随着时代的发展,网络通信已广泛地应用于政治、军事,经济及科学等各个领域,它改变了传统的事务处理方式,对社会的进步和发展起着很大的推动作用。下面我给大家带来通信工程专业 毕业 论文题目_通信专业论文怎么选题,希望能帮助到大家!
通信工程毕业论文题目
1、 通信工程项目管理系统集成服务浅探[J]
2、 试述我国通信工程发展现状与前景[J]
3、 网络传输技术在通信工程中的应用探析[J]
4、 通信工程中多网融合技术的应用问题探析[J]
5、 探究有线传输技术在通信工程中的应用及发展方向[J]
6、 探讨通信工程项目的网络优化[J]
7、 应用型通信工程专业计算机类课程建设研究[J]
8、 结合3G/4G网络与GPS定位技术实现通信工程现场监理[J]
9、 通信工程的风险管理探讨[J]
10、 如何解决通信工程管理中的问题[J]
11、 通信工程设计单位标准化管理研究[J]
12、 传输技术在通信工程中的应用解析[J]
13、 通信工程施工管理模式的创新研究[J]
14、 通信工程中有线传输技术的应用及改进[J]
15、 通信工程项目中的风险管理与控制策略研究[J]
16、 探析通信工程中传输技术的广泛应用[J]
17、 浅谈通信工程项目的质量管理[J]
18、 项目管理 方法 在移动通信工程管理中的应用研究[J]
19、 通信工程项目管理研究[J]
20、 通信工程光缆施工的质量控制探讨[J]
21、 试论在通信工程施工过程中信息化管理的应用[J]
22、 浅谈传输技术在通信工程中的应用及发展[J]
23、 浅谈通信工程技术传输的有效管理策略[J]
24、 信息通信工程中传输技术的有效应用[J]
25、 铁路通信工程中无线接入技术的应用探究[J]
26、 试论通信工程的特点及发展现状与前景[J]
27、 浅谈通信工程发展前景[J]
28、 以华为公司为例探析通信工程技术的社会经济价值[J]
29、 传输技术在通信工程中的应用与发展趋势[J]
30、 通信工程建设进度控制研究[J]
31、 关于多网融合在通信工程中的应用分析[J]
32、 基于通信工程传输技术的应用研究[J]
33、 强化通信工程安全管理的对策[J]
34、 通信工程存在的经济问题和发展分析[J]
35、 通信工程管理在项目中的应用[J]
36、 探讨通信工程项目的网络优化方式[J]
37、 传输技术对通信工程的作用[J]
38、 浅谈通信工程传输技术的应用[J]
39、 通信工程中有线传输技术的应用及改进[J]
40、 刍议通信工程传输技术的现状与未来发展[J]
41、 浅析我国通信工程发展现状与展望[J]
42、 通信工程项目管理中关键点的标准化研究[J]
43、 软交换技术在通信工程中的应用及发展方向[J]
44、 探究通信工程专业学生就业现状及对策研究[J]
45、 如何提高通信工程监理企业的竞争力[J]
46、 通信工程监理企业竞争力探析[J]
47、 浅谈通信工程信息技术[J]
48、 通信工程中土建工程质量控制探讨[J]
49、 通信工程项目管理中系统化、集成化实现的路径分析[J]
50、 通信工程中有线传输技术的改进研究[J]
移动通信毕业论文题目
1、大数据分析在移动通信网络优化中的应用研究
2、典型移动通信基站电磁环境影响模型化研究
3、高速移动通信场景下基于LTE-A中继系统的资源调度关键技术研究
4、基于专利信息分析的我国4G移动通信技术发展研究
5、移动通信基础设施建设中多方合作研究
6、移动通信基站管理系统的设计与实现
7、“营改增”对内蒙古移动通信公司 财务管理 的影响及对策研究
8、低轨宽带卫星移动通信系统OFDM传输技术研究
9、雷电脉冲对移动通信基站影响的研究
10、平流层CDMA移动通信蜂窝网的性能研究
11、B3G/4G系统中的无线资源分配的研究
12、下一代移动通信系统中跨层资源分配研究
13、基于OFDM的GEO卫星移动通信系统关键技术研究
14、下一代移动通信系统中的关键传输技术研究
15、基于SCP的海峡两岸移动通信产业比较研究
16、多场景下移动通信系统业务承载性能研究
17、未来移动通信系统资源分配与调度策略研究
18、高速铁路移动通信系统性能研究
19、下一代移动通信网络中的无线资源管理与调度策略研究
20、下一代卫星移动通信系统关键技术研究
21、混能供电移动通信网络的节能方法研究
22、移动通信数据挖掘关键应用技术研究
23、移动通信系统中的认证和隐私保护协议研究
24、基于移动通信定位数据的交通信息提取及分析方法研究
25、电信运营商在移动通信标准发展中的产业作用关系研究
26、天津移动通信市场非线性预测及面向3G的发展策略研究
27、移动通信产业链创新系统研究
28、移动通信智能天线关键技术研究
29、移动通信运营商产品品牌 文化 研究
30、宽带移动通信系统资源调度和干扰管理的研究
31、未来移动通信基站体系结构--定性理论、方法与实践
32、移动通信系统中天线的分析与设计
33、基于客户的移动通信品牌资产模型及影响机理研究
34、中国移动通信业价格竞争行为研究
35、具有NFC功能的移动通信终端电路设计
36、具有电子支付功能的移动通信终端软件设计
