在职研究生论文都要进行检查的,如果有造假、抄袭等学术不端问题,一般都能查出来的。现在对这种问题查得很严的,你想不被查出来,那就自己好好写
你就说,那种一问三不管三不知的导师,唯一能告诉的就是改格式,多看看语句和标点符号。实验室的条件又差,要啥啥没有,还要借其他学校实验室做实验,还不定能排上。谁能说第一次做实验,没有老师的带领,就能做完美?谁敢说,一问老师,老师就说自己看文献期刊人家怎么做的。一次做不好,你还得跟别人学校学生排队,你能做几次?有时候排给你是晚上,你还要通宵。又赶上疫情,别人学校又不能进,特么容易吗,招谁惹谁了,能怎么办,有些东西真不是自己不好好努力,而是只能这样。读研谁不想读出个样子来,一个专业都研究到这个地步了,谁不想好好干,可现实就这样
计算机硕士论文造假会被查出来。
毕业论文写作技巧:
1.先要围绕着论题去占有和选择材料。
围绕着立论去占有材料,多多益善的去看。有的论题是来自老师已经拟订好的题目。有相当一部分学生是自己确立论题的,先积累材料,再有论点。一旦立论确立了以后,再回过头来去占有材料。
2.要对研究对象的外延材料占有。
比如要研究的是作家作品的话,那么就要对作家写作的背景材料,包括政治经济背景、文艺思潮背景等。还有作家谈自己创作的材料,还有他人已经研究过的材料等。有了这些材料,就可以做到知人论世,可以使自己在研究当中尽量公允,不带偏见。
3.在有材料的基础上要选择材料。
决不能只要有材料就统统拉进来。这是写论文常出现的问题。比如写一万字,可能写到五六万字。把握不住自己的时候,可以让老师来帮助,告诉哪些能用,哪些不能用。多占有材料总比没有材料写不出来要好,因为删总是好删的。
只要没有剽窃现象,问题不大。不会有人关心的。但剽窃万万不可!
原文: Why Most Published Research Findings Are False 译:张小邪 人们越来越担心的是,目前大多数已发表的研究结果都是错误的。研究主张成立的概率可能取决于研究的功效和偏倚、同一问题上其他研究的数量、以及每个科学领域中所探究的关系中真与假的比例。在这种框架下,当研究领域较小时;当效应值较小时;当被测关系的预选数量更多而预选次数更少时;当设计,定义,结果和分析模式具有更大灵活性时;当存在更大的金钱和其他利益和偏见时;当更多的团队参与科学领域以追求统计学意义时,研究结论就不太可能成立。模拟表明,对于大多数研究设计和设置,研究结论为假可能性更大。此外,对于一些当前科学领域,声称的研究结果可能通常只是对普遍存在的偏倚的准确测量。在本文中,我将讨论这些问题对研究的组织和解释的影响。 不断涌出的证据有时反驳了已发表的研究结果,随之而来的是困惑和失望。从临床试验和传统流行病学研究[1-3]到最现代的分子研究[4,5],研究设计的范围都存在驳斥和争议。越来越多的人担心,在现代研究中,错误的研究结果可能是已发表的研究主张的大多数乃至绝大多数[6-8]。然而,这并不令人惊讶。可以证明,大多数声称的研究结果都是错误的。在此,我将研究影响这一问题的关键因素及其中的一些推论。 几位方法学家指出[9-11],研究结论的非重复(缺乏证实)率高是追求便利的结果,然而,仅仅基于对单个研究在形式上的统计学显著性评估,就得出此研究结果毋庸置疑的结论,这种做法是站不住脚的(形式上的统计显着性,通常指p值小于)。研究结论的真伪并不总是能恰当地用p值(P-Value)表示和概括,但是,不幸的是,有一种普遍的观点认为医学研究文章应仅基于p值进行解释。研究结论在此定义为任何形式上能具有统计显著性的关系,例如有效的干预措施,信息性预报器,风险因素等等。其实 “负面”研究也非常有用。 “负面”实际上是一个误称,而且这种误解很普遍。但是,这里我们只针对研究者声称存在的关系,而不是无效的发现。 It can be proven that most claimed research findings are false. 如前所述,一项研究发现确实为真的概率取决于该事实为真的先验概率、研究的统计能力以及统计显著性水平[10,11]。想象一个2×2的表格,在表格中将研究结果与科学领域中真实关系的黄金标准进行比较。在一个研究领域中,关系存在真和假两种假设。令R为现场测试的“真关系”与“假关系”的数量之比。 R是该领域的特征,它可以有很大的变化,这取决于该领域是以高度可能的关系为目标,还是在可能的数千个假设中只搜索一个或几个真实的关系。为了简化计算,我们也可以认为,在这些领域中,要么只有一个真实的关系(在许多可以被假设的真实关系中),要么在几个现有的真实关系中找到任何一个的功效是相似的。一个关系为真的先验概率为R⁄(R+1)。研究发现真关系的概率反映的是功效1-β(1减去第二类错误率)。当没有一个关系真正存在时,声称关系为真的概率反映了Ⅰ型错误率,α。假设在该领域中正在探究c关系,表1中给出了2×2表的期望值。在基于正式的统计显著性声明了一项研究发现后,得出的结论是后验概率为真的预测值,PPV(positive predictive value)。 PPV也就是Wacholder等人所说的假阳性报告概率的补充概率[10]。根据表1,可以得出PPV =(1-β)R/(R-βR+α)。因此,如果(1-β)R>α,则研究发现更可能为真。通常,由于绝大多数研究者都取α= ,因此这意味着,如果(1-β)R> ,则研究结果更可能是对的。不太容易理解的是,全球各地不同研究人员团队的偏倚和重复进行的独立测试的程度可能会进一步扭曲这一状况,并可能导致研究结果真正属实的可能性更小。我们将尝试在类似的2×2表的环境中对这两个因素进行建模。 首先,让我们将偏倚定义为各种设计,数据,分析和表示因素的组合,这些因素往往会在不应该产生的时候产生研究结果。假设u是那些本不应该成为的 "研究结果",但最终却因为偏倚而呈现和报告为分析结果的比例。即使研究设计,数据,分析和陈述是完美的,也不应将偏倚与机遇变异相混淆,后者有一定概率会导致某些发现是错误的。在分析或报告结果的过程中,偏倚可能导致对分析或报告结果的操纵。断章取义或歪曲事实的报告是这种偏倚的典型形式。我们可以假设u并不取决于是否存在真实的关系。这不是一个不合理的假设,因为通常不可能知道哪些关系确实是真实的。在存在偏倚的情况下(表2),PPV =([1-β] R +uβR)⁄(R +α-βR+ u-uα+uβR),PPV随u的增加而减小,除非1-β ≤α,即在大多数情况下为1-β≤。因此,随着偏倚的增加,研究结论正确的机会将大大减少。图1中显示了针对不同功效水平和针对不同验前比(译者:即R)的情况。 反过来,真正的研究结果有时可能会因为反向偏倚而无效。例如,对于较大的测量误差,关系会在噪音中丢失[12],或调查人员无法有效使用数据,或他们没有注意到统计上显着的关系,或可能存在利益冲突,从而使他们倾向于 "埋没"重要的研究结果[13]。尚无良好的大规模实证证据表明,在不同的研究领域中,这种反向偏倚可能发生的频率有多高。然而,或许可以公平地说,反向偏倚并不常见。此外,测量误差和数据使用效率低下的问题可能正变得不那么频繁,因为随着分子时代技术进步,测量误差已经有所降低,研究者对数据的处理也越来越复杂。无论如何,反向偏倚可以与上面的偏倚相同的方式建模。同样,反向偏倚不应该与机遇变异混为一谈,后者可能会因为机会而错失一段真正的关系。