镁是最轻的结构金属。几种常用结构金属的密度(g·cm-3)(20o)如下: AL Mg Ti Fe Cu 可见镁的密度约分为Al,Ti,Fe,Cu的64%,39%,22%,19%。由于镁的密度小,它的合金也以质轻著称。一般镁合金的密度在·cm-3以下,镁,锂合金的密度低于镁 ·cm-3.某些超轻型镁.锂合金密度甚至低于1,比水还轻.镁得镁和金的低密度使其比性能提高.例如,20o时的弹性模量为45Gpa,比铝(70Gpa)和Ti(120Gpa)的低,但三者的比弹性模量相同(~26Gpa).镁和镁合金质量小的特点,使其在交通运输、航空工业和航天工业上具有巨大的应用前景.镁的熔点为 651℃,沸点为1107℃.镁的蒸气压很高,627℃时为℃时为,因此镁铍极易挥发.镁原子最外层的两个电子很易失去,是很活泼的金属.常温下镁能与F、CL、BR、I等元素作用生成相应化合物.加热时镁能与硫、氮作用生成MgS和Mg3N2。在空气中镁会慢慢氧化,失去银白光泽而变黑.若温度提高至400℃以上,镁的氧化速度增快,超过500℃以后氧化速度更快,会着火燃烧,此时会生成氧化镁和少量氮化镁.镁燃烧时会发出非常强烈的光亮.镁的这一特点,颇受人们的青睐.早期就被利用于摄影照明,给人们留下美好的形象和记忆.战争时期,被用来制造照明 弹,把战场和目标照明得如同白昼.又被用于制造燃烧 弹,点燃战区的物资装备,杀伤对方有生力量.人们还利用镁的这一特点,将镁粉、铝粉和其它原料制成烟花.每当节庆的夜晚,随着阵阵悦耳响声,人们可以看到”嫦娥奔月””天女散花”……各种形色的烟花在夜空飞舞,多彩多姿,给人们带来极大的欢乐.顺便提一下,镁的这种”牺牲自我””乐于助人”精神处处可见.例如它仗着活泼的电化学性质做了牺牲自我的阳极,保护着其它的金属和设备.它又作为原电池阳极,耗尽了自己,照亮了他人.由于化学活泼性高,金属镁是耐腐蚀性能最差的金属之一.在酸性、中性和弱碱性溶液中它都会受到腐蚀而变成Mg2+离子.各种类型大气均会对镁产生程度不同的腐蚀作用.在干燥的空气中,它的表面上形成一层暗淡的的疏松多孔氧化膜,在潮湿大气中,生成的产物组成大致为Mgco3·3H2O+Mgso4·7H2o+Mg(OH)2.大气湿度增加,工为地区和海洋环境的大气中所含的二氧化硫和氯化物等物质,能加重镁的腐蚀.镁中氯化物杂质及铁杂质也会加速镁的腐蚀.因此,工业生产的镁锭必须镀膜钝化,涂油及以蜡纸包覆. 镁是地壳中分布最广的元素之一,占地壳重量的,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后.在自然界中镁只能以化合物的形态存在.在已知的1500多种矿物中,含镁矿物的有200多种,主要为碳酸盐、硅酸盐、硫酸盐、氧化物.海洋及盐湖中的镁比陆地上更多,是镁的主要来源.海水中含有10多种元素,镁的含量排第三,位居Na、K之后.海水中含镁每立方千米海水中有130万t镁,相当于世界镁年消耗量的4倍(见表)盐湖水的镁浓度比海水更高.以东以色列、约旦之间的”死海”(实为另一内陆湖),受到千万干旱气候的造化,湖水极浓,含镁竟高达4%.仅此一处的镁,就能满足全世界万年的需要. 纯镁不适合做结构材料.作为结构材料应用的镁主要是镁合金和铝-镁合金.全世界约有千种铝合金牌号,若按化学成份归类的话,约为300多种.这300多种铝合金几乎都含有镁,其中以镁作为主要添加剂的铝-镁合金(镁含量最高为)约为40种.全世界各国镁合金品牌共有200多种,这些品牌按化学成份可归为30多种.共中变形镁合金黄色10多种,铸造镁合金20多种,铸造镁合金主要有以下3个体系. 1) 镁-铝合金.这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础.大部份含有8%~9%的铝及少量的锌(使拉伸性能有某些提高)和锰(改善抗蚀性)2) 镁-铝-锌合金.镁-铝合金中加锌会产生一定的强化作用,其中高含锌量的合金具有很吸引人的压铸特性.如Mg-8AL-8ZN,具有足够大的流动性.,可用于压铸件,而且流动性和抗蚀性超过传统铝-锌合金.3) 含锆镁合金.锆能细化晶粒,改善镁合金的拉伸性能,提高镁合金蠕变能力,以满足航空和航天工业的需要.属于这一系列的合金有镁-锌-锆合金,镁-稀土-锌-锆合金,以及镁-钍系为基和镁-银系为基的含ZR合金.这种含稀土金属和或含钍的合金都可焊.钍也能改善铸造性能.银可以进一步提高拉伸性能.一些铸造镁合金的性能示于表.镁是立方晶格的金属,可以承受的形变量有限(特别是在低温下).其变形材料主要在300~500℃温度范围内通过挤压、;轧制和压力锻造进行生产.变形合金可以按照它们是否含锆而分成两类.按照变形产品种类可分为三类:1薄板和厚板轧制金.如AZ31(Mg-Al-Z系),ZM21(Mg-Zn-Mn系)和ZE10(Mg-Zn-RE系),这三种合金都可焊,后两种强度较低.LA141A(Mg-Li-Al)等也属这一类,前面已作详细介绍.