数据可以找找,非得要弄问卷调查吗
回归分析法的步骤如下:
1、根据自变量与因变量的现有数据以及关系,初步设定回归方程;
2、求出合理的回归系数;
3、进行相关性检验,确定相关系数;
4、在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间。
回归分析法指利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。
回归分析法主要解决的问题;
1、确定变量之间是否存在相关关系,若存在,则找出数学表达式;
2、根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
如果你是做问卷调查类(发放问卷,收集数据<通常学营销的人会这样做>)的,那么就根据你的题项设置变量,并录入数据(通常是用SPSS分析,也有用其他工具比如说Eviews的)。然后做数据的信度和效度检验(此处KMO值是比较重要的),再做基本的描述性统计分析,然后是主成份提取(即因子分析),从多个变量中提取几大因子,结果主要看旋转成分矩阵,然后用几个因子跟因变量做回归,得出影响关系的回归方程。举个例子说,你的问卷中有30个题项(前提是你已经做过小规模问卷测试以验证题项设置的合理性),则对应30个变量X1,X2,......,X29,X30,录入这30个变量的数据,如果你收集了500份问卷,其中420份是有效问卷的话,则你有420条针对30个变量的有效数据。然后做信度效度检验,描述性统计分析,因子分析,假设通过因子分析提取出4个主成份(因子),分别为F1,F2,F3,F4,这个时候对因子命名并将其生成新的变量,然后再将F1,F2,F3,F4和Y做回归分析,得到回归方程,通过R方和系数检验表来判断方程和系数的有效性。这个时候你就能得到影响消费者态度的是哪些因素了。PS:你这里的因变量消费者态度需要量化,在设计问卷的时候要考虑如何量化才有利于后续的分析。
论文就是用来进行科学研究和描述科研成果的 文章 ,写作论文是要按照一定的格式来规范自己的论文的。下面是我带来的关于论文写作格式模板的内容,欢迎阅读参考!论文写作格式模板 1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。 2、论文摘要和关键词。 论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究 方法 、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以500字左右为宜。有时还需附上英文的论文摘要。 关键词 是能反映论文主旨最关键的词句,一般3-5个。 3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。 4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。 5、正文。是 毕业 论文的主体。 6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。 7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。 而参考文献是人们长忽略的一部分: 参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。 参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。 8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。 论文写作格式模板:格式及排版 1、论文份数:一式三份。一律要求打印。论文的封面由学校统一提供。纸张型号:A4纸。A4 210×297毫米。页边距:天头(上)20mm,地角(下)15mm,订口(左)25mm,翻口(右)20mm。统一使用汉语:小五号宋体。分割线为3磅双线。 2、论文格式的字体:各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用Times New Roman字体。 3、字体要求: (1)论文标题2号黑体加粗、居中。 (2)论文副标题小2号字,紧挨正标题下居中,文字前加破折号。 (3)填写姓名、专业、学号等项目时用3号楷体。 (4)内容提要3号黑体,居中上下各空一行,内容为小4号楷体。 (5)关键词4号黑体,内容为小4号黑体。 (6)目录另起页,3号黑体,内容为小4号仿宋,并列出页码。 (7)正文文字另起页,论文标题用3号黑体,正文文字一般用小4 号宋体,每段首起空两个格,单倍行距。 (8)正文文中标题 一级标题:标题序号为“一、”, 4号黑体,独占行,末尾不加标点符号。 二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。 三级标题:标题序号为“ 1. ”与正文字号、字体相同。 四级标题:标题序号为“(1)”与正文字号、字体相同。 五级标题:标题序号为“ ① ”与正文字号、字体相同。 (9)注释:4号黑体,内容为5号宋体。 (10)附录: 4号黑体,内容为5号宋体。 (11)参考文献:另起页,4号黑体,内容为5号宋体。 (12)页眉用小五号字体打印“XX大学XX学院XX级XX专业学年论文”字样,并左对齐。 论文写作格式 范文 :《试谈 人力资源管理 》 【摘 要】 人力资源管理是企业发展动力的源泉,是企业可持续发展的根本保障。在竞争日益激烈的社会,在这个人才紧缺的社会,企业要想生存下去,必须严把人力资源的各个环节与关卡,让人力资源管理真正助飞企业的成长。 【关键词】 人力资源 5P 工作分析 人力资源规划 招聘 要了解人力资源的管理内容,就必须知道什么是人力资源。