您好,根据您的要求,以下是刘勰时序论文的题目:1.时序分析在社会网络分析中的应用2.时序分析在虚拟社会中的应用3.时序分析在智能家居中的应用4.时序分析在智能交通系统中的应用5.时序分析在智能医疗系统中的应用6.时序分析在智能安全系统中的应用7.时序分析在自然语言处理中的应用8.时序分析在智能商业系统中的应用9.时序分析在智能制造系统中的应用10.时序分析在智能环境监测系统中的应用
“管家婆”消费管理系统的设计与实现 面向创新创业型小微企业的人力资源管理平台设计与实现 “爱心岛”——校园二手物品循环利用与分享平台开发 “亲宝宝看图识字”——基于安卓的兴趣型幼儿智力训练APP 基于Unity3D游戏引擎的Pandora游戏设计与开发 黑石顶生物多样性APP设计与实现 基于php的中山大学生物博物馆的设计与实现 基于Hadoop的公共自行车数据分布式存储和计算 纽约公共自行车数据可视分析 基于公共自行车数据的城市居民职住地分析 基于ansible的实训云容器的构建与管理 基于vue的少儿编程网的前端设计与实现 基于vue的敏捷学习网的前端设计与实现 基于hyperledge的众筹应用的设计与实现
刘勰时序论文的题目包括:《基于非线性时序分类的全局特征选择方法》、《基于重叠时间序列模型的心电图分类》、《时序数据分类中的哈希映射》、《基于时序检测器的行为表征识别》、《基于最小距离聚类-支持向量机方法的时序数据分类》。
说实话啊!现在的导师真的是对毕业设计提供的题目不负责任!你这四个题目,后两个估计是导师给别人做的项目!前两个是导师比较感兴趣的技术!如果你时间来不及了!建议你搞个图书馆什么的管理系统!这种论文资料很多,多下点凑凑就好了!(别原封不动)
“管家婆”消费管理系统的设计与实现 面向创新创业型小微企业的人力资源管理平台设计与实现 “爱心岛”——校园二手物品循环利用与分享平台开发 “亲宝宝看图识字”——基于安卓的兴趣型幼儿智力训练APP 基于Unity3D游戏引擎的Pandora游戏设计与开发 黑石顶生物多样性APP设计与实现 基于php的中山大学生物博物馆的设计与实现 基于Hadoop的公共自行车数据分布式存储和计算 纽约公共自行车数据可视分析 基于公共自行车数据的城市居民职住地分析 基于ansible的实训云容器的构建与管理 基于vue的少儿编程网的前端设计与实现 基于vue的敏捷学习网的前端设计与实现 基于hyperledge的众筹应用的设计与实现
刘勰时序论文的题目包括:《基于非线性时序分类的全局特征选择方法》、《基于重叠时间序列模型的心电图分类》、《时序数据分类中的哈希映射》、《基于时序检测器的行为表征识别》、《基于最小距离聚类-支持向量机方法的时序数据分类》。
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
其实越难的在答辩的时候很多老师不会,他们就不会问你一些问题。。因为他们也不懂。。只有你的指导老师懂的多一些。这样只要你好好看看,多了解了解,也是能过的。 你好,针对于前两个题目,个人是学网络的,所以相对来说做点网络的题目,对自己以后的发展等等也是比较有用的。第三个题目比较常见,做个系统什么的是好多大学里面提供的题目,感觉在别的课程学习的过程中也应该涉及到过。对于第四个题目就比较难了,数据挖掘技术估计你在学习过程中也应该没有涉及过。具体选择什么请结合自己的专业、喜好选择。希望对你有帮助。
数据挖掘在软件工程技术中的应用毕业论文
【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。
【 关键词 】数据挖掘技术;软件工程中;应用软件技术
随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。
1数据挖掘技术应用存在的问题
信息数据自身存在的复杂性
软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。
在评价标准方面缺乏一致性
数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。
2数据挖掘技术在软件工程中的应用
数据挖掘执行记录
执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。
漏洞检测
系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.
开源软件
对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。
版本控制信息
为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。
3数据挖掘在软件工程中的应用
关联法
该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。
分类方法
该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。
聚类方法
该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。
4数据挖掘在软件工程中的应用
对克隆代码的数据挖掘
在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。
软件数据检索挖掘
该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。
①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。
②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。
③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。
应用于设计的三个阶段
软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。
面向项目管理数据集的挖掘
软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。
5结束语
软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。
参考文献
[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).
