首页

> 学术论文知识库

首页 学术论文知识库 问题

毕业论文显著分析怎么做

发布时间:

毕业论文显著分析怎么做

卡方检验、或是独立样本T检验、one-way anova

你的问题中提到了“频度分析”,单就这个词来说,可使用大样本资料的U检验或列联表资料的卡方检验;不过你在问题补充中,又对数据进行了量化,似乎是要进行均值比较,假若是这样,则选用参数t检验或非参数法的秩和检验。

怎样对论文进行分析

怎样对论文进行分析,有时候我们在写论文的时候,会被老师要求先去分析论文的,可是对于从来都没有分析过论文的学生来说,是一件难事的,我和大家一起来看看怎样对论文进行分析的相关资料。

01、 确定研究目标

确定研究目标,看似是一个“伪命题”,我论文的研究方向都定好了,研究目标不就显而易见了嘛。

研究方向只是一个宽泛的概念,具体落实到分析层面,具体要研究什么?得到什么结果?要用什么方法?很多时候我们并没有想清楚。

这里建议大家在开始分析前,先对着自己收集来的数据和问题,列出准备研究的内容。

还记得高中每次考试前语文老师一定会提醒:写作文的时候拿到题目先不要动笔!看清题目,想好了列出提纲再动笔!

数据分析也是如此,分析前制定一个分析框架,可以帮助我们快速捋清思路,不至于漫无目的地乱分析,同时也能节省很多时间。

当然,对于初学者来说,制定一个完整的分析框架比较困难,建议大家多参考一些领域内的专业文献,看看其他人是如何设计分析的。

SPSSAU也提供几类常见的分析框架,研究者可以结合自己的问卷类型进行选择。

SPSSAU-量表型问卷

SPSSAU-非量表型问卷

两个注意点:

① 框架的核心不要偏离研究主题,所做的任何分析都是为研究主题服务,因此一定注意避免出现与主线不相干的内容。

②在这一步中,可以先不去管具体要用哪种分析方法,如何分析。更重要的是,先搞清想分析什么。

比如,问卷调查里,一开始的几道题基本都是对研究对象个人信息的收集。

第一,可对研究对象的性别、年龄、学历等个人信息进行简单统计。

第二,可用个人信息与核心研究项联系到一起,分析不同背景的人群对核心研究项的态度或行为是否有差异。

02、 判断数据类型

有了基本框架后,就要进入到具体的分析方法选择阶段。

判断数据类型是第一步,在SPSSAU之前的文章中,对此都有详细的说明,这里不再重复。

03、 选择分析方法

在完成上面的步骤后,基本上已经完成对数据部分的了解,下面就需要结合数据类型,选择对应的分析方法。

对单个题的统计分析比较简单,主要困扰大家的是对于两个题或多个题的关系研究如何选出正确的分析方法。

变量的关系最常见有:相关关系、影响关系、差异关系,及其他关系。

SPSSAU的建议是:先用一句话描述研究内容,话里面拆开成X和Y:然后结合X与Y的数据类型进行选择。

根据X和Y的'个数,以及方法功能,分成几个表格汇总如下:

注:单变量意为分析只涉及一个分析项X(变量)。

注:分析涉及1个自变量X和一个因变量Y。

每种方法的使用场景不是固定不变的,这里的只提供最常用的说明,帮助初学者快速了解,更深入的方法介绍请参考SPSSAU帮助手册说明,以及SPSSAU视频教程。

确定方法之后,可使用spssau系统进行分析,分析界面也是区分了X、Y。将标题放置到对应位置即可分析得出结果。

总结

最后我们再回顾一遍整个方法选择的流程:

选择分析框架→判断变量的数据类型→表格查找分析方法→开始分析

同时要提醒一点,在分析前要有意识的剔除无效数据(如一个人重复填写,明显的异常值等),以保证结果的准确性。

1、什么是论文分析

我们在分析论文前,首先要了解分析的含义,分析是分解文学作品,独立解决每个观点。当我们分析一篇论文时,主要目标是要确保用户在没有太多争议的情况下来获得主要观点。在分析论文时展现批判性的思维能力,在分析中必须要对某一些事情作出判断,然后得出结论,只有这样在完成论文后才能说服用户已经读过该篇论文。

2、分析论文的要点

总结论文的主要内容,刚开始写论文分析时,我们要对论文中的要点进行一个总结,让大家能够理解论文的全部内容。摘要是作为论文大纲的概述,但不是主要的分析点,只是用来指导用户简要理解论文的内容。作者在论文中提出的主要论点以及论据,这才是分析的开始,我们需要通过分析作品来给出证据来证明论文内容,还应该找出缺陷。因为只有越有说服力的论文内容,这样才更加突出。论文查重系统怎么进行选择?