人力资源的一种定义是“在社会或企业里,能推动社会或企业进步的所有体力和脑力劳动者”,根据这个定义,再结合中国的现状,企业的人力资源就分两种情况了:一是企业所有的员工,另一个是企业里真正为公司做出贡献的人。第一种情况下,企业所有的员工,都是企业价值的创造者,所以人力资源管理要覆盖到整个企业。第二种情况下,有人是走关系进入企业的,在日常工作中并不为企业创造价值,这些人不在企业人力资源管理范围之内。 人力资源管理在 企业管理 中的地位是仅次于 企业战略 管理的。管理范围主要是:人与事的匹配;人的需求与工作报酬的匹配;人与人的合作与协调;工作与工作的协调。 企业人力资源管理的目的可以归纳为“5P”:Perceive(识人),人力资源管理的前提,为实现企业目标而寻找满足企业要求的优秀人才;Pick(选人),人力资源的起点,寻找和开辟人力资源 渠道 ,吸引优秀人才进入企业,为企业甄选出合适的人员并配置到对应的岗位上;Profession(育人),企业人力资源管理的动力手段,不断培训员工、开发员工潜质,使员工掌握在本企业现在及将来工作所需的知识、能力和技能;Placement(用人),乃是人力资源管理的核心,使员工在本职工作岗位上人尽其用,通过科学、合理的员工绩效考评与素质评估等工作对员工实施合理、公平的动态管理过程,如晋升、调动、奖惩、 离职 、解雇等,是企业人力资源管理的重头戏;Preservation(留人),企业人力资源管理的目的,留住人才,为员工创造一个良好的工作环境,保持员工积极性,使现有员工满意并且安心在本企业工作。 在企业人力资源管理中,工作分析是重头戏。工作分析,是通过对某种岗位工作活动的调查研究和分析,确定组织内部某一岗位的性质、内容、责任、工作方法以及该职务的任职者应该具备的必要条件。 工作分析分为工作描述和工作规范。工作描述,也即工作说明,是以书面描述的方式来说明工作中需要从事的活动以及工作中所使用的设备和工作条件等信息的文件。工作规范是用来说明承担某项工作的员工所必须具备的特定技能、工作知识、能力及其他个人特征等的最低要求的文件。由此可见,工作分析主要说明岗位的两方面,一是对工作本身作出规定;二是明确对工作承担者的行为和资格进行要求。 工作分析主要有三方面:岗位分析、环境分析、人员素质分析。岗位分析主要分析岗位名称、工作任务、权利责任、工作关系和工作量。环境分析不外乎分析企业所在的自然环境、社会环境,当然,企业的安全环境也在考虑之中。人员素质分析要求分析工作人员的能力、素质、经历、体质和个性等。 工作分析的方法主要有访谈法、问卷法、典型事例分析法、观察法等。访谈法中尤其需注意的是要消除被访谈者的戒心,毕竟访谈不是 面试 。关于问卷法,其中最难把握的就是调查问卷的设计。问卷设计得不全面,就会导致调查得出的信息不具说服性;问卷的界面设计得不友好,被调查者就不情愿填写,则调查效果收效甚微;如果问卷中没有反馈机制,则不利于后续问题的调查研究,等等都在影响问卷法的最终结果。典型事例分析法则要区分其与典型个例相关分析法。观察法必须要获得观察许可,要不就有偷窥的嫌疑了。其他方法比如实践法中,工作人员亲身参与能掌握一手资料,对于最终分析结果来说也是至关重要的。人力资源规划是企业战略规划之下的首要任务,人力,既是资源,更是企业独一无二的财富,资产没了,可以再有,但人走了,对企业却是致命的伤。人力资源规划有两个方面:人力资源需求预测和人力资源供给预测。 人力资源需求预测的方法主要有四: 1. 管理人员判断法,这是基于 经验 和现状的判断和预测,此法是建立在历史会重演的前提下,且只适合于企业在稳定状况下的中短期预测。 2. 德尔菲法,基于收敛原则的德尔菲法可行性高,集聚了许多专家的意见,中短期有效。 3. 回归分析法,需要一定的计量知识,主要通过理论分析和数理分析来识别影响因素。 4. 转换比率分析法,此法虽然精确、简单的认识相关因素和人员需求之间的关系作用,但进行估计时需要对计划期的业务量、目前人均业务量和生产率的增长率进行精确的估计,而且只考虑人工需求总量,未说明其中不同类别员工需求的差异。 人力资源供给预测的方法主要有:技能清单法,这是用来反映员工工作能力特征的列表,包括培训背景、以前的经历、持有的证书、已通过的考试、主管的能力评价等,但此法缺少了对于岗位情况的认知;管理人员置换图,只针对了管理人员这类企业里的重要岗位,缺少对一般岗位的认识和分析;企业外部劳动力供给,能够准确全面的了解组织外部人员流动状况,但与此同时,却缺少对组织内部人员流动信息的认知和分析。 前面讲述了主要管理方法,那么,企业的人从何来?员工招聘就像在挑合适的种子,选好种然后再精心培养,才能长成茁壮的大树继而成为顶梁柱,否则就会架空企业。人员招聘首先要确定需求,哪些岗位上缺人,缺多少,男女比例如何;接下来就是招募阶段,这期间,制定招聘计划、选择招聘渠道、确定招聘方法、发布招聘信息、确定招聘人员和地点等;然后是甄选阶段,该阶段主要采用笔试、面试等相关测试来选择企业相关岗位所需人员,其中,笔试是淘汰不合格者,面试是选择合格者;录用和调配阶段,在录用之前有一段试用期;招聘评估和反馈阶段,选择适当的方法对招聘结果进行评估, 总结 优点,发现缺点,以便下次做得更好。 人力资源管理的后续就是对员工进行绩效管理、薪酬管理,以及员工的培训、进修等。 人力资源管理是企业发展动力的源泉,是企业可持续发展的根本保障。在竞争日益激烈的社会,在这个人才紧缺的社会,企业要想生存下去,必须严把人力资源的各个环节与关卡,让人力资源管理真正助飞企业的成长。 参考文献: [1] 杨宝宏,杜红平《管理学原理》[M].北京:科学出版社,2006. [2] 钱振波等《人力资源管理:理论.政策.实践》[M].北京:清华大学出版社,2004. [3] 陈维政,余凯成,程文文《人力资源管理》[M].北京:高等 教育 出版社,2006. 猜你喜欢: 1. 学术论文写作标准格式要求 2. 论文格式要求的基本构成要素有哪些? 3. 毕业论文写作标准格式 4. 3000字手写论文格式模板 5. 1500字论文格式模板
先进性你和优度的检验在分析T检验和F检验。最后说明一下经济含义。OK!!!