(译者:上一段说偏倚越大,错误结果被认为真的可能性越低。这一段说,偏倚过大,有可能让真正的结果被埋没。) 几个独立的团队可能正在解决同一组研究问题。随着研究工作的全球化,几个研究团队(通常是几十个团队)可能会探索相同或相似的问题,这几乎是一种惯例。不幸的是,在某些领域,到目前为止,主流的心态一直是专注于单个团队的孤立发现,孤立地解释研究实验。至少有一项研究报告宣称有研究结果的问题越来越多,这就使得人们的注意力向这些问题倾斜。在关于同一问题的几项研究中,至少有一项研究声称其研究发现有统计学意义的概率很容易估计。对于n个等功率的独立研究,2×2的表(如表3)所示:PPV=R(1−βn)/(R+1−[1−α]n−Rβn)(不考虑偏倚)。随着独立研究数量的增加,除非1−β<α,即典型的1−β<,否则PPV有下降的趋势。在图2中显示了针对不同功效水平和不同的验前比的情况。对于不同功率的n个研究,在i = 1到n的情况下,βn被βi的乘积所取代,但推论是相似的。方块1中显示了一个实际示例。基于上述考虑,可以得出有关研究发现确实为真的概率的一些有趣的推论。 小样本量意味着较小的功效,对于上述所有函数,真正研究结果的PPV值随功效向1-β= 降低而降低。因此,在其他因素相同的情况下,在进行大研究的科学领域,如心脏病学的随机对照试验(几千名受试者随机化)[14],比起小研究的科学领域,如大多数分子预测因子的研究(样本量小100倍)[15],研究结果更有可能是真实的。 功效也与效应值有关。因此,在效应大的科学领域,如吸烟对癌症或心血管疾病的影响(相对风险3-20),与公认效应较小的科学领域,如多基因疾病的遗传危险因素(相对风险)[7],研究结果更有可能是真实的。现代流行病学越来越被迫以较小的效应规模为目标[16]。因此,真实研究成果的比例预计会下降。按照同样的思路,如果一个科学领域的真实效应值非常小,那么这个领域很可能会受到几乎无处不在的假阳性主张的困扰。例如,如果复杂疾病的大多数真正的遗传或营养决定因素的相对风险低于,那么遗传或营养流行病学的研究将在很大程度上是乌托邦式的。 如上所述,后验概率为真(PPV)在很大程度上取决于验前比(R)。因此,研究结果在验证性设计中,如大型III期随机对照试验或荟萃分析(meta-analyses)等,比起假设生成实验,研究结果更有可能是真的。基于大量经过汇编和测试的信息,被认为具有很高信息量和创造力的领域应具有极低的PPV,如微阵列和其他以发现为导向的高通量研究[4,8,17]。 对于一些研究设计,如随机对照试验[18-20]或荟萃分析[21,22]等,灵活性增加了将 "负面 "结果转化为 "正面 "结果的可能性,即偏倚u。遵循共同的标准很可能会增加真实发现的比例。研究结果也是如此。相较于设计了多种结果(例如精神分裂症结果的量表),当结果是明确和普遍认同的(如死亡),真实的结果可能更常见[23]。类似地,与分析方法仍处于实验阶段(例如,人工智能方法)并且只报告“最佳”结果的领域相比,使用普遍认同的、刻板的分析方法(例如,KaplanMeier曲线图和对数秩检验)的领域[24]可能产生更大比例的真实结果。不管怎么说,即使在最严格的研究设计中,偏倚似乎也是一个主要问题。例如,有强有力的证据表明,选择性结果报告,对报告的结果和分析进行操纵,即使对于随机试验也是一个常见的问题[25]。仅仅取消有选择的出版,并不能使这个问题消失。 利益冲突和偏见可能会增加偏倚u。利益冲突在生物医学研究中非常常见[26],虽然通常它们的报道不足且数量较少[26,27]。偏见不一定有经济根源。某一特定领域的科学家可能纯粹因为相信科学理论或致力于一己的发现而产生偏见。