[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).
[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
其实越难的在答辩的时候很多老师不会,他们就不会问你一些问题。。因为他们也不懂。。只有你的指导老师懂的多一些。这样只要你好好看看,多了解了解,也是能过的。 你好,针对于前两个题目,个人是学网络的,所以相对来说做点网络的题目,对自己以后的发展等等也是比较有用的。第三个题目比较常见,做个系统什么的是好多大学里面提供的题目,感觉在别的课程学习的过程中也应该涉及到过。对于第四个题目就比较难了,数据挖掘技术估计你在学习过程中也应该没有涉及过。具体选择什么请结合自己的专业、喜好选择。希望对你有帮助。
我建议你选择:3.基于SEAM的医院统计分析系统4.基于FLEX的出生缺陷数据挖掘系统WebGIS系统的设计与实现其中之一,上面2个太注重于研究,后面2个更重于实际应用,这样的题目不仅更容易找到实际的资料,而且你做的课题更适合你找工作写到简历里去。第三个题目我觉得对于计算机专业的人来说比第4个更简单一点,这个的难点主要在你对于医院统计分析的功能设计上,这方面的源码你很容易找到,你可以去:里找,实在不愿意费时,你找个进销存的软件功能改改也能凑合及格,而且这样题目的毕业论文很多,你写论文的参考资料也多。第四个题目涉及到了webgis系统,这个的难点是你不太容易找到嵌入的平台,因为很多该类的都是商用的,我以前接触过一个开源的软件叫,你百度一下,很多地方有下载,如果这个课题做好了,以后面向的企业又会多很多。呵呵,课题主要还是看自己兴趣了,你可以针对你自己以后想切入的行业去想毕业题目,做好的毕业设计可以当做你的作品,这样给你的帮助更大,而且兴趣高的话你的毕业设计才会做得更棒,如果有啥可以给我留言
“管家婆”消费管理系统的设计与实现 面向创新创业型小微企业的人力资源管理平台设计与实现 “爱心岛”——校园二手物品循环利用与分享平台开发 “亲宝宝看图识字”——基于安卓的兴趣型幼儿智力训练APP 基于Unity3D游戏引擎的Pandora游戏设计与开发 黑石顶生物多样性APP设计与实现 基于php的中山大学生物博物馆的设计与实现 基于Hadoop的公共自行车数据分布式存储和计算 纽约公共自行车数据可视分析 基于公共自行车数据的城市居民职住地分析 基于ansible的实训云容器的构建与管理 基于vue的少儿编程网的前端设计与实现 基于vue的敏捷学习网的前端设计与实现 基于hyperledge的众筹应用的设计与实现
近三年机器学习顶级期刊pmlr。对发展如此迅速的机器学习和数据挖掘领域,要概述其研究进展或发展动向是相当困难的,感兴趣的读者不妨参考近年来机器学习和数据挖掘方面一些重要会议和期刊发表的论文。在机器学习方面,最重要的学术会议是NPS、ICML、ECML和COLT,最重要的学术期刊是Machine Learning》和《 Journal of Machine Learning Research》。
需要发表吗?具体的联系我
数据挖掘相关的权威期刊和会议-----------------------------------------------[Journals] Transactions on Knowledge Discovery from Data (TKDD) Transactions on Knowledge and Data Engineering (TKDE) Mining and Knowledge and Information & Knowledge Engineering[Conferences] Conference on Management of Data (ACM) Conference on Very Large Data Bases (Morgan Kaufmann/ACM) International Conference on Data Engineering (IEEE Computer Society) Knowledge Discovery and Data Mining (ACM) World Wide Web Conferences (W3C) International Conference on Information and Knowledge Management (ACM) Conference on Principles and Practice of Knowledge Discovery in Databases (Springer-Verlag LNAI)个性化推荐建议去john riedl的主页逛逛,Grouplen的leader个性化推荐的书最出名的是 handbook 这是个性化推荐的"教科书" 国内貌似就有一本项亮的《推荐系统实践》
听说“Hans Journal of Data Mining”不错!不知道是不是真的!