关于富士康跳楼曲线的Logistic回归分析。正常人都能知道这绝对不是偶然,至于这背后有什么?我一开始也不甚清楚。然后一篇突如其来的实验报告被发还给我,然后看着我亲手绘制的磁滞回线。有了主意。首先,我查到了有记载以来,所有富士康员工自杀的日期:列出如下表格:(以07年6月18号,第一例自杀案例为原点,至今(10年5月25日)1072天) 自杀时间x/d 0 75 272 758 794 950 997 1003 1015 1023 1024 1024 1053 1051 1072 累计自杀人数y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 在MATLAB中容易做出散点图:可见这是一个指数增长的曲线。对此我认为自杀和流行病一样,自杀也是一种病,而且是一种可以传染的疾病。因此其增长曲线与对数增长很接近。对其做指数函数拟合:General model Exp2:f(x) = a*exp(b*x) + c*exp(d*x)Coefficients (with 95% confidence bounds):a = (, )b = (, )c = (, )d = (, )Goodness of fit:SSE: : R-square: : 可见相关度也是非常高的。然而和所有疾病一样,一旦其事件引起了人们的关注,则各方的反馈作用,将阻碍其继续上升。因此,和很多流行病分析一样,该曲线很有可能呈S型。对于该曲线的分析,使用Logistic回归。首先我们假设Logis(B,x)=F(x),之中B为参数数组,则由经验和可能的微分方程关系,回归曲线应该为S(x)=m*Logis(B,x+t)/(n+Logis(B,x+t))格式由于当Logis(B,x)较小时S(x)=Logis(B,x),则可以认为f(x)的参数可以直接引入S(x)作为一种近似,而对于m,n的确定,我以1为间隔,画出m*n=40*20的所有曲线,选出其中最吻合的的一条(m=22 n=20 t=50):
运用逐步回归法分析影响上海银行存款的因素1.目的和意义在现代商品经济社会中,人们的工作与生活已经离不开货币。在生活中人们所需的各种商品,都需要用货币去购买;人们所需的各种服务,也需要支付货币来获得;人们劳动工作的所获得的报酬——工资,也是用货币支付的;人们为了种种目的,要积累财富,保存财富,采用的主要方式是积攒货币、到银行储蓄。除个人外,企业、行政事业部门的日常运行同样也离不开货币。财政收支也都是用货币进行的。可见,货币已经融入了并影响这经济运行和人们的生活。作为经营“货币”这种商品的银行的功能是办理各种存款(也称为负债业务)、放款和汇兑业务,其中商业银行所吸收的各种存款(活期、定期、储蓄)约占银行资金来源的70%~80%,为银行提供了绝大部分的资金来源,并为实现银行各职能活动提供了基础。所以说,银行存款对银行本身的生存和发展有着重要意义,除此之外,银行存款也能反映出一个特定时期人们的生活水平以及经济发展的水平。因此对上海的银行存款的分析是非常重要且必要的。本文将介绍运用统计分析软件中的逐步回归法对影响上海银行存款的因素进行分析研究并建立模型,为相关专业人士的决策提供一定参考。2.影响银行存款的因素分析存款作为银行吸收资金来源的主要业务,其之影响因素非常的多。从中我选取了10个主要因素的(1951年至2000年)数据运用SPSS的逐步回归法分析和研究它们对上海银行存款的影响程度。这10个因素分别是全市居民储蓄(亿元)、从业人数(万人)、全市居民消费水平(元/人)、全市银行贷款(亿元)、全社会固定资产投资总额(亿元)、职工工资总额(亿元)、职工劳保福利费用(万元)、社会消费品零售总额(亿元)、外贸出口商品总额(亿美元)、全市财政收入(亿元)。上海全市银行存款及影响其的10个因素的1951年至2000年的数据见下表。表上海全市银行存款数据(1951年~2000年)年份 全市银行存款(亿元) 全市居民储蓄(亿元) 从业人数(万人) 全市居民消费水平(元/人) 全市银行贷款(亿元) 全社会固定资产投资总额(亿元) 职工工资总额(亿元) 职工劳保福利费用(万元) 社会消费品零售总额(亿元) 全市财政收入(亿元) 外贸出口商品总额(亿美元)1964 270 33117 276 33819 298 34536 300 35268 293 36016 309 36780 304 37560 318 38356 334 39169 357 39999 380 40847 397 41737 408 46531 411 49797 442 57424 527 81664 582 94004 638 102061 640 113909 688 127679 789 152282 1030 190217 1190 233574 1298 286323 1680 391974 1928 437789 2009 533797 2421 670676 2842 804903 4162 1038701 5343 1241344 6712 1496034 7742 .30 8699 .21 9202 .03 10328 2095239 11546 2521553 注:该表数据来源:《上海统计年鉴》全市居民储蓄(亿元)个人货币收入是用来供个人消费的,积蓄是准备用作远期消费或不可预测的需要,它们都不是资本,金额也比较小。