许多看似独立的、以大学为基础的研究可能只是为了给予医生和研究人员晋升或终身教职的资格,而不是出于其他原因。这样的非财务冲突也可能导致报告结果和解释被扭曲。有声望的研究者可能通过同行评审程序压制反驳他们的研究结果出现和传播,从而使他们的研究领域延续错误的教条。经验证据表明,专家意见极不可靠[28]。 这似乎是自相矛盾的推论,因为如上所述,当许多研究人员团队参与同一领域时,个别发现的PPV会降低。这可能解释了为什么在引起广泛关注的领域中,我们因重大发现而兴奋不已时,紧随其后的是深深的失望。随着很多团队挤入同一领域工作,随着大量实验数据的产生,要想击败竞争对手,时机变得至关重要。因此,每个团队可能会优先追求和传播其最令人印象深刻的 "正面 "成果。只有当其他团队在同一问题上找到了“正面”关联时,“负面”结果才可能变得具有传播吸引力。在这种情况下,驳斥一些著名期刊上的说法可能是有吸引力的。有人提出了Proteus现象这个术语来描述这种快速交替出现的极端研究主张和极端相反的反驳现象[29]。经验证据表明,这种极端对立的序列在分子遗传学中非常普遍[29]。 这些推论分别分析了每个因素,但这些因素往往相互影响。例如,在普遍认为真实效应值较小的领域工作的研究者,可能比在普遍认为真实效应值较大的领域工作的研究者更有可能进行大型研究。或者,偏见可能会在一个热门的科学领域盛行,进一步削弱其研究结果的预测价值。持有高度偏见的利益攸关方甚至可能制造障碍,破坏获得、传播相反结果的努力。反过来,一个领域很热门或能吸引浓厚的投资兴趣,有时会促进研究规模的扩大和研究水平的提高,从而提高其研究结果的预测价值。或者,大规模以发现为导向的测试可能会发现大量的重要关系,使研究者有足够的内容汇报及进行进一步的搜索,从而避免了数据挖掘、操纵。 在本文描述的框架中,PPV超过50%是相当困难的。表4提供了针对各种情况(可能是特定研究设计和设置所特有的)针对功效的影响,基于真实与非真实关系的比率和偏倚所开发的公式进行模拟的结果。从一项进行良好、有充分功效、以先验几率为50%(干预有效)开始的随机对照试验中发现,一项发现最终有大约85%的情况下是正确的。对高质量随机试验的验证性荟萃分析预期会有相当相似的表现:潜在的偏倚可能会增加,但与单一的随机试验相比,功效和预检机会更高。相反,如果R≤1:3,来自非结论性研究的荟萃分析结果很可能是错误的。来自功效不足的早期临床试验的研究发现,如果存在偏倚,仅有约四分之一的研究结果可能为真,甚至更少。以探索为导向的流行病学研究表现更差,特别是在功效不足的情况下,但即使功效充足,如果R=1:10,流行病学研究也可能只有五分之一的可能是真的。最后,在以发现为导向的研究中,如果测试的关系超过真实关系的1,000倍(例如,测试了30,000个基因,其中30个基因可能是真正的罪魁祸首)[30,31],即使在实验室和统计方法、结果和报告的标准化程度相当高、偏倚很小的情况下,每个已确认的关系的PPV也非常低。 如前述,大多数现代生物医学研究都是在研究前和研究后获得真实发现的概率非常低的领域进行的。让我们假设,在一个研究领域中,根本没有任何真正的发现。科学史告诉我们,至少根据我们目前的理解,过去科学工作常常浪费在完全没有真正科学信息的领域。在这样的“零场”中,理想情况下,在没有偏倚的情况下,所有观察到的效应大小都会在零场附近偶然变化。观察到的结果偏离预期的程度仅仅是偶然的,这仅仅是对普遍存在的偏倚的纯粹衡量。 例如,让我们假设缺乏营养或饮食习惯实际上是形成特定肿瘤风险的重要决定因素。我们还可以假设,科学文献研究了60种营养素,并声称所有这些营养素都与罹患这种肿瘤的风险有关,而在比较摄入量上限和下限的相对风险在至之间。