37、移动通信服务业顾客满意度及忠诚度影响因素比较研究
38、移动通信企业 市场营销 成本管理研究
39、移动通信 无线网络 建设项目的质量管理研究
40、卫星移动通信系统编码协作技术
通信工程专业论文题目
1、基于61单片机的语音识别系统设计
2、红外遥控密码锁的设计
3、简易无线对讲机电路设计
4、基于单片机的数字温度计的设计
5、甲醛气体浓度检测与报警电路的设计
6、基于单片机的水温控制系统设计
7、设施环境中二氧化碳检测电路设计
8、基于单片机的音乐合成器设计
9、设施环境中湿度检测电路设计
10、基于单片机的家用智能总线式开关设计
11、 篮球 赛计时记分器
12、汽车倒车防撞报警器的设计
13、设施环境中温度测量电路设计
14、等脉冲频率调制的原理与应用
15、基于单片机的电加热炉温
16、病房呼叫系统
17、单片机打铃系统设计
18、智能散热器控制器的设计
19、电子体温计的设计
20、基于FPGA音频信号处理系统的设计
21、基于MCS-51数字温度表的设计
22、基于SPCE061A的语音控制小车设计
23、基于VHDL的智能交通控制系统
24、基于VHDL语言的数字密码锁控制电路的设计
25、基于单片机的超声波测距系统的设计
26、基于单片机的八路抢答器设计
27、基于单片机的安全报警器
28、基于SPCE061A的易燃易爆气体监测仪设计
29、基于CPLD的LCD显示设计
30、基于单片机的电话远程控制家用电器系统设计
31、基于单片机的交通信号灯控制电路设计
32、单片机的数字温度计设计
33、基于单片机的可编程多功能电子定时器
34、基于单片机的空调温度控制器设计
35、数字人体心率检测仪的设计
36、基于单片机的室内一氧化碳监测及报警系统的研究
37、基于单片机的数控稳压电源的设计
38、原油含水率检测电路设计
39、基于AVR单片机幅度可调的DDS信号发生器
40、四路数字抢答器设计
41、单色显示屏的设计
42、基于CPLD直流电机控制系统的设计
43、基于DDS的频率特性测试仪设计
44、基于EDA的计算器的设计
45、基于EDA技术的数字电子钟设计
46、基于EDA技术的智力竞赛抢答器的设计
47、基于FPGA的18路智力竞赛电子抢答器设计
48、基于USB接口的数据采集系统设计与实现
49、基于单片机的简易智能小车的设计
50、基于单片机的脉象信号采集系统设计
51、一种斩控式交流电子调压器设计
52、通信用开关电源的设计
53、鸡舍灯光控制器
54、三相电机的保护控制系统的分析与研究
55、信号高精度测频方法设计
56、高精度电容电感测量系统设计
57、虚拟信号发生器设计和远程实现
58、脉冲调宽型伺服放大器的设计
59、超声波测距语音提示系统的研究
60、电表智能管理装置的设计
通信工程专业毕业论文题目相关 文章 :
★ 通信工程毕业论文题目
★ 通信工程毕业论文题目
★ 通信工程毕业论文选题
★ 通信工程专业毕业论文
★ 通信工程的毕业论文范例(2)
★ 通信工程的毕业论文(2)
★ 通信工程的毕业论文参考范文
★ 通信工程方面毕业论文(2)
★ 通信工程的毕业论文优秀范文(2)
★ 通信工程本科毕业论文
内容如下:
1、大数据对商业模式影响
2、大数据下地质项目资金内部控制风险
3、医院统计工作模式在大数据时代背景下改进
4、大数据时代下线上餐饮变革
5、基于大数据小微金融
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融
“管家婆”消费管理系统的设计与实现 面向创新创业型小微企业的人力资源管理平台设计与实现 “爱心岛”——校园二手物品循环利用与分享平台开发 “亲宝宝看图识字”——基于安卓的兴趣型幼儿智力训练APP 基于Unity3D游戏引擎的Pandora游戏设计与开发 黑石顶生物多样性APP设计与实现 基于php的中山大学生物博物馆的设计与实现 基于Hadoop的公共自行车数据分布式存储和计算 纽约公共自行车数据可视分析 基于公共自行车数据的城市居民职住地分析 基于ansible的实训云容器的构建与管理 基于vue的少儿编程网的前端设计与实现 基于vue的敏捷学习网的前端设计与实现 基于hyperledge的众筹应用的设计与实现
刘勰时序论文的题目包括:《基于非线性时序分类的全局特征选择方法》、《基于重叠时间序列模型的心电图分类》、《时序数据分类中的哈希映射》、《基于时序检测器的行为表征识别》、《基于最小距离聚类-支持向量机方法的时序数据分类》。
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
其实越难的在答辩的时候很多老师不会,他们就不会问你一些问题。。因为他们也不懂。。只有你的指导老师懂的多一些。这样只要你好好看看,多了解了解,也是能过的。 你好,针对于前两个题目,个人是学网络的,所以相对来说做点网络的题目,对自己以后的发展等等也是比较有用的。第三个题目比较常见,做个系统什么的是好多大学里面提供的题目,感觉在别的课程学习的过程中也应该涉及到过。对于第四个题目就比较难了,数据挖掘技术估计你在学习过程中也应该没有涉及过。具体选择什么请结合自己的专业、喜好选择。希望对你有帮助。
Web数据挖掘技术探析论文
在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
引言
当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。
计算机web数据挖掘概述
1.计算机web数据挖掘的由来
计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。
2.计算机Web数据挖掘含义及特征
(1)Web数据挖掘的含义
Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。
(2)Web数据挖掘的特点
计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。
(3)计算机web数据挖掘技术的类别
web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。
计算机web数据挖掘技术与电子商务的关系
借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。
计算机web数据挖掘在电子商务中的具体应用
(1)电子商务中的web数据挖掘的过程
在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。
(2)Web数据挖掘技术在电子商务中的应用
目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:
一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。
二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。
三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。
四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。
结语
本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。
摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。
关键词: 电子商务;数据挖掘;应用
1概述
电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。
2数据挖掘技术概述
数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。
3Web数据挖掘特点
Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。
1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。
2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。
3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。
4电子商务中Web挖掘中技术的应用分析
1)电子商务中序列模式分析的应用
序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。
2)电子商务中关联规则的应用
关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。
3)电子商务中路径分析技术的应用
路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。
4)电子商务中分类分析的应用
分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。
5)电子商务中聚类分析的应用
聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。
5结语
随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。
参考文献:
[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.
[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.
[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):
[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.
[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.