由于现代银行制度的发展,举办储蓄,并支付利息,小额的货币收入就可以转化为资本,从而扩大了社会资本总量,加速经济的发展。由表可看到,随着社会经济的发展和人们收入的不断提高,全市居民储蓄从1951年的亿元增加至2000年的亿元,特别是1985年之后呈快速增长趋势。可见社会公众的储蓄增长会提高银行盈利资产的规模,一定程度上使商业银行获得更多的收益。所以,全市居民储蓄对银行存款有着直接而深远的影响。从业人数(万人)从业人数是指在全市各行各业的企事业单位中从事工作人数的总和,其包括了国有、集体、合资、独资等其他单位的从业人员,城镇个体劳动者,农村集体和个体劳动者以及其他劳动者。从表可知,从业人数是呈稳定增长趋势的,这与全市人口的增加有着极大的关系。上海近十几年经济的飞速发展和国际大都市的形象,吸引了大批的外来人口(外地和外国)来沪居住、创业以及工作。随着全市企业数量的不断增加,从业人数也在不断的增加。从业人数的多少与银行存款有着紧密的联系,因为每个从业人员都会有自己的收入,不管收入的多与寡,他们每个人都会在银行拥有一个以上的帐户并利用存折、借计卡来取工资或办理各种活期、定期的储蓄或取款;利用信用卡刷卡消费或提款。全市居民消费水平(元/人)居民消费水平是指居民在物质产品和劳务的消费过程中,对满足人们生存、发展和享受需要方面所达到的程度。通过消费的物质产品和劳务的数量和质量反映出来。反映居民消费水平的主要指标有:(1)平均实物消费量指标:平均每人全年主要有消费品的消费量、平均每百户耐用消费品拥有量、人均居住面积、平均每人生活用水量、平均每人生活用电量等;(2)现代化生活设施的普及程度指标:自来水普及率、煤气普及率、平均每百户主要家用电器拥有量、电话普及率等;(3)反映消费水平的消费结构指标:居民生活消费支出中食品的比例、居民生活消费支出中文化生活服务支出比例、不同质量消费品的消费比例等;(4)平均消费量的价值指标:平均每人消费基金、平均每人生活消费额、平均每人用于各项生活消费的支出等。从表中可以看到1990年以后的居民消费水平有了大大的提升,可见人们的生活质量随着改革开放的步伐的加快也越来越好。全市银行贷款(亿元)贷款,又称放款,是银行将其所吸收的资金,按一定的利率贷给客户并约定归还期限的业务。虽然银行运用资金的方式不止贷款一种,但是贷款是商业银行在其资产业务中的比重一般占首位。通过贷款联系,银行可密切与工商企业往来联系,有利于拓宽业务领域,获得更多的利润。银行贷款的种类按不同的标注至少又以下几类:按期限分为短期贷款、中期贷款和长期贷款;按用途可分为投资贷款、商业贷款、消费贷款和农业贷款;按贷款是否有抵押品分为:抵押贷款和无抵押贷款;按换款的方式分为:一次偿还贷款和分期偿还贷款。从表可知,银行贷款不断的大幅度增加,表明了经济的快速发展和人们消费理念的变化。全社会固定资产投资总额(亿元)固定资产投资总额是以货币表现的建造和购置固定资产活动的工作量,它是反映固定资产投资规模、速度、比例关系和使用方向的综合性指标。全社会固定资产投资包括基本建设投资、更新改造投资、国有单位其他固定资产投资、房地产开发投资、城镇集体固定资产投资、联营经济、股份制经济、外商投资经济、港澳台投资经济及其他经济类型的固定资产投资,农村集体5万元以上固定资产投资,城镇工矿区私人建房投资和国防、人防基本建设投资。全社会固定资产投资按经济类型可分为国有、集体、个体、联营、股份制、外商、港澳台商、其他等。按照管理渠道,全社会固定资产投资总额分为基本建设、更新改造、房地产开发投资和其他固定资产投资四个部分。是社会固定资产再生产的主要手段。通过建造和购置固定资产的活动,国民经济不断采用先进技术装备,建立新兴部门,进一步调整经济结构和生产力的地区分布,增强经济实力,为改善人民物质文化生活创造物质条件。这对我国的社会主义现代化建设具有重要意义。从表可知,固定资产投资的总额是呈不固定态势来增长的,2000年的固定资产投资总额比1900年的增长倍,非常真实地反映了上海在上世纪90年代经济的腾飞。职工工资总额(亿元)职工工资总额是指各单位在一定时期内直接支付给本单位全部职工的劳动报酬的总和,包括奖金、津贴、补贴、加班工资和其他工资(附加工资、保留工资以及调整工资补发的上年工资等)。职工工资从某种程度上来说是市民收入的主要来源。而收入比较高的话,居民用于消费和储蓄的金额也会有相应的提高,所以职工工资直接影响着银行存款。职工劳保福利费用(万元)劳保福利是指劳动保险和福利。为了保护工人职工的健康,减轻其生活中的困难,我国对劳动保险制定了相应的法律条文。福利指员工与工人福利之总称,亦指以企业员工为对象而实施的福利措施,包括法定的福利,企业主与工会所实施的提高职工生活水准的各种措施。由表可知,2000年,单位支付职工劳保福利费用的总额已经达到2521553万元,并且其比例每年以3%~8%的速度增长,已高达%,这一数据说明人们的基本生活标准可以得到保障,从而有更多的钱用于其它的消费和用于储蓄存款或其他金融投资。社会消费品零售总额(亿元)社会消费品零售总额是指各种经济类型的批发零售贸易业、餐饮业、制造业和其他行业对城乡居民和社会集团的消费品零售额和农民对非农业居民零售额的总和。包括售给城乡居民用于生活消费的商品(不包括住房)和售给机关、团体、部队、学校、企业、事业单位和城市街道居民委员会、农村村民委员会用公款购买的用作非生产、非经营使用的消费品。