属于这一类的还有含钍的HK31(Mg-Th-Zr系)以及随后研制的HM21(Mg-Th-Mn等),它们的高温强度更高.2挤压合金.这类合金含铝量大多在1%~8%之间.镁合金都具有密度小的特点,特别是某些镁-锂合金(见前),密度甚至低于1。美英俄等国正在研制含钇镁合金。一种合金,其密度小于·cm-3 ,抗拉强密度420Mpa, 屈服强度360Mpa,比现有任何一种变形镁合金的都高,同高强度铝合金强度相当。 镁铝合金又名铝镁合金,分子式:Mg4Al3分子量:颜色为灰褐色,比重约为,熔点463℃,燃烧时产生的温度达2000℃-3000℃。在烟花生产过程中起着非常重要的还原剂作用,也可作为白光剂和照明剂。镁铝合金是用镁锭和铝锭在保护气体中高温熔融而成。长期以来关于镁铝合金的结构有两种说法。一种说法是镁铝合金是简单物理混合;另一种说法是镁铝合金内部改变了晶体结构,不是简单的物理混合。镁锭和铝锭在高于1150K时,部分铝与空气中的氧气反应,生成a-Al2O3,氧化铝的此种晶体化学性质呈惰性,起着屏障、隔离作用。低于1150K时,生在B-Al2O3而这种晶体与酸反应,保护不了内部的镁铝合金。标准的镁铝合金中镁、铝的含量各约为50%。活性铝含量的多少对烟花的安全生产和产品的质量有很大的影响。但是现在生产镁铝合金的企业多为私营企业,近几年来铝锭比镁锭贵,受利益的驱动,大多未按国标生产。现在镁铝合金粉中铝的含量普遍低于50%,有的铝含量低到了40%。镁含量的增加使得镁铝合金的性质接近镁粉的性质,使得烟火 药的撞击感度、摩擦感度增加,烟火剂更加敏感,从而增加隐患。我们可能以用下面的化学机理来检验镁铝合金中铝的含量。1、盐酸与镁铝合金的反应Mg+2HCl=MgCl2+H2↑2Al+6HCl=2AlCl3+3H2↑2、混合溶液与氢氧化钠溶液反应(混合溶液中滴几滴石蕊或酚酞试剂作指示剂,以避免氢氧化钠过量)MgCl2+2NaOH=2NaCl+Mg(OH)2↓AlCl3+3NaOH=3NaCl+Al(OH)3↓3、过滤、烘干、称重,重量为G1克4、氢氧化铝与过量的氢氧化钠反应Al(OH)3+NaOH=NaAlO2+2H2O5、未反应的为氢氧化镁。过滤、烘干、称重,重量为G2克镁铝合金的中铝的含量 Al%=(G1-G2)/G×规定了镁铝合金中铝的含量的范围为47-53%,铝含量低于这个范围镁铝合金容易引起质量事故和安全事故,应慎用。镁锭在镁铝合金中的应用:镁铝合金由镁锭和铝锭在保护气体中高温熔融而成,其组成有:简单的物理混合与已改变晶体结构的物理混合两种说法。
它的全名叫制动机,而且有不同的型号,现在的火车基本用的是JZ7制动机,他有自阀和单阀两大部分,单阀只是控制火车头的刹车,自阀是控制整个列车的刹车,安装在火车司机室的最左侧,
铝合金支座压铸模具设计摘要:铝合金支座压铸生产中存在工艺性能差、模具寿命低、成品率和生产效率低等问题。基于实际生产中存在的问题,本设计在对该产品压铸工艺分析的基础上,对压铸模具进行了设计。采用液压抽芯机构来完成四个方向的抽芯动作,并在其中一个大型芯上开设了溢流槽和冷却水道;深孔型芯部位采用螺旋式不拆模更换型芯的结构。改进设计的模具在实际生产中,克服了冷隔缺陷,提高了生产效率。关键词:压铸工艺;铝合金;模具设计;液压抽芯近年来,铝合金压铸产品以其低密度、高强度等优点在汽车、电器、通讯等领域得到广泛应用。随着技术难题的不断解决,新设备的不断出现,压铸成型将以独特的优点在制造业中得到高速发展。本设计以铝合金支座为设计对象,针对该产品在生产中出现的问题,根据铝合金压铸成型的特点,在分析其结构的基础上,提出该产品压铸模具的设计方案,并进行模具设计。1支座压铸件的结构分析图1给出了铝合金支座的3D产品图。从其结构分析可知,该压铸件主要特征如下:形状复杂,壁厚不均匀,最大壁厚,最小壁厚;四个方向都需要抽芯机构;两侧对称分布一深孔(盲孔),孔径约,深度约30mm,拔模斜度为1°。生产中存在两侧深孔小型芯易断芯、充型不完全等问题。2压铸工艺参数的确定确定压铸工艺参数如下:(1)材料根据客户要求,选择A413铝合金;(2)压射比压由于产品密封性高,结构复杂且壁厚不均,选较高的压力为100MPa;(3)内浇口速度根据铝合金压铸件性能指标,取内浇口速度为55m/s;(4)填充时间根据平均壁厚,取。
铝合金压铸类产品主要用于电子、汽车、电机、家电和一些通讯行业等,一些高性能、高精度、高韧性的优质铝合金产品也被用于大型飞机、船舶等要求比较高的行业中。主要的用途还是在一些器械的零件上。压铸的发展史众说纷纭,根据有关文章的记载,最初出现的是压铸铅。在1822年,威廉姆·乔奇(Willam Church)就制造了一台日产万的铅字的铸造机。而在二十几年后, 斯图吉斯()设计并造成了第一台手动活塞式 热室压铸机,并在美国获得了专利。1885年,默根瑟勒研究了以前的专利,发明了印字 压铸机。到19世纪60年代用于 锌合金压铸零件生产。 压铸广泛的用于工业生产还只是上世纪初。1905年多勒(H.H.Doehler)研制成功用于工业生产的压铸机、压铸锌、锡、 铜合金 铸件。随后 瓦格纳(Wagner)设计了鹅颈式气压压铸机,用于生产铝合金 压铸件。