那么,声称的效应值只是衡量了这些科学文献的产生过程中所涉及的净偏差。其实际上是对净偏差的最准确的估计。甚至可以说,在 "零场"之间,声称效应值更高的领域(往往伴随着医学或公共卫生重要性的声称)只是那些维持了最严重的偏倚的领域。 对于PPV很低的领域,为数不多的真实关系不会对整体情况造成太大扭曲。即使某些关系是正确的,观察到的效应分布的形状仍然可以清楚地衡量该领域所涉及的偏倚。这个概念完全颠覆了我们看待科学成果的方式。传统上,研究人员会兴奋地将巨大而极其重要的影响视为重要发现的迹象。在现代研究的大多数领域中,太大和太显著的影响实际上更有可能是巨大偏倚的迹象。它们应引导研究人员仔细地进行批判性思考,以了解其数据,分析和结果可能出了什么问题。 当然,在任何一个领域工作的研究人员都很可能不愿意接受这样一个事实,那就是,他们的职业生涯所处的整个领域都是一个 “零场”。然而,其他方面的证据,或技术和实验的进步,可能最终会导致一个科学领域的瓦解。衡量一个领域的净偏倚,也可能有助于了解其他领域的偏倚范围,在这些领域中,类似的分析方法、技术和冲突可能会在其他领域中使用。 大多数研究结果都是错误的,这是不可避免的吗?还是我们可以改善这种情况?一个主要的问题是,我们不可能百分之百肯定地知道任何研究问题中的真相是什么。在这方面,纯粹的 "黄金 "标准是无法实现的。然而,有几种方法可以提高后验概率。 提供更有力的证据可能会有所帮助,例如大型研究或低偏倚荟萃分析,因为它更接近未知的“黄金”标准。然而,大型研究仍可能存在偏倚,应该承认并避免这些偏倚。此外,对于当前研究中提出的数百万和数万亿个研究问题,大规模证据是不可能获得的。大规模证据应该针对先验概率已经相当高的研究问题,这样一个重大研究发现会使得后验概率可以被认为是相当确定的。当主要概念而不是狭义的、具体的问题能够得到检验时,也就特别指出了大规模证据的存在。一个否定的结论不仅可以反驳一个具体的建议主张,甚至可以驳斥整个领域或相当一部分的主张。根据狭义标准选择大规模研究的表现,例如特定药物的营销推广,这在很大程度上是浪费研究。此外,人们应该警惕的是,极大规模的研究,也许更有可能为一个与空值没有真正意义上区别的小效应,找到形式上的统计学显著性差异[32-34]。 其次,大多数研究问题都是由多个团队解决的,强调任何一个团队的统计学研究结果都是有误导性的。重要的是证据的整体性。通过提高研究标准和减少偏见来缩小偏倚也可能有所帮助。然而,这可能需要改变科学心态,而这可能很难实现。在一些研究设计中,通过研究的前期注册,如随机试验等,可提高成功的概率[35]。这是因为注册将对假设生成研究构成挑战。在领域内对数据收集或研究人员进行某种注册或联网可能比注册每个假设生成实验更可行。不管怎么说,即使我们在其他领域的研究注册方面没有取得很大的进展,但制定和遵守协议的原则可以从随机对照试验中更广泛地借鉴。 最后,我们不应该追逐统计学上的显著性,而应该提高我们对R值范围(验前比)的理解,这是研究真正能够发挥作用的地方[10]。在进行实验前,研究者应该考虑他们所测试的是真实关系而不是非真实关系的概率。推测的高R值有时会被确定。如上所述,只要在伦理上可以接受,应该对那些被认为是相对成立的研究结果进行偏差最小的大型研究,看看这些研究结果被证实的频率有多高。我怀疑有一些既定的 "经典 "将无法通过检验[36]。 然而,大多数新发现将继续来自验前比很低,甚至非常低的假设生成研究。那么,我们应该承认,单项研究报告中的统计显著性检验仅提供了部分情况,而不知道在报告之外和相关领域内的相关研究中,一共进行了多少检验。