3、论文分析格式

最后我们需要了解,用户要提出适合他们的语气,必须确保了解用户群体。毕业论文主要的用户是导师,所以必须很正式。在上课时,我们可以分析一篇论文,需要向了解用户群体将有助于了解如何分析论文。在写论文之前,那么首先的一个步骤就是要阅读分析论文,应该多次阅读,然后积累我们的知识,如果对论文的理解不够的话,那么就无法对论文进行分析。所以做好论文前的准备工作也是非常重要的。

1、案例标题

案例的标题应含蓄、客观、具有新意。案例的标题应注意避免加入作者的主观倾向,也应避免带有不必要的感情色彩。

2、案例正文

案例正文是案例主体部分的核心,应介绍案例的人物、组织以及事件的经过。可以按照时间顺序或事情发展的逻辑顺序组织案例的主要内容。尽量加入一些数字和图表,以加深读者对案例的理解。

(1)案例正文的叙述,要做到全面、周密、客观,避免加人作者的主观分析评价。同时,还要注重情节的真实感和生动性。

(2)案例正文中涉及的组织、人物和统计数据等,可以作适当的技术性处理。例如,隐去组织和人物的真实名称而采用化名,对真实的统计数据作同比放大(或缩小)处理。

(3)案例正文中的内容也可根据编写需要进行适当标注。

3、案例分析

案例分析是对案例正文所作的全面、系统、深入的分析。

(1)分析报告的内容必须针对案例正文。案例正文中的重要信息与内容应在分析报告中得到全面体现;案例分析报告中用到的素材都必须是案例正文中所提供的。

(2)对案例中某些有价值的问题可作适当的引申与探讨,但所做的引申与探讨必须与正文相关,不能脱离案例正文中的内容。

三、案例分析报告基本格式要求

1、封面和封底

封面必须在学校文印室打印。封面含中英文标题,中文标题置于英文标题之上。中文标题文字:黑体,小2;英文标题:Times New Roman,小2;其他:宋体,小3、封面所有填写信息一律居中。

2、标题

应在25字以内,能简明、具体、确切地表达论文的内容。

3、扉页

扉页是对研究生论文题目、导师、单位等作较详细的说明,其格式为分类号、密级、UDC、编号:宋体,5号;其他信息:宋体,4号。不编页码。

4、中文摘要(Abstract)

在500字以内。摘要是对学位论文内容不加注释和评论的简述。它应使人不阅读学位论文全文即可获得全文的主要信息和结论,是一篇完整的短文,可以独立使用。论文摘要应说明研究工作的目的、方法、内容和结论。要突出本文的新见解和研究工作的创新点。

中文“摘要”、“目录”、“图目录”、“表目录”等,用小2号,黑体,行距2,居中。每个字中间空两格,如目录,“目”与“录”中间空两格。

5、关键词(Keyword)

论文关键词一般3至8个,应采用能覆盖论文主要内容的通用标准词条(参照相应的技术术语标准),按词条的外延层次从大到小排列,并以显着的字符另起一行,排在摘要左下方。词之间用逗号分隔。

6、英文摘要

与中文摘要相应的英文摘要和关键词。

“致谢”、英文“摘要”、“目录”、“符号缩略表”、各章标题及“参考文献”、“附录”等,居中,用大写字母,字号18,行距2,加粗,段前后各空1行(行距2)。

毕业论文实证分析不显著怎么办

不显著很正常直接改结论,就看你的造化了

呵呵,改数据吧,一般很少有论文的数据是想要的结果

我觉得你可以再去找一些知识丰富你一下你的论文,让得出来的结果更加显著一些。

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

毕业论文实证分析都不显著怎么办

我觉得可以适当的发散一下,这样会更加的丰富,变得更合适。

呵呵,改数据吧,一般很少有论文的数据是想要的结果

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

写的论文得出来的结果不显著,可以再改改呀,或者是找比自己学习好的人帮你看看问题出在了哪里

毕业论文数据分析都不显著

呵呵,改数据吧,一般很少有论文的数据是想要的结果

看看数据是否出现了错误,可以先认真的核查一遍,看看自己的计算过程是否正确,如果没有错误,那就更换下实验的数据的,把数据修改一下。

找到原因,重新做实验。如果做出的结果不显著,要分析一下,找出原因,重新做实验得结果。

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

毕业论文实证不显著可以分析

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

上交论文后会给你结果是否显著1:实事求是法在结论部分坦诚,结论与预期不符,并分析为什么会造成这种结果:样本选择问题?数据收集问题?研究方法问题?还是单纯的预期不准确?进行了合理的分析之后,阐述实际的研究结果,不失为一种坦诚的、大度的、有效的方法。这种方法贵在实事求是,体现自己的态度:虽然我的学术水平确实一般,但是我的态度是端正的。老师一般不会难为这种学生的。2:鸵鸟法数据确实和预期不符,那么久摆在这里好了。反正答辩老师不会仔细看,他们不会发现这个问题的,看到就说不知道就是了。这种办法并不推荐,属于到最后没有时间修改的自暴自弃法。

P值都大于,接受原假设。不能直接改结论。一看看数据是否有问题,二取对数或差分后再看。

再好好分析,用别的的数据、别的方法再去研究,得出新的分析结论。可以去咨询老师,看看是哪里出的错误,能及时纠正。

相关百科

热门百科

首页
发表服务