浅谈数据挖掘技术在企业客户关系管理的应用论文
摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技
关键词:客户关系管理毕业论文
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的.结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
数据挖掘在软件工程技术中的应用毕业论文
【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。
【 关键词 】数据挖掘技术;软件工程中;应用软件技术
随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。
1数据挖掘技术应用存在的问题
信息数据自身存在的复杂性
软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。
在评价标准方面缺乏一致性
数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。
2数据挖掘技术在软件工程中的应用
数据挖掘执行记录
执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。
漏洞检测
系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.
开源软件
对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。
版本控制信息
为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。
3数据挖掘在软件工程中的应用
关联法
该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。
分类方法
该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。
聚类方法
该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。
4数据挖掘在软件工程中的应用
对克隆代码的数据挖掘
在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。
软件数据检索挖掘
该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。
①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。
②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。
③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。
应用于设计的三个阶段
软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。
面向项目管理数据集的挖掘
软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。
5结束语
软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。
参考文献
[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).
[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).
[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多
计算机网络技术专业毕业论文题目
你是不是在为选计算机网络技术专业毕业论文题目烦恼呢?以下是我为大家整理的关于计算机网络技术专业毕业论文题目,希望大家喜欢!
1. 基于移动互联网下服装品牌的推广及应用研究
2. 基于Spark平台的恶意流量监测分析系统
3. 基于MOOC翻转课堂教学模式的设计与应用研究
4. 一种数字货币系统P2P消息传输机制的设计与实现
5. 基于OpenStack开放云管理平台研究
6. 基于OpenFlow的软件定义网络路由技术研究
7. 未来互联网试验平台若干关键技术研究
8. 基于云计算的海量网络流量数据分析处理及关键算法研究
9. 基于网络化数据分析的社会计算关键问题研究
10. 基于Hadoop的网络流量分析系统的研究与应用
11. 基于支持向量机的移动互联网用户行为偏好研究
12. “网络技术应用”微课程设计与建设
13. 移动互联网环境下用户隐私关注的影响因素及隐私信息扩散规律研究
14. 未来互联网络资源负载均衡研究
15. 面向云数据中心的虚拟机调度机制研究
16. 基于OpenFlow的数据中心网络路由策略研究
17. 云计算环境下资源需求预测与优化配置方法研究
18. 基于多维属性的社会网络信息传播模型研究
19. 基于遗传算法的云计算任务调度算法研究
20. 基于OpenStack开源云平台的网络模型研究
21. SDN控制架构及应用开发的研究和设计
22. 云环境下的资源调度算法研究
23. 异构网络环境下多径并行传输若干关键技术研究
24. OpenFlow网络中QoS管理系统的研究与实现
25. 云协助文件共享与发布系统优化策略研究