这个指标反映通过各种商品流通渠道向居民和社会集团供应生活消费品来满足他们生活需要的情况,是研究人民生活、社会消费品购买力、货币流通等问题的重要指标。全市财政收入(亿元)财政既然要提供公共物品来满足公共需要,就要从国内总收入(GDI——与生产指标GDP相对应的收入指标)中集中一部分收入,从这个意义上来理解,财政收入是指一定量的货币收入,即国家占有的以货币表现的一定量的国内总收入;财政收入又可以理解为一个分配过程,这一过程是财政运行的第一个阶段或第一个环节,在其中形成特定的分配关系或利益关系。财政收入按其形式分为税收、收费、债务收入、铸币税和通货膨胀税。财政运行是国民经济的运行的一个部分,国民经济的运行决定了财政的运行,而财政的运行也反过来影响国民经济的运行,直接影响投资、消费和进出口,影响GDP的增长和结构,影响收入分配和各阶层之间的收入差距,影响经济的稳定和可持续发展。外贸出口商品总额(亿美元)对外出口贸易一直以来是上海经济发展的重要环节及体现,也是赚取外汇,达到国际收支平衡和增加国际储备的前提条件。随着中国加入WTO,上海的对外贸易也越来越频繁且出口的商品数量和金额也大大的提高。目前国际货物买卖合同中买卖双方就支付条款的订立大多都通过银行采用现汇结算的方式。在国际货物买卖中使用的结算工具主要是货币和票据,而银行作为买卖双方的结算中介为其办理汇兑业务、信用证业务、承兑业务。前两者是银行存款业务衍生出来的结算业务,而承兑业务是以银行的信用来确保客户的信用。到2000年底,一般贸易出口增幅继续高于加工贸易,而出口产品结构调整也随之加快,高新技术产品和机电产品出口快速增长。3.回归方法与模型建立研究方法与原理运用多元线性逐步回归方法研究预测影响上海的银行存款的因素。逐步回归是按自变量对因变量的作用程度从大到小逐个引入回归方程,每引入一个变量同时检验方程中各个自变量的显著性,合格保留、不显著剔除,反复进行直到再没有显著的变量可以引入为止。回归分析是根据自变量的最有组合建立回归方程(模型)预测因变量的未来发展趋势。该方法的运用条件是有大量的观测统计数据,适用研究没有确定关系形式的因素对象,运用工具为SPSS统计软件。模型的建立及求解因为银行存款与大部分变量呈指数关系,所以把表的各个原始变量的50年数据进行对数变换(LN10()),并且把转换后的样本数据倒退8年后来建模。设多元线性回归的模型为:lnY=β0+β1X1+β2X2+β3X3+…+β9X9+β10X10其中:Y:全市银行存款(亿元)X1 ——全市居民储蓄(亿元) X6 ——职工工资总额(亿元)X2 ——从业人数(万人) X7 ——职工劳保福利费用(万元)X3 ——全市居民消费水平(元/人) X8 ——社会消费品零售总额(亿元)X4 ——全市银行贷款(亿元) X9 ——全市财政收入(亿元)X5 ——全社会固定资产投资总额(亿元) X10 —— 外贸出口商品总额(亿美元)注:模型中倒退的年数用(t-n)表示,其中n表示倒退几年。(t-n)不参与任何计算,它只做标识之用。利用对样本数据进行统计分析,运行后的输出的结果如表所示。表 逐步回归统计分析结果 CoefficientsModel Unstandardized Coefficients Standardized Coefficients t Std. Error Beta18 (Constant) .334居储7 .692 .146 .595 .000从人1 .604 .216 .029固投6 .046 .000财政4 .146 .000银贷4 .100 .813 .000劳福2 .189 .000工资1 .232 .754 .000财政3 .134 .000从人8 .336 .000从人2 .670 .479 .000银贷2 .520 .110 .440 .000劳福6 .418 .193 .305 .039即回归模型为:lnY=(t-7) +(t-1) -(t-6) -(t-4) +(t-4) -(t-2) +(t-1) -(t-3) -(t-8) +(t-2) +(t-2) +(t-6)所以,在倒退8年的50年数据样本中,银行存款的增长与前7年的全市居民储蓄,前1年、前8年、前2年的从业人数,前6年的全社会固定资产投资总额,前4年和前3年的全市财政收入,前4年和前2年的银行贷款,前2年和前6年的职工劳保福利费用,前1年的职工工资总额等因素之间有显著意义的相关关系。4.结论和评价模型评价进入因素的分析表 Variables Entered/Removed(a)Model Variables Entered Variables Removed Method1 居储7 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).2 工资7 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).3 固投8 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).4 从人1 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).5 . 工资7 Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).由于软件通过特定程序对上海市相关数据进行整体的统计运算,所以具有更强的客观性和公证性。