1、铝材磷化,通过采用SEM, XRD、电位一时间曲线、膜重变化等方法详细研究了促进剂、 氟化物、Mn2+、 Ni2+、 Zn2+、PO4和Fe2+等对铝材 磷化过程的影响。研究表明: 硝酸胍具有水溶性好、用量低、快速成膜的特点,是铝材磷化的有效促进剂。氟化物可促进成膜,增加膜重,细化 晶粒;Mn2+、Ni2+能明显细化晶粒,使 磷化膜均匀、致密并可以改善磷化膜外观;Zn2+浓度较低时,不能成膜或成膜差,随着Zn2+浓度增加,膜重增加;PO4含量对磷化膜重影响较大,提高PO4。含量使磷化膜重增加。
2、铝的碱性电解抛光工艺,进行了碱性抛光溶液体系的研究,比较了缓蚀剂、粘度剂等对抛光效果的影响,成功获得了抛光效果很好的碱性溶液体系,并首次得到了能降低操作温度、延长溶液使用寿命、同时还能改善抛光效果的添加剂。实验结果表明:在 NaOH溶液中加入适当添加剂能产生好的抛光效果。 探索性实验还发现:用葡萄糖的NaOH溶液在某些条件下进行直流恒压 电解抛光后,铝材表面 反射率可以达到90%,但由于实验还存在不稳定因素,有待进一步研究。探索了采用直流脉冲电解抛光法在碱性条件下抛光铝材的可行性,结果表明:采用脉冲电解抛光法可以达到直流恒压电解抛光的整平效果,但其整平速度较慢。
3、铝及铝合金环保型化学抛光,确定开发以磷酸一硫酸为基液的环保型化学抛光新技术,该技术要实现NOx的零排放且克服以往类似技术存在的质量缺陷。新技术的关键是在基液中添加一些具有特殊作用的化合物来替代硝酸。为此首先需要对铝的三酸化学抛光过程进行分析,尤其要重点研究硝酸的作用。硝酸在铝化学抛光中的主要作用是抑制点腐蚀,提高抛光亮度。结合在单纯磷酸一硫酸中的化学抛光试验,认为在磷酸一硫酸中添加的特殊物质应能够抑制 点腐蚀、减缓 全面腐蚀,同时必须具有较好的整平和光亮效果
4、铝及其合金的电化学表面强化处理,铝及其合金在中性体系中 阳极氧化沉积形成类陶瓷 非晶态复合转 化膜的工艺、性能、形貌、成分和结构,初步探讨了膜层的成膜过程和机理。工艺研究结果表明,在Na_2WO_4 中性混合体系中,控制成膜促进剂浓度为~, 络合成膜剂浓度为~,Na_2WO_4浓度为~,峰值 电流密度为6~12A/dm~2,弱搅拌,可以获得完整均匀、光泽性好的灰色系列无机非金属膜层。该膜层厚度为 5~10μm, 显微硬度为300~540HV,耐蚀性优异。该中性体系对铝合金有较好的适应性, 防锈铝、锻铝等多种系列铝合金上都能较好地成膜。
铝和金压铸工艺可以被应用在铝压铸汽车配件、铝压铸汽车发动机管件、铝压铸发动机气缸、铝压铸汽油机气缸缸盖、铝压铸气门摇臂、铝压铸气门支座、铝压铸电力配件、铝压铸电机端盖、铝压铸壳体、铝压铸泵壳体、铝压铸建筑配件、铝压铸装饰配件、铝压铸护栏配件、铝压铸铝轮等等零件的制作过程中。 工艺流程,压铸铝行业的四种底子工艺分别是退火、正火、淬火和回火,这四种工艺被称为压铸中的“四把火”,其在压铸过程中,淬火与回火的关系非常密切,两者缺一不可。 据了解,退火是给工件加温,当加热到恰当温度时,根据所选用的材料的不同,对压铸件进行缓慢冷却,已达到金属内部组织靠近平衡情况。正火是将工件加热到合适的温度后在空气中冷却,主要用于改善材料的切削功用,也可用于对一些需要不高的零部件作为结束压铸。淬火是将工件加热保温后,在水、或者由以及其他无机盐溶液等淬冷介质中快速冷却,经过此道工序,生产出来的钢件将会变硬,同时也使钢件变脆。为了使钢件脆性降低,可将淬火后的钢件放置于650摄氏度以下高于常温的某一温度进行长时间的保温,然后进行冷却,这被称为回火。
镁是最轻的结构金属。几种常用结构金属的密度(g·cm-3)(20o)如下: AL Mg Ti Fe Cu 可见镁的密度约分为Al,Ti,Fe,Cu的64%,39%,22%,19%。由于镁的密度小,它的合金也以质轻著称。一般镁合金的密度在·cm-3以下,镁,锂合金的密度低于镁 ·cm-3.某些超轻型镁.锂合金密度甚至低于1,比水还轻.镁得镁和金的低密度使其比性能提高.例如,20o时的弹性模量为45Gpa,比铝(70Gpa)和Ti(120Gpa)的低,但三者的比弹性模量相同(~26Gpa).镁和镁合金质量小的特点,使其在交通运输、航空工业和航天工业上具有巨大的应用前景.镁的熔点为 651℃,沸点为1107℃.镁的蒸气压很高,627℃时为℃时为,因此镁铍极易挥发.镁原子最外层的两个电子很易失去,是很活泼的金属.常温下镁能与F、CL、BR、I等元素作用生成相应化合物.加热时镁能与硫、氮作用生成MgS和Mg3N2。在空气中镁会慢慢氧化,失去银白光泽而变黑.若温度提高至400℃以上,镁的氧化速度增快,超过500℃以后氧化速度更快,会着火燃烧,此时会生成氧化镁和少量氮化镁.镁燃烧时会发出非常强烈的光亮.镁的这一特点,颇受人们的青睐.早期就被利用于摄影照明,给人们留下美好的形象和记忆.战争时期,被用来制造照明 弹,把战场和目标照明得如同白昼.