被局限于卫星周围。F旋涡场:比E类旋涡场小的旋涡场。(5).星系黑洞的形成在每个星系的中心都有一个旋涡场,称之为星系旋涡中心。根据上述星系的形成原理,在它刚形成的时候,星系旋涡中心是没有宇宙尘埃的。在旋转离心力的作用下,它自然会向外膨胀。但在它的周围布满了很多大小与它相当的旋涡场,所以,它的膨胀受阻。各种旋涡场的旋转离心力在旋涡场边缘互相对抗,不断地进行对比和较量。经过很长一段时间之后,它们的对抗之力达到一种相对平衡状态。最后,星系旋涡中心的范围就被固定了下来。由于星系旋涡中心是星系旋涡场的动力中心,所以,它内部贮藏的暗能量在星系中是最强大的。在强大暗能量的推动下,星系旋涡中心的旋转速度越来越快,暗能量在强大离心力的作用下不断地向旋涡中心的边缘集中,星系旋涡中心的中部地带的暗能量不断地被抽走,越来越少。最后,星系旋涡中心的内部就变成了一种真空状态,至此,它的旋转速度才能稳定下来。而星系旋涡中心的边缘就形成了一个由高速旋转的暗能量组成的圆盘,它把星系旋涡中心紧紧地包围了起来。这个高速旋转的圆盘带动周围的气体运动,使之发生激烈磨擦而发热,由此而变成了一个热气体圆盘。这个内部成为真空状态的星系旋涡中心就是一个暗能量黑洞,称之为星系黑洞。星系黑洞被一个热气体圆盘所包围。这个圆盘的旋转速度有多大呢?在星系黑洞的形成过程中,它内部是没有质量的,即在旋涡中心内部不存在物质运动的动能。所以,它的虚拟质量为零。根据暗能量的动能公式En=MnVn2/2,当虚拟质量Mn=0时,圆盘中暗能量的速度Vn将达到无穷大。但实际上,宇宙黑洞会吸入物质,所以,圆盘的速度不可能达到无限大。将光子的性质与这个圆盘进行比较,两者的质量都接近零。由此类推,这个热气体圆盘的旋转速度应该接近光速。由于星系黑洞是A旋涡场的旋转中心,所以我们又称之为A黑洞。(6).星团黑洞在星系中有很多B旋涡场。当B旋涡场内有很多宇宙尘埃,En值与Ep相差不多时,B旋涡场就处于一种平衡状态。在这种情况下,这些宇宙尘埃就无法靠近旋涡中心。B旋涡场内也有很多C旋涡场。象上述(1)所说的那样,每个C旋涡场形成一个恒星,很多C旋涡场就会形成很多恒星。这些恒星围绕B旋涡场的中心旋转,由此而形成一个星团。在每个星团的中心都有一个旋涡场,称之为星团旋涡中心。很显然,星团旋涡中心内部是没有宇宙尘埃的。最后,它也象星系旋涡中心一样发展为一个暗能量黑洞,称之为星团黑洞。很显然,星团黑洞比星系黑洞小很多。星团黑洞的形成过程请参看第(5)部分内容。由于星团黑洞是B旋涡场的旋转中心,所以我们又称之B黑洞。(7).星系团黑洞宇宙中有很多S旋涡场。当S旋涡场内聚集到很多星系时,就会形成一个星系团。产生星系团的条件是:星系绕星系团中心旋转的总动能约等于S类旋涡场的暗能量。在每个星系团的中心有一个旋涡场,称之为星系团旋涡中心。最后,它也象星系旋涡中心一样发展为一个暗能量黑洞,称之为星系团黑洞。由于它是S旋涡场的旋转中心,所以,又称之为S黑洞。星系团黑洞的形成过程请参看第(5)部分内容。(8).宇宙中心黑洞宇宙是一个大旋涡场,称之为U旋涡场。它的范围包括整个宇宙。所以,U旋涡场的中心就是宇宙的中心。在宇宙的中心有一个旋涡场,称之为宇宙中心旋涡场。