尽管有大量的统计文献可以进行多重检验校正[37],但通常情况下,我们不可能知晓报告作者或其他研究团队在报告研究发现之前进行了多少数据挖掘。就算这一点是可行的,我们也无法得知验前比是多少。因此,不可避免的是,人们应该对在相关研究领域和研究设计中被探究的关系中,有多少种关系是真实的,做出大致的假设。我们考虑的范围越广泛,就越有可能在独立研究中为确定验前比提供指导。在其他相邻领域中发现的偏倚经验也将是有益的借鉴。 在其他邻近领域检测到偏倚的经验也将有益于借鉴。尽管这些假设在很大程度上是主观臆断,但它们在解释研究主张并将其置于上下文中仍然非常有用。
然后写个勘误发表一下。这样的事情经常发生,不用担心,除非是使得论文point不能成立的错误。shy2400(站内联系ta)如果不是颠覆性的错误,没事的。向给你发邮件的人说明一下。如果觉得有必要,跟主编邮件说下,勘误也可以;小错误不会有很大影响的,别太担心。tjkai(站内联系ta)一般没关系.如果你解决的问题不是非常热门的公开问题,而且你不是大牛也没有挂上大牛的名字,没人会关注你的.但是真要有人问到,一定要敢于认错.
你发现知网上的硕士论文里边有错误,是应该告诉编辑部的,这个学生的学位应该是不会被取消的。
和这个作者先沟通下,确认你发现的错误是否确实存在,排除理解错误等乌龙。如果存在,可以敦促做后续处理,例如修正等。
如果说实在严重的话,可以像所发期刊提出修改申请,之后由所发期刊杂志社向知网提出申请。申请审核通过后再提交文章进行二次审核。
中国知网成立背景:
中国知网,是国家知识基础设施(National Knowledge Infrastructure,NKI)的概念,由 世界银行于1998年提出。CNKI工程是以实现全社会知识资源传播共享与增值利用为目标的信息化建设项目,由 清华大学、 清华同方发起,始建于1999年6月。
在党和国家领导以及 教育部、中宣部、 科技部、新闻出版总署、 国家版权局、 国家发改委的大力支持下,在全国 学术界、 教育界、出版界、图书情报界等社会各界的密切配合和清华大学的直接领导下, CNKI工程集团经过多年努力;
采用自主开发并具有国际领先水平的 数字图书馆技术,建成了世界上全文信息量规模最大的" CNKI数字图书馆",并正式启动建设《 中国知识资源总库》及CNKI 网格资源共享平台,通过产业化运作,为全社会知识资源高效共享提供最丰富的知识信息资源和最有效的知识传播与数字化学习平台。
硕士学位论文里面出现错误后,导师看到会给标注后,然后发下来再修改。
在我国,学位分学士、硕士、博士三级。硕士是一个介于学士及博士之间的研究生学位(Post-Graduate),拥有硕士学位者通常象征具有基础的独立的思考能力。
高等学校和科学研究机构的研究生,或具有研究生毕业同等学力的人员,通过硕士学位的课程考试和论文答辩,成绩合格,达到上述学术水平者,授予硕士学位,基于此,硕士学位论文成为检验学业学术水平的重要依据和必要环节。
扩展资料:
硕士学位论文的注意事项:
1、摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。
2、结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。
3、要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。
4、除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。
参考资料来源:百度百科—硕士学位论文