又被用于制造燃烧 弹,点燃战区的物资装备,杀伤对方有生力量.人们还利用镁的这一特点,将镁粉、铝粉和其它原料制成烟花.每当节庆的夜晚,随着阵阵悦耳响声,人们可以看到”嫦娥奔月””天女散花”……各种形色的烟花在夜空飞舞,多彩多姿,给人们带来极大的欢乐.顺便提一下,镁的这种”牺牲自我””乐于助人”精神处处可见.例如它仗着活泼的电化学性质做了牺牲自我的阳极,保护着其它的金属和设备.它又作为原电池阳极,耗尽了自己,照亮了他人.由于化学活泼性高,金属镁是耐腐蚀性能最差的金属之一.在酸性、中性和弱碱性溶液中它都会受到腐蚀而变成Mg2+离子.各种类型大气均会对镁产生程度不同的腐蚀作用.在干燥的空气中,它的表面上形成一层暗淡的的疏松多孔氧化膜,在潮湿大气中,生成的产物组成大致为Mgco3·3H2O+Mgso4·7H2o+Mg(OH)2.大气湿度增加,工为地区和海洋环境的大气中所含的二氧化硫和氯化物等物质,能加重镁的腐蚀.镁中氯化物杂质及铁杂质也会加速镁的腐蚀.因此,工业生产的镁锭必须镀膜钝化,涂油及以蜡纸包覆. 镁是地壳中分布最广的元素之一,占地壳重量的,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后.在自然界中镁只能以化合物的形态存在.在已知的1500多种矿物中,含镁矿物的有200多种,主要为碳酸盐、硅酸盐、硫酸盐、氧化物.海洋及盐湖中的镁比陆地上更多,是镁的主要来源.海水中含有10多种元素,镁的含量排第三,位居Na、K之后.海水中含镁每立方千米海水中有130万t镁,相当于世界镁年消耗量的4倍(见表)盐湖水的镁浓度比海水更高.以东以色列、约旦之间的”死海”(实为另一内陆湖),受到千万干旱气候的造化,湖水极浓,含镁竟高达4%.仅此一处的镁,就能满足全世界万年的需要. 纯镁不适合做结构材料.作为结构材料应用的镁主要是镁合金和铝-镁合金.全世界约有千种铝合金牌号,若按化学成份归类的话,约为300多种.这300多种铝合金几乎都含有镁,其中以镁作为主要添加剂的铝-镁合金(镁含量最高为)约为40种.全世界各国镁合金品牌共有200多种,这些品牌按化学成份可归为30多种.共中变形镁合金黄色10多种,铸造镁合金20多种,铸造镁合金主要有以下3个体系. 1) 镁-铝合金.这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础.大部份含有8%~9%的铝及少量的锌(使拉伸性能有某些提高)和锰(改善抗蚀性)2) 镁-铝-锌合金.镁-铝合金中加锌会产生一定的强化作用,其中高含锌量的合金具有很吸引人的压铸特性.如Mg-8AL-8ZN,具有足够大的流动性.,可用于压铸件,而且流动性和抗蚀性超过传统铝-锌合金.3) 含锆镁合金.锆能细化晶粒,改善镁合金的拉伸性能,提高镁合金蠕变能力,以满足航空和航天工业的需要.属于这一系列的合金有镁-锌-锆合金,镁-稀土-锌-锆合金,以及镁-钍系为基和镁-银系为基的含ZR合金.这种含稀土金属和或含钍的合金都可焊.钍也能改善铸造性能.银可以进一步提高拉伸性能.一些铸造镁合金的性能示于表.镁是立方晶格的金属,可以承受的形变量有限(特别是在低温下).其变形材料主要在300~500℃温度范围内通过挤压、;轧制和压力锻造进行生产.变形合金可以按照它们是否含锆而分成两类.按照变形产品种类可分为三类:1薄板和厚板轧制金.如AZ31(Mg-Al-Z系),ZM21(Mg-Zn-Mn系)和ZE10(Mg-Zn-RE系),这三种合金都可焊,后两种强度较低.LA141A(Mg-Li-Al)等也属这一类,前面已作详细介绍.属于这一类的还有含钍的HK31(Mg-Th-Zr系)以及随后研制的HM21(Mg-Th-Mn等),它们的高温强度更高.2挤压合金.这类合金含铝量大多在1%~8%之间.镁合金都具有密度小的特点,特别是某些镁-锂合金(见前),密度甚至低于1。美英俄等国正在研制含钇镁合金。一种合金,其密度小于·cm-3 ,抗拉强密度420Mpa, 屈服强度360Mpa,比现有任何一种变形镁合金的都高,同高强度铝合金强度相当。 镁铝合金又名铝镁合金,分子式:Mg4Al3分子量:颜色为灰褐色,比重约为,熔点463℃,燃烧时产生的温度达2000℃-3000℃。在烟花生产过程中起着非常重要的还原剂作用,也可作为白光剂和照明剂。镁铝合金是用镁锭和铝锭在保护气体中高温熔融而成。长期以来关于镁铝合金的结构有两种说法。一种说法是镁铝合金是简单物理混合;另一种说法是镁铝合金内部改变了晶体结构,不是简单的物理混合。镁锭和铝锭在高于1150K时,部分铝与空气中的氧气反应,生成a-Al2O3,氧化铝的此种晶体化学性质呈惰性,起着屏障、隔离作用。低于1150K时,生在B-Al2O3而这种晶体与酸反应,保护不了内部的镁铝合金。标准的镁铝合金中镁、铝的含量各约为50%。活性铝含量的多少对烟花的安全生产和产品的质量有很大的影响。但是现在生产镁铝合金的企业多为私营企业,近几年来铝锭比镁锭贵,受利益的驱动,大多未按国标生产。