从上表中可以看出,按自变量对因变量的作用程度从大到小首先引入的是前7年的居民储蓄,等到第五步时把之前进入的前7年的职工工资给剔除了,再后面的第14和第17步中把前8年的固定投资和前3年的银行贷款给剔除了。这3个被剔除的变量在引入变量越来越多的情况下被检验出其显著性不合格。除此之外,在10个自变量中,诸如全市居民消费水平、社会消费品零售总额、外贸出口商品总额没有进入模型。因为的外贸出口商品总额涨幅没有达到足以进入方程的显著性,所以被剔除了。不过,随着贸易全球化和中国国际地位的提高,上海的外贸出口总额也会不断的增加,在不久的将来会对银行存款起明显的作用。我们可以从表看到,在进入的因素中全社会固定资产投资总额、财政收入、前2年的职工劳保福利费用、前8年的从业人员与银行存款是负相关,即随着它们的增加加快,银行存款的增长会减慢,其中前2年的职工劳保福利费用影响最强,其系数为。前8年的从业人员、财政收入、全社会固定资产投资总额的影响顺次递减。比如说,全社会固定资产投资总额增加,表明了国有、集体、个体、联营、股份制、外商、港澳台商提供了对基本建设、更新改造、房地产开发投资和其他固定资产投资额,那么他们必须从银行拿出自己的存款,有时还需要向银行进行贷款来完成投资,所以银行的存款量会增加缓慢是可以想象的。又比如说财政收入,政府的财政收入是通过税收、收费等途径获得,如果国家对个人、企业所征取的税越多的话,个人与企业的支出就会增加,净收入也就变少了,而如果其用于消费的指出不变或提高的话,那么其用于银行存款的货币就会相应减少,从而导致全市银行存款的递增缓慢。而居民储蓄、银行贷款、职工的工资、前1年和前2年的从业人员、前6年的职工劳保福利费用与银行存款呈正相关,即随着它们的增加加快,银行存款的增长也会加快,其中前四年的银行贷款的影响最强,其系数为,其次是居民储蓄等等。比如说,职工工资的增加会使得人们的收入上升,收入上升后虽然有一部分会被用来支付消费,但绝大部分人们还是会把钱存入银行,用于各种类型的投资,这种行为使得银行存款的增加加快。又如:居民储蓄的增加,当然会直接影响银行存款量的增加,这是勿庸置疑的,因为居民储蓄是银行存款业务的主要内容,它是银行吸收资金的主要方式。再如:经济的发展会使得银行贷款量上升,银行想要通过贷款给个人或企业客户来获得更多利润,那么银行就会运用各种手段来增加吸引资金量。在这种情况下,社会上的闲置资金由于较高的收益而会流向银行,使得银行存款增加速度加快。从表中我们可以看到,随着进入的变量越多,F值由大变小,然后再由小变大,使得最后一步的F值达到,表明回归模型包括12个变量,且拟合度较高。自相关问题的诊断DW值一般要求~时,残差与自变量互为独立。从表可见回归模型的DW值为,说明该模型无自相关的问题,此模型可以被使用。表 Model Summary(s)Model R R Square Adjusted R Square Std. Error of 样本检验表年份 取对数值(y1) 取对预测值(y2) 相对误差(%)2001 以上的样本检验的相对误差的计算方法是用2001年~2003年各个取对预测值减去对应的取对数值之后再除以取对数值后得到的。其公式:相对误差=(y2-y1)/y1×100%样本检验的相对误差需不大于10%,表示所建立的模型是可以使用的。表中的所计算的相对误差的都小于10%,说明模型建立的较好。残差正态性检验图 银行存款对数的标准化残差直方图图表明:标准化残差的正态曲线的均值为0,标准差为,接近标准正态曲线,基本满足随机误差项正态分布的假设理论,模型拟合效果比较好。银行存款对数的正态概率图和残差散点图图 正态概率图图 散点图图表明:代表样本残差的数据点基本处在表示指定正态分布的直线上或周围,因此基本符合残差正态分布的假设理论。图表明:残差散点的分布随机均匀,且大多落在水平直线-2和2之间,所以可以判断残差与因变量之间相互独立性较高,基本满足残差独立的假设理论,模型的拟合效果比较好。结论综上所述,商业银行的存款不断的增加,可以反映上海居民的收入在不断地增加、生活品质也在不断的提高,更可以从侧面反映上海金融的飞速发展和经济的繁荣。我国加入世贸组织后,金融对外开放程度加深,国内各银行之间、外资银行与中资银行之间的竞争越来越激烈,而存款是竞争的重要领域。随着我国国民物质生活的丰富,消费观念的变化,投资渠道的增多,这些因素将深刻地影响客户存款需求的特性。目前我国商业银行负债以存款为主,负债结构单一,缺乏稳定性;同时银行特别是国有商业银行由于历史和体制的原因,存在资产质量差,不良贷款率高,资本金不足等问题,使得我国银行业积聚了大量的风险。因此,我国商业银行的存款产品必须进行契约设计的改进,完善其中的激励与约束对等的机制设计,创新存款产品种类,满足不同客户的个性化需求;同时要提高存款的稳定性。上海作为全国的金融中心,应该顺应时代的进步建立一个合理的金融体系并完善其制度,而商业银行作为金融的重要环节应不断地对自身进行改革和创新更好地为个人和企业客户服务,这对于上海人民的生活水平的提高和经济的稳定发展具有重要的意义和作用。参考文献[2]黄达.金融学[M].北京:中国人民大学出版社,2004[3]郑道平.货币银行学原理[M].北京:中国金融出版社,2005[4]陈共.财政学[M].北京:中国人们大学出版社,2004[6]彼得·K·奥本海姆,官青译.跨国银行业务[M].北京:中国计划出版社.2001[6]上海统计年鉴.