参考资料来源:百度百科—毕业论文
这个上传是答辩后的定稿上传还是其他?如果是定稿上传那就这样吧,不会有人来找你麻烦的
没关系,毕业论文的格式是要按照学校的规定来写的,最后论文是交给学校来进行查重检测的。学校规定什么格式,论文就要以什么格式来完成。能否顺利的毕业,能否顺利的拿到毕业证书,这些都是由学校决定的,学校是以毕业论文来做判断的。
国内权威论文检测机构主要有三家:Gocheck维普、知网CNKI、万方。论4102文查重也被称为论文检测,主要是指查询论文内容的重复率,目的在于应对学位论文学术不端和学术论文抄袭复制。论文检测查重率,即论文查重字数占总字数的百分比。
扩展资料
参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:作者--标题--出版物信息(版地、版者、版期)。
英文:作者--标题--出版物信息。
所列参考文献的要求是:
所列参考文献应是正式出版物,以便读者考证。所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
格式错误不会影响机器检测的通过,但是会影响到后面的专家匿名评阅分数,由此影响论文的最后通过。格式正确与否,是一份论文的基础。
论文格式错误,老师已经审核通过了,这个对答辩影响不大,把论文格式修改一下就可以了。
为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要作好充分的准备。在答辩会上,考官要极力找出来在论文中所表现的水平是真是假。而学生要证明自己的论点是正确的。
扩展资料:
答辩技巧
1、熟悉内容
作为将要参加论文答辩同学,首先而且必须对自己所著的毕业论文内容有比较深刻理解和比较全面的熟悉。这是为回答毕业论文答辩委员会成员就有关毕业论文的深度及相关知识面而可能提出的论文答辩问题所做的准备。所谓“深刻的理解”是对毕业论文有横向的把握。
2、图表穿插
任何毕业论文,无论是文科还是理科都或多或少地涉及到用图表表达论文观点的可能,故我认为应该有此准备。图表不仅是一种直观的表达观点的方法,更是一种调节论文答辩会气氛的手段,特别是对私人论文答辩委员会成员来讲,长时间地听述,听觉难免会有排斥性。
3、语流适中
进行毕业论文答辩的同学一般都是首次。无数事实证明,他们论文答辩时,说话速度往往越来越快,以致毕业答辩委员会成员听不清楚,影响了毕业答辩成绩。故毕业答辩学生一定要注意在论文答辩过程中的语流速度,要有急有缓,有轻有重,不能像连珠炮似地轰向听众。
参考资料来源:百度百科-毕业论文答辩
不会吊销学位证。
硕士研究生,即攻读硕士学位的研究生,简称硕士生,人们日常生活中所说的考上了硕士,读硕士等,正是指硕士研究生。硕士研究生是本科之后的深造学历,与本科生相比研究生教育更注重培养学生的研究问题和分析问题的能力,特别是该学科科研教学的能力。
学位类型种类:
在中国,研究生分学术型研究生及专业型研究生两种(均有全日制及非全日制两种学习形式)。
学术型研究生一般是指拥有学术型学位的人员,按学科设立,其以学术研究为导向,偏重理论和研究,培养大学教师和科研机构的研究人员为主。
专业型研究生,与学术型学位研究生处于同一层次,是培养具有扎实理论基础,并适应特定行业或职业实际工作需要的应用型高层次专门人才。
以上内容参考 百度百科—— 硕士研究生
现在有很多研究生毕业的论文,那他会有很多都写的,不太就是。你想而已嘛,他应该是实际来操作。
只要没有剽窃现象,问题不大。不会有人关心的。但剽窃万万不可!
正常来说研究生毕业论文要求还是比较严格的,如果书写方面比较多的错误最好还是订正一下,不然很可能通不过