现在镁铝合金粉中铝的含量普遍低于50%,有的铝含量低到了40%。镁含量的增加使得镁铝合金的性质接近镁粉的性质,使得烟火 药的撞击感度、摩擦感度增加,烟火剂更加敏感,从而增加隐患。我们可能以用下面的化学机理来检验镁铝合金中铝的含量。1、盐酸与镁铝合金的反应Mg+2HCl=MgCl2+H2↑2Al+6HCl=2AlCl3+3H2↑2、混合溶液与氢氧化钠溶液反应(混合溶液中滴几滴石蕊或酚酞试剂作指示剂,以避免氢氧化钠过量)MgCl2+2NaOH=2NaCl+Mg(OH)2↓AlCl3+3NaOH=3NaCl+Al(OH)3↓3、过滤、烘干、称重,重量为G1克4、氢氧化铝与过量的氢氧化钠反应Al(OH)3+NaOH=NaAlO2+2H2O5、未反应的为氢氧化镁。过滤、烘干、称重,重量为G2克镁铝合金的中铝的含量 Al%=(G1-G2)/G×规定了镁铝合金中铝的含量的范围为47-53%,铝含量低于这个范围镁铝合金容易引起质量事故和安全事故,应慎用。镁锭在镁铝合金中的应用:镁铝合金由镁锭和铝锭在保护气体中高温熔融而成,其组成有:简单的物理混合与已改变晶体结构的物理混合两种说法。
压铸模具制作工艺流程:审图—备料—加工—模架加工—模芯加工—电极加工—模具零件加工—检验—装配—飞模—试模—生产。模架加工:打编号, A/B板加工,面板加工,顶针固定板加工,底板加工。模芯加工:飞边,粗磨,铣床加工,钳工加工,CNC粗加工,热处理,精磨,CNC精加工,电火花加工,省模。模具零件加工:滑块加工,压紧块加工,分流锥浇口套加工,镶件加工。模架加工细节,打编号要统一,模芯也要打上编号,应与模架上编号一致并且方向一致,装配时对准即可不易出错。A/B板加工(即动定模框加工),A/B板加工应保证模框的平行度和垂直度为,b :铣床加工:螺丝孔,运水孔,顶针孔,机咀孔,倒角c:钳工加工:攻牙,修毛边。面板加工:铣床加工镗机咀孔或加工料嘴孔。顶针固定板加工:铣床加工:顶针板与B板用回针连结,B板面向上,由上而下钻顶针孔,顶针沉头需把顶针板反过来底部向上,校正,先用钻头粗加工,再用铣刀精加工到位,倒角。底板加工 :铣床加工:划线,校正,镗孔,倒角。
合金是由金属与其它一种以上的金属或非金属所组成的具有金属通性的物质。我国是世界上最早研究和生产合金的国家之一,在商朝(距今3000多年前)青铜(铜锡合金)工艺就已非常发达;公元前6世纪左右(春秋晚期)已锻打(还进行过热处理)出锋利的剑(钢制品)。铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用者选用根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。 各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 的F-15高性能战斗机仅使用%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。 航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合
我有一篇原创的论文,请参考。桑拿天气对冲天炉熔炼的影响及预防措施摘要:高温潮湿闷热天气使冲天炉熔炼不正常,熔化率下降,铸件气孔缺陷增加。采用调整鼓风机风量及炉料比例、加强炉料管理及炉前脱气处理等措施,取得了明显效果。关键词:高温;潮湿;气孔;脱气;风量山东省临沂市风机厂生产的冲天炉专用鼓风机具有风压高、流量变化小、重量轻、结构简单、耗电少、噪音低等特点,广泛应用于冲天炉熔炼等强制鼓风场合,深得用户好评。进入夏天后,很多用户来检修风机并反映:与春节期间相比冲天炉熔化率降低、熔化不正常、铸件气孔增加、废品率上升,而各方面都未变化(如风口、炉料、操作),鼓风机经检修又无问题,令人百思不得其解。无独有偶,我厂铸造车间(冲天炉为4t/h二排大间距冷风、配套45kW的HTD85-21鼓风机)亦出现了上述问题,熔化率由4t/h降至3t/h,生产的轴承箱体部分出现了气孔,这在以前是从未有过的事情。1 原因分析 熔化率下降的原因分析 风量的影响夏季气温高、空气体积膨胀大,空气密度比冬天低约10%,而粘度系数则是冬天的倍。夏天同样的进风量其重量要比冬天少约10%,即氧气量少了;同时粘度系数增加,导致进风速度下降。进气量不足,造成底焦燃烧不充分,导致熔化率降低,铁液温度下降,使铁液中的气体、氧化物、硫化物等杂质进入型腔而造成气孔或渣气孔。进风量是影响焦炭燃烧、熔化率的一个重要因素。 风压的影响风机的压力与空气的温度有如下关系(忽略大气压力的变化):P1/P2=(T+t2)/(T+t1)式中 P1——气温为t1时的压力P2——气温为t2时的压力T=273℃例如:在冬天气温为-10℃,夏天为38℃工作的一台鼓风机,它的压力变化:P1=,即在夏天时鼓风机的压力要比冬天低。风压低不利于克服沿途的各种阻力,气流不能射入炉心,炉膛断面供风不均匀,不能改善中心焦炭的燃烧,不利于提高铁液温度,同时也致使熔化率下降。 