最后,它也象星系旋涡中心一样发展为一个暗能量黑洞,称之为宇宙中心黑洞。由于它是U旋涡场的旋转中心,所以又称之为U黑洞。宇宙中心黑洞的形成过程请参看第(5)部分内容。综上所述,暗能量黑洞分为四种类型,从大到小排列如下:U黑洞、S黑洞、A黑洞和B黑洞。U黑洞是宇宙中最大的黑洞,而且它是宇宙的旋转中心。4.黑洞引力公式根据上述理论,暗能量黑洞由如下两部分组成:一是热气体圆盘,二是被热气体圆盘所包围的宇宙真空。很显然,在热气体圆盘的内部和外部之间形成了一种压强差,它内部的压强比它外部低很多。我们用P1和P2分别来表示热气体圆盘的外部压强和内部压强,用P来表示它们的正压强差,则P=P1-P2。很显然,正压强的方向是从热气体圆盘的外部指向它的内部的。用V来表示热气体圆盘的旋转速度,用En1来表示它的暗能量。用L来表示黑洞的体积。则,我们可以得到如下公式: P=KEn1V/L …………(7)公式(7)中,K为一个比例系数,称之为暗能量黑洞的引力常数。公式(7)的意思是:黑洞内外的正压强差与黑洞内的暗能量和黑洞圆盘的旋转速度的乘积成正比,与黑洞的体积成反比。当一个物体接触热气体圆盘时,两者之间就会产生一个接触面积,用S来表示。我们用F来表示黑洞对该物质的吸引力,则可得到如下公式: F=PS=KSEn1V/L …………(8)公式(8)就是黑洞对物体的引力公式。很显然,黑洞对物体的引力与物体的质量大小无关。对于巨大黑洞来说,它的暗能量非常强大,它的旋转速度接近光速。所以,这种黑洞的引力非常巨大。黑洞吸引物体是有一个过程的。当物体在黑洞的周围但未接触黑洞的热气体圆盘时,物体被黑洞吸引的受力面积S=0,则黑洞对物体的引力F=0。它意味着,黑洞外部的物体运动与黑洞的引力无关。星系中所有的恒星都绕黑洞运动,是因为黑洞是星系旋涡场的旋转中心,而不是因为受到黑洞引力的作用。当物体接触热气体圆盘时,它就会受到黑洞的引力。但刚接触时的引力很小,而圆盘周围的气流速度却非常大。在这种情况下,物体必然被圆盘气流带动,并跟随气流而去。随着物体与圆盘的接触面增大,黑洞对物体的引力也在增大。当黑洞对物体的引力比物体绕黑洞运动的离心力大时,它就会被吸入黑洞之中。这种情况表明,虽然黑洞的引力与物体的质量无关,但物体被黑洞引力吸入洞内的过程却与物体的质量有关。在物体进入黑洞之后,该物体就会被黑洞内部的压强所包围。物体内部的压强与它在黑洞外部时的压强相等。所以,在物体的内部和外部之间就形成了一种压强差,根据公式(7)就可以求出它的值。正压强差的方向是从物体内部指向外部的,受力面积包括物体的全部表面。结果,物体的整个表面同时受到强横无比的拉力,在刹那之间它就会被这种强大的拉力撕得粉碎,最后变成了气态状。 当光子进入黑洞时,它也会被黑洞的引力所包围。光子内部的压强与它进入黑洞之前是一样。所以,在光子的内部和外部之间就会形成强横无比的压强差。结果,象上面所叙述的一样,在光子进入黑洞的刹那之间就会被黑洞的引力撕得粉碎。所以,在光子进入黑洞后,它是无法从黑洞中逃出来的。结论:包括光子在内的任何物体,它们进入暗能量黑洞之后都会在刹那之间爆炸开来,变成气态状。

相关百科

热门百科

首页
发表服务