很多人都不知道SPSS回归分析结果怎么解读,那我们就一起来看看吧!
回归分析是科学研究领域最常用的统计方法,运用十分广泛,是探察变量之间的数量关系,并通过数学表达式来描述这种关系,进而确定一个变量或者几个变量对另一个变量的影响程度,要之其运用,首先下载打开spaa。
弹出对话框,填入想要验证的自变项(independent)和因变项(dependent),其他的选项用选择默认设置,因为其他选项只是用来更加精确地去优化模型。
接下来是结果分析:【Anova表】表示分析结果,主要看的是F和Sig值,一般sig<被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,即有95%的把握结论正确。
最后看【模型汇总表】:R表示拟合优度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正,一般认为R方大于表示模型是比较合理的,当然值越接近1表示模型越好,表中的结果就是表示模型比较合理!
问题一:SPSS中回归分析结果解释,不懂怎么看 首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig 问题二:请问SPSS的回归分析结果怎么看 前面的几个表是回归分析的结果,主要看系数,表示自变量增加一个单位,因变量平均增加个单位。后面的sig值小于,说明系数和0的差别显著。 还要看R2=,说明自变量解释了因变量的变化。 最后一个图表明,残差服从正态分布。 希望对你有帮助,统计人刘得意 问题三:spss回归分析结果图,帮忙看一下,麻烦详细地解释解释 R平方就是拟合优度指标,代表了回归平方和(方差分析表中的)占总平方和(方差分析表中的)的比例,也称为决定系数。你的R平方值为,表示X可以解释的Y值,拟合优度很高,尤其是在这么大的样本量(1017对数据点)下更是难得。 系数表格列出了自变量的显著性检验结果(使用单样本T检验)。截距项()的显著性为(P值),表明不能拒绝截距为0的原假设;回归系数(X项)为,其显著性为(表明P值小于,而不是0。想看到具体的数值,可以双击该表格,再把鼠标定位于对应的格子),拒绝回归系数(X项)为0的原假设,也就是回归系数不为0;标准化回归系数用于有多个自变量情况下的比较,标准化回归系数越大,该自变量的影响力越大。由于你的数据仅有一个自变量,因此不需要参考这项结果。 对于线性回归,我在百度还有其他的回答,你可以搜索进行补充。 问题四:请教spss回归分析结果解读 首先看 方差分析表 对应的sig 是否小于,如果小于,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于,就说明回归模型不显著,下面的就不用再看了。 其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。 第三 看具体回归系数表中每个自变量 对应的sig值,如果sig小于,说明该自变量对因变量有显著预测作用,反之没有作用。 问题五:怎么从eviews回归分析结果中看出有没有显著影响 10分 模型中解释变量的估计值为,标准差是,标准差是衡量回归系数值的稳定性和可靠性的,越小越稳定,解释变量的估计值的T值是用于检验系数是否为零的,若值大于临界值则可靠。估计值的显著性概率值(prob)都小于5%水平,说明系数是显著的。R方是表示回归的拟合程度,越接近1说明拟合得越完美。调整的R方是随着变量的增加,对增加的变量进行的“惩罚”。D-W值是衡量回归残差是否序列自相关,如果严重偏离2,则认为存在序列相关问题。F统计值是衡量回归方程整体显著性的假设检验,越大越显著 问题六:SPSS回归分析结果该怎么解释,越详细越好 50分 首先看 方差分析表 对应的sig 是否小于,如果小于,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于,就说明回归模型不显著,下面的就不用再看了。 其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。 第三 看具体回归系数表中每个自变量 对应的sig值,如果sig小于,说明该自变量对因变量有显著预测作用,反之没有作用。 问题七:相关因素logistic回归分析结果怎么看 logistic回归与多重线性回归一样,在应用之前也是需要分析一下资料是否可以采用logistic回归模型。并不是说因变量是分类变量我就可以直接采用logistic回归,有些条件仍然是需要考虑的。 首要的条件应该是需要看一下自变量与因变量之间是什么样的一种关系。多重线性回归中,要求自变量与因变量符合线性关系。而logistic回归则不同,它要求的是自变量与logit(y)符合线性关系,所谓logit实际上就是ln(P/1-P)。也就是说,自变量应与ln(P/1-P)呈线性关系。当然,这种情形主要针对多分类变量和连续变量。对于二分类变量就无所谓了,因为两点永远是一条直线。 这里举一个例子。某因素y与自变量x之间关系分析,y为二分类变量,x为四分类变量。如果x的四分类直接表示为1,2,3,4。则分析结果为p=,显示对y的影响在水准时无统计学意义,而如果将x作为虚拟变量,以1为参照,产生x2,x3,x4三个变量,重新分析,则结果显示:x2,x3,x4的p值分别为,和。也就是说,尽管2和1相比无统计学意义,但3和1相比,4和1相比,均有统计学意义。 为什么会产生如此结果?实际上如果仔细分析一下,就可以发现,因为x与logit(y)并不是呈线性关系。而是呈如下图的关系: 这就是导致上述差异的原因。从图中来看,x的4与1相差最大,其次是2,3与1相差最小。实际分析结果也是如此,上述分析中,x2,x3,x4产生的危险度分别为,,。 因此,一开始x以1,2,3,4的形式直接与y进行分析,默认的是认为它们与logit(p)呈直线关系,而实际上并非如此,因此掩盖了部分信息,从而导致应有的差异没有被检验出来。而一旦转换为虚拟变量的形式,由于虚拟变量都是二分类的,我们不再需要考虑其与logit(p)的关系,因而显示出了更为精确的结果。 最后强调一下,如果你对自变量x与y的关系不清楚,在样本含量允许的条件下,最好转换为虚拟变量的形式,这样不至于出现太大的误差。 如果你不清楚应该如何探索他们的关系,也可以采用虚拟变量的形式,比如上述x,如果转换的虚拟变量x2,x3,x4他们的OR值呈直线关系,那x基本上可以直接以1,2,3,4的形式直接与y进行分析。而我们刚才也看到了,x2,x3,x4的危险度分别为,,。并不呈直线关系,所以还是考虑以虚拟变量形式进行分析最好。 总之,虚拟变量在logistic回归分析中是非常有利的工具,善于利用可以帮助你探索出很多有用的信息。 统计的分析策略是一个探索的过程,只要留心,你就会发现在探索数据关系的过程中充满了乐趣,因为你能发现别人所发现不了的隐藏的信息。希望大家多学点统计分析策略,把统计作为一种艺术,在分析探索中找到乐趣。 样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。他们大都是想到就开始做,但是事后他们会寻求研究中样本量的依据,尤其是在投文章被审稿人提问之后。可能很少有人想到研究之前还要考虑一下样本够不够的问题。其实这也难怪,临床有临床的特点,很多情况下是很难符合统计学要求的,尤其一些动物试验,可能真的做不了很多。这种情况下确实是很为难的。 本篇文章仅是从统计学角度说明logistic回归所需的样本量的大致估计,不涉及临床特殊问题。 其实不仅logistic回归,所有的研究一般都需要对样本量事前有一个估计,这样做的目的是为了尽可能地得出阳性结果。比如,你事前没有......>>