26. 大规模数据中心可扩展交换与网络拓扑结构研究
27. 数据中心网络节能路由研究
28. Hadoop集群监控系统的设计与实现
29. 网络虚拟化映射算法研究
30. 软件定义网络分布式控制平台的研究与实现
31. 网络虚拟化资源管理及虚拟网络应用研究
32. 基于流聚类的网络业务识别关键技术研究
33. 基于自适应流抽样测量的网络异常检测技术研究
34. 未来网络虚拟化资源管理机制研究
35. 大规模社会网络中影响最大化问题高效处理技术研究
36. 数据中心网络的流量管理和优化问题研究
37. 云计算环境下基于虚拟网络的资源分配技术研究
38. 基于用户行为分析的精确营销系统设计与实现
39. P2P网络中基于博弈算法的优化技术研究
40. 基于灰色神经网络模型的网络流量预测算法研究
41. 基于KNN算法的Android应用异常检测技术研究
42. 基于macvlan的Docker容器网络系统的设计与实现
43. 基于容器云平台的网络资源管理与配置系统设计与实现
44. 基于OpenStack的SDN仿真网络的研究
45. 一个基于云平台的智慧校园数据中心的设计与实现
46. 基于SDN的数据中心网络流量调度与负载均衡研究
47. 软件定义网络(SDN)网络管理关键技术研究
48. 基于SDN的数据中心网络动态负载均衡研究
49. 基于移动智能终端的医疗服务系统设计与实现
50. 基于SDN的网络流量控制模型设计与研究
51. 《计算机网络》课程移动学习网站的设计与开发
52. 数据挖掘技术在网络教学中的应用研究
53. 移动互联网即时通讯产品的用户体验要素研究
54. 基于SDN的负载均衡节能技术研究
55. 基于SDN和OpenFlow的流量分析系统的研究与设计
56. 基于SDN的网络资源虚拟化的研究与设计
57. SDN中面向北向的`控制器关键技术的研究
58. 基于SDN的网络流量工程研究
59. 基于博弈论的云计算资源调度方法研究
60. 基于Hadoop的分布式网络爬虫系统的研究与实现
61. 一种基于SDN的IP骨干网流量调度方案的研究与实现
62. 基于软件定义网络的WLAN中DDoS攻击检测和防护
63. 基于SDN的集群控制器负载均衡的研究
64. 基于大数据的网络用户行为分析
65. 基于机器学习的P2P网络流分类研究
66. 移动互联网用户生成内容动机分析与质量评价研究
67. 基于大数据的网络恶意流量分析系统的设计与实现
68. 面向SDN的流量调度技术研究
69. 基于P2P的小额借贷融资平台的设计与实现
70. 基于移动互联网的智慧校园应用研究
71. 内容中心网络建模与内容放置问题研究
72. 分布式移动性管理架构下的资源优化机制研究
73. 基于模糊综合评价的P2P网络流量优化方法研究
74. 面向新型互联网架构的移动性管理关键技术研究
75. 虚拟网络映射策略与算法研究
76. 互联网流量特征智能提取关键技术研究
77. 云环境下基于随机优化的动态资源调度研究
78. OpenFlow网络中虚拟化机制的研究与实现
79. 基于时间相关的网络流量建模与预测研究
80. B2C电子商务物流网络优化技术的研究与实现
81. 基于SDN的信息网络的设计与实现
82. 基于网络编码的数据通信技术研究
83. 计算机网络可靠性分析与设计
84. 基于OpenFlow的分布式网络中负载均衡路由的研究
85. 城市电子商务物流网络优化设计与系统实现
86. 基于分形的网络流量分析及异常检测技术研究
87. 网络虚拟化环境下的网络资源分配与故障诊断技术
88. 基于中国互联网的P2P-VoIP系统网络域若干关键技术研究
89. 网络流量模型化与拥塞控制研究
90. 计算机网络脆弱性评估方法研究
91. Hadoop云平台下调度算法的研究
92. 网络虚拟化环境下资源管理关键技术研究
93. 高性能网络虚拟化技术研究
94. 互联网流量识别技术研究
95. 虚拟网络映射机制与算法研究
96. 基于业务体验的无线资源管理策略研究
97. 移动互联网络安全认证及安全应用中若干关键技术研究
98. 基于DHT的分布式网络中负载均衡机制及其安全性的研究
99. 高速复杂网络环境下异常流量检测技术研究
100. 基于移动互联网技术的移动图书馆系统研建
101. 基于连接度量的社区发现研究
102. 面向可信计算的分布式故障检测系统研究
103. 社会化媒体内容关注度分析与建模方法研究
104. P2P资源共享系统中的资源定位研究
105. 基于Flash的三维WebGIS可视化研究
106. P2P应用中的用户行为与系统性能研究
107. 基于MongoDB的云监控设计与应用
108. 基于流量监测的网络用户行为分析
109. 移动社交网络平台的研究与实现
110. 基于 Android 系统的 Camera 模块设计和实现
111. 基于Android定制的Lephone系统设计与实现
112. 云计算环境下资源负载均衡调度算法研究
113. 集群负载均衡关键技术研究
114. 云环境下作业调度算法研究与实现
115. 移动互联网终端界面设计研究
116. 云计算中的网络拓扑设计和Hadoop平台研究
117. pc集群作业调度算法研究
118. 内容中心网络网内缓存策略研究
119. 内容中心网络的路由转发机制研究
120. 学习分析技术在网络课程学习中的应用实践研究
当今时代,电脑已经成为人们生活以及公司发展的必需品。现在和未来一切都是电脑,所以现在电脑技术还是很有前途的,只要你的技术过硬,找到一份好工作,获得高额薪水,一切都不是问题。