产生气孔的原因分析送风湿度与铸造缺陷有密切关系,夏天空气湿度比冬天高,空气中的水汽进入炉内分别与赤热的焦炭、铁液接触相互作用,产生大量H2,发生吸热反应,故降低炉温。产生大量H2会大幅增加铁液的吸气程度,铁液中的H2量超过时,铁液在型内冷却过程中,H2来不及排出,会在铸件表皮下形成1~3mm的气孔。炉温降低会加重铁液氧化,FeO含量增多,炉内Mn、Si等元素烧损加大,这样的铁液白口倾向严重、凝固快、流动性差、质量不好,浇注的铸件极易产生氧化性气孔。铁液温度随送风湿度增大而呈线性降低,过高的湿度除影响铁液温度外,还影响冲天炉的熔化率、铸件化学成分和白口深度。2 预防措施为减轻高温潮湿天气对铁液质量的不利影响,提高铁液温度是关键,即常说的“高温治百病”。除避开雨雾湿热极端天气熔炼外,我们还采取了一些措施,熔炼达到正常,使铁液温度稳定在1420—1440℃,废品率明显下降。 调整鼓风机风量遇桑拿天气应增大送风量12%,打开进风调节闸门,适当加大电机电流,但不得超过电机的额定电流,防止烧坏电机。若电机已达额定电流、鼓风机满负荷工作,在无法直接加大送风量的情况下,可适当降低料柱高度或缩小风口区的直径。 调整炉料比例增加底焦高度和层焦量约10%,适当降低废钢用量,尽量不用铁屑饼,以减轻炉内氧化性气氛和铁液吸气量。 加强炉前脱气处理在出铁槽随流加入的稀土合金,对铁液进行脱氧去硫,净化铁液;扒净铁液表面的浮渣后,用烘干好的覆盖剂盖严包面,减少二次氧化、吸气。 严格炉料管理将炉料室内存放,保持干燥;万不得已露天存放时,遇雨雾潮湿天必须苫盖,特别是生铁、焦炭;筛选焦炭,大小相差不宜过分悬殊,即块度均匀、适中;破碎回炉料,减小炉料块度,清除干净炉料的杂质(如芯砂);孕育剂、覆盖剂、铁合金等使用前必须充分烘烤,去除水分;出铁槽、炉衬、包衬烘烤至暗红色。 规范操作当天造好的铸型当天浇注,减少吸潮,避免铸型长时间停放;严格配料、称量,保持适当高度的料柱;按规程操作,确保不出现事故,只有保持“四稳”(炉膛尺寸稳定、底焦高度稳定、风量控制稳定、合格炉料稳定)、“三通”(保持风口、渣口、出铁口明亮、通畅、干净),才能熔化稳定,铁液优良。3 结束语采取相应措施后,冲天炉熔炼正常,铁液质量稳定,熔化率恢复到正常水平,铸件气孔废品率下降8%-10%,为用户解决了技术难题,为企业赢得了经济效益和社会效益。
镁是最轻的结构金属。几种常用结构金属的密度(g·cm-3)(20o)如下: AL Mg Ti Fe Cu 可见镁的密度约分为Al,Ti,Fe,Cu的64%,39%,22%,19%。由于镁的密度小,它的合金也以质轻著称。一般镁合金的密度在·cm-3以下,镁,锂合金的密度低于镁 ·cm-3.某些超轻型镁.锂合金密度甚至低于1,比水还轻.镁得镁和金的低密度使其比性能提高.例如,20o时的弹性模量为45Gpa,比铝(70Gpa)和Ti(120Gpa)的低,但三者的比弹性模量相同(~26Gpa).镁和镁合金质量小的特点,使其在交通运输、航空工业和航天工业上具有巨大的应用前景.镁的熔点为 651℃,沸点为1107℃.镁的蒸气压很高,627℃时为℃时为,因此镁铍极易挥发.镁原子最外层的两个电子很易失去,是很活泼的金属.常温下镁能与F、CL、BR、I等元素作用生成相应化合物.加热时镁能与硫、氮作用生成MgS和Mg3N2。在空气中镁会慢慢氧化,失去银白光泽而变黑.若温度提高至400℃以上,镁的氧化速度增快,超过500℃以后氧化速度更快,会着火燃烧,此时会生成氧化镁和少量氮化镁.镁燃烧时会发出非常强烈的光亮.镁的这一特点,颇受人们的青睐.早期就被利用于摄影照明,给人们留下美好的形象和记忆.战争时期,被用来制造照明 弹,把战场和目标照明得如同白昼.又被用于制造燃烧 弹,点燃战区的物资装备,杀伤对方有生力量.人们还利用镁的这一特点,将镁粉、铝粉和其它原料制成烟花.每当节庆的夜晚,随着阵阵悦耳响声,人们可以看到”嫦娥奔月””天女散花”……各种形色的烟花在夜空飞舞,多彩多姿,给人们带来极大的欢乐.顺便提一下,镁的这种”牺牲自我””乐于助人”精神处处可见.例如它仗着活泼的电化学性质做了牺牲自我的阳极,保护着其它的金属和设备.它又作为原电池阳极,耗尽了自己,照亮了他人.由于化学活泼性高,金属镁是耐腐蚀性能最差的金属之一.在酸性、中性和弱碱性溶液中它都会受到腐蚀而变成Mg2+离子.各种类型大气均会对镁产生程度不同的腐蚀作用.在干燥的空气中,它的表面上形成一层暗淡的的疏松多孔氧化膜,在潮湿大气中,生成的产物组成大致为Mgco3·3H2O+Mgso4·7H2o+Mg(OH)2.大气湿度增加,工为地区和海洋环境的大气中所含的二氧化硫和氯化物等物质,能加重镁的腐蚀.镁中氯化物杂质及铁杂质也会加速镁的腐蚀.因此,工业生产的镁锭必须镀膜钝化,涂油及以蜡纸包覆. 镁是地壳中分布最广的元素之一,占地壳重量的,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后.