首先看 方差分析表 对应的sig 是否小于,如果小于,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于,就说明回归模型不显著,下面的就不用再看了。其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。第三 看具体回归系数表中每个自变量 对应的sig值,如果sig小于,说明该自变量对因变量有显著预测作用,反之没有作用。
coefficients回归分析结果解读是:
首先看方差分析表,对应的sig是否小于,如果小于,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于,就说明回归模型不显著,下面的就不用再看了。
其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。
回归分析的原理和方法:
是从事物变化的因果关系出发进行分析的一种预测方法,即根据实际统计的数据,通过数学计算,确定变量之间相互依存的数量关系,建立合理的数学模型,借助于定性分析,确定有哪些可能的相关因素。
收集这些因素的统计资料;应用最小二乘法等,求得各因素之间的相关系数和回归方程;最后,根据该方程进行预测,并对预测结果作可靠性分析。
你使用的是enter方法让变量进入放昶anova表示显著性,方程整体来看可以接受然后检查系数的显著性R方有时候也得考虑,看你是否需要最后写出回归方程即可
1、首先打开《spss》软件,创建一个空白表格。2、其次使用表格创建好状态栏,输入论文的内容。3、最后点击保存即可。
这张表格是根据SPSS中卡方检验结果重新编制而成的。所以,你只要去做一下卡方检验即可
哥哥,您这是逮着数据就往里面塞啊!而且你怎么没有给出因变量?我猜测是销售量?还是点击量?暂且不论你自变量的选择不正确,你的R Square值太小,最起码应该达到以上。模型拟合度相当不好,请删减自变量,再行回归!
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
回归分析法的步骤如下:
1、根据自变量与因变量的现有数据以及关系,初步设定回归方程;
2、求出合理的回归系数;
3、进行相关性检验,确定相关系数;
4、在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间。
回归分析法指利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。
回归分析法主要解决的问题;
1、确定变量之间是否存在相关关系,若存在,则找出数学表达式;
2、根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
一元线性回归分析的基本步骤如下:
一、什么是回归分析法
“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:
回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。
只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。
进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
二、回归分析的目的
回归分析的目的大致可分为两种:
第一,“预测”。预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。
y=a0+b1x1+b2x2+…+bkxk+误差(方程A)
把方程A叫做(多元)回归方程或者(多元)回归模型。a0是y截距,b1,b2,…,bk是回归系数。当k=l时,只有1个说明变量,叫做一元回归方程。根据最小平方法求解最小误差平方和,非求出y截距和回归系数。若求解回归方程.分别代入x1,x2,…xk的数值,预测y的值。
第二,“因子分析”。因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。
希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I等知识。
根据最小平方法,使用Excel求解y=a+bx中的a和b。
一、回归分析主要内容:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
二、回归分析的步骤:
1、确定变量
明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2、建立预测模型
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析
回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。
因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4、计算预测误差
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5、确定预测值
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
扩展资料:
回归分析法的有效性和注意事项:
1、有效性:
用回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用;
2、注意事项:
为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件从定量方面计算或改进定性判断。
参考资料来源:百度百科——回归分析