在自然界中镁只能以化合物的形态存在.在已知的1500多种矿物中,含镁矿物的有200多种,主要为碳酸盐、硅酸盐、硫酸盐、氧化物.海洋及盐湖中的镁比陆地上更多,是镁的主要来源.海水中含有10多种元素,镁的含量排第三,位居Na、K之后.海水中含镁每立方千米海水中有130万t镁,相当于世界镁年消耗量的4倍(见表)盐湖水的镁浓度比海水更高.以东以色列、约旦之间的”死海”(实为另一内陆湖),受到千万干旱气候的造化,湖水极浓,含镁竟高达4%.仅此一处的镁,就能满足全世界万年的需要. 纯镁不适合做结构材料.作为结构材料应用的镁主要是镁合金和铝-镁合金.全世界约有千种铝合金牌号,若按化学成份归类的话,约为300多种.这300多种铝合金几乎都含有镁,其中以镁作为主要添加剂的铝-镁合金(镁含量最高为)约为40种.全世界各国镁合金品牌共有200多种,这些品牌按化学成份可归为30多种.共中变形镁合金黄色10多种,铸造镁合金20多种,铸造镁合金主要有以下3个体系. 1) 镁-铝合金.这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础.大部份含有8%~9%的铝及少量的锌(使拉伸性能有某些提高)和锰(改善抗蚀性)2) 镁-铝-锌合金.镁-铝合金中加锌会产生一定的强化作用,其中高含锌量的合金具有很吸引人的压铸特性.如Mg-8AL-8ZN,具有足够大的流动性.,可用于压铸件,而且流动性和抗蚀性超过传统铝-锌合金.3) 含锆镁合金.锆能细化晶粒,改善镁合金的拉伸性能,提高镁合金蠕变能力,以满足航空和航天工业的需要.属于这一系列的合金有镁-锌-锆合金,镁-稀土-锌-锆合金,以及镁-钍系为基和镁-银系为基的含ZR合金.这种含稀土金属和或含钍的合金都可焊.钍也能改善铸造性能.银可以进一步提高拉伸性能.一些铸造镁合金的性能示于表.镁是立方晶格的金属,可以承受的形变量有限(特别是在低温下).其变形材料主要在300~500℃温度范围内通过挤压、;轧制和压力锻造进行生产.变形合金可以按照它们是否含锆而分成两类.按照变形产品种类可分为三类:1薄板和厚板轧制金.如AZ31(Mg-Al-Z系),ZM21(Mg-Zn-Mn系)和ZE10(Mg-Zn-RE系),这三种合金都可焊,后两种强度较低.LA141A(Mg-Li-Al)等也属这一类,前面已作详细介绍.属于这一类的还有含钍的HK31(Mg-Th-Zr系)以及随后研制的HM21(Mg-Th-Mn等),它们的高温强度更高.2挤压合金.这类合金含铝量大多在1%~8%之间.镁合金都具有密度小的特点,特别是某些镁-锂合金(见前),密度甚至低于1。美英俄等国正在研制含钇镁合金。一种合金,其密度小于·cm-3 ,抗拉强密度420Mpa, 屈服强度360Mpa,比现有任何一种变形镁合金的都高,同高强度铝合金强度相当。 镁铝合金又名铝镁合金,分子式:Mg4Al3分子量:颜色为灰褐色,比重约为,熔点463℃,燃烧时产生的温度达2000℃-3000℃。在烟花生产过程中起着非常重要的还原剂作用,也可作为白光剂和照明剂。镁铝合金是用镁锭和铝锭在保护气体中高温熔融而成。长期以来关于镁铝合金的结构有两种说法。一种说法是镁铝合金是简单物理混合;另一种说法是镁铝合金内部改变了晶体结构,不是简单的物理混合。镁锭和铝锭在高于1150K时,部分铝与空气中的氧气反应,生成a-Al2O3,氧化铝的此种晶体化学性质呈惰性,起着屏障、隔离作用。低于1150K时,生在B-Al2O3而这种晶体与酸反应,保护不了内部的镁铝合金。标准的镁铝合金中镁、铝的含量各约为50%。活性铝含量的多少对烟花的安全生产和产品的质量有很大的影响。但是现在生产镁铝合金的企业多为私营企业,近几年来铝锭比镁锭贵,受利益的驱动,大多未按国标生产。现在镁铝合金粉中铝的含量普遍低于50%,有的铝含量低到了40%。镁含量的增加使得镁铝合金的性质接近镁粉的性质,使得烟火 药的撞击感度、摩擦感度增加,烟火剂更加敏感,从而增加隐患。我们可能以用下面的化学机理来检验镁铝合金中铝的含量。1、盐酸与镁铝合金的反应Mg+2HCl=MgCl2+H2↑2Al+6HCl=2AlCl3+3H2↑2、混合溶液与氢氧化钠溶液反应(混合溶液中滴几滴石蕊或酚酞试剂作指示剂,以避免氢氧化钠过量)MgCl2+2NaOH=2NaCl+Mg(OH)2↓AlCl3+3NaOH=3NaCl+Al(OH)3↓3、过滤、烘干、称重,重量为G1克4、氢氧化铝与过量的氢氧化钠反应Al(OH)3+NaOH=NaAlO2+2H2O5、未反应的为氢氧化镁。过滤、烘干、称重,重量为G2克镁铝合金的中铝的含量 Al%=(G1-G2)/G×规定了镁铝合金中铝的含量的范围为47-53%,铝含量低于这个范围镁铝合金容易引起质量事故和安全事故,应慎用。镁锭在镁铝合金中的应用:镁铝合金由镁锭和铝锭在保护气体中高温熔融而成,其组成有:简单的物理混合与已改变晶体结构的物理混合两种说法。
哪种?合金一般以性能优越..导热电性强著称...
1.前言
6082铝合金属于Al - Mg - Si系热处理可强化的铝合金,具有中等强度和良好的焊接性能和耐腐蚀性,主要被用于交通运输和结构工程上,如桥梁、起重机、屋顶构架、交通车和运输船等。
本文对6082铝合金应用于挤压型材生产进行了试验研究,以确定合适的熔铸和挤压工艺制度。
2.熔铸工艺
化学成分
GB/T3190 -1996中6082铝合金化学成分见表1。
6082铝合金成分具有两个主要特点:第一,含有适量的Mn和Cr;第二,Mg、Si含量相对较高。其中,Mn、Cr等合金元素可阻碍挤压时和挤压后发生再结晶或再结晶晶粒长大,细化晶粒。但(Mn + Cr) 总量过高可能形成分别含Mn、Cr的粗大第二相,削弱Mg 2 Si相的沉淀强化效果,抵消其阻碍再结晶和细化晶粒的作用。同时,Mn、Cr元素会增大6082铝合金的淬火敏感性。且易在α(Al)相中产生严重的晶内偏析,造成挤压制品粗晶组织,降低型材氧化着色效果。对于Mg、Si成分,6082铝合金在Mg 2 Si强化的同时,通过增加适量过剩Si来促进强化。
因此,重点对Mn的含量进行试验确定:以Mn含量为 ~及 ~进行对比。发现Mn含量偏上限时,制品尾部粗晶组织较多,且力学性能偏低,所以对比确定Mn含量的优化范围为0. 6% ~。Cr的含量宜控制在以下,(Mn + Cr)总量控制在 ~范围内。Mg 2 Si含量宜控制在 ~ ,过剩Si含量控制在左右。
6082铝合金的实际成分控制范围见表2。
工艺控制
由于6082铝合金最大的特点是含难熔金属Mn,Mn的适量存在易引起晶内偏析及固液区塑性降低,导致抗裂能力不足,故熔铸工艺主要需注意三点:第一,熔炼应注意控制温度在740 760℃间并搅拌均匀,保证金属完全熔化、温度准确、成分均匀。第二,铸造应考虑金属Mn增大了合金的粘度,使其流动性下降,影响了合金铸造性能。铸造速度要适当降低,控制在80 100mm/min范围内。第三,加大冷却强度,加快冷却速度,以利于消除晶内偏析现象。控制一次冷却强度,加大二次冷却强度以减少铸造时产生的应力集中,避免产生铸锭裂纹缺陷。冷却水压应控制在0. 1 ~范围内。
3.均匀化退火
6082铝合金变形抗力大,力学性能指标偏高。通过均匀化处理工艺改善合金组织,达到三个主要效果:充分固溶解Mg 2 Si相;消除晶内偏析;β(Al 9 Fe 2 Si 2 )相向α(Al 12 Fe 3 Si 2 )相转变,并细化含铁相粒子。
由于合金中Mn的存在可降低转变温度、缩短转变时间,且为保持合金挤压性能和挤压效应,采用中温均化工艺,即均匀化温度555 ~565℃;保温时间6h;冷却速度≥200℃/h。
4.挤压工艺
铸锭加热方式
铸锭加热采用工频感应加热,这种加热方式的特点是加热时间短,在3min内即可达到500℃左右;温度控制准确,误差不超过±3℃。如果用电阻炉缓慢加热,将会导致Mg 2 Si相析出,影响强化效果。
挤压
综合考虑6082铝合金的主要特点,结合实践生产制订挤压工艺如下:
(1)、6082合金变形抗力大,所以铸锭加热温度应偏上限(480 ~500℃)。
(2)、模具温度取460℃为宜,挤压筒温度为440 ~500℃。
(3)、挤压速度控制在7~11m/min的范围内;
(4)、要使合金主要强化相Mg 2 Si完全固溶,须保证淬火温度在500℃以上,因此型材挤压出口温度应控制在500 ~530℃范围内;
(5)、6082合金淬火敏感性高,要求淬火冷却强度大、冷却速度快,制品出前梁后必须立即进行在线淬火。对于壁厚以下的型材可考虑用强风冷却淬火;壁厚以上的型材必须用水雾淬火处理,须使温度迅速降到50℃以下。
(6)、6082铝合金型材拉伸矫直,应将拉伸率控制在 ~范围内。挤压工艺参数见表3。
5.时效制度
时效是型材达到规定力学性能的最后一个环节,合理的时效制度既要保证产品的性能,又要考虑生产效率及生产成本。结合试验研究,6082型材最佳时效制度定为:时效温度170 ~ 180℃,保温时间8h,时效前型材的停放时间不超过8h。
6.结论
根据6082铝合金型材的特点和性能要求,上述工艺是比较合理的。在熔铸工艺中,6082铝合金成分控制重点在于Mn和Cr含量范围。Mn含量优化控制范围为. 65%,Cr的含量宜控制在0. 15% 以下,(Mn + Cr)总量控制在 ~ 范围内。Mg 2 Si含量宜控制在 ~ ,过剩 Si含量控制在左右。在挤压工艺中,挤压出口温度和淬火效果控制则是保证产品性能的关键,应保证淬火温度在500℃以上,型材挤压出口温度应控制在500 ~530℃,淬火力求强度大、速度快。
如今,随着全球经济的发展,新能源 汽车 、通讯设备以及3C 产品与家用电器等众多领域对精密压铸件的需求正在持续提升。而随着压铸设备和工艺技术的日益提升,铝合金压铸工艺正在替代原先的黑色金属铸件工艺,推动新能源 汽车 的轻量化发展需求。
成熟与高效的铝合金压铸工艺满足新能源 汽车 轻量化需求
所谓新能源 汽车 轻量化,就是以满足新能源 汽车 的强度与安全性能为基础,最大限度地降低新能源 汽车 的整备质量,以提高能源 汽车 的动力性,同时尽可能地减少燃料消耗和降低排气污染。对于新能源 汽车 的整车轻量化而言,车身结构的不同零部件都有着不同程度的贡献。而在不同的轻量化材料中,铝合金材料轻质易成型且易于回收,在密度、性能、成本以及可加工性等方面具有更为显著的综合优势,相较于多种金属合金和碳纤维,能够减轻车重和发动机负荷,提高 汽车 行驶性能与稳定性,因而更具舒适性和安全性,越来越成为更具性价比和工艺技术更成熟的新能源 汽车 轻量化材料。尤其是当前新能源 汽车 面临着技术迭代与产能持续提升,铝合金压铸方案更显其突出的综合优势。
随着国内一些企业在新型铝合金材料以及大型压铸设备研发方面的研发与攻关不断实现新突破与新发展,一些车企和压铸企业早已布局大吨位的铝合金压铸机,一体化铝合金压铸技术也越来越成熟,以更加复杂而精密的铝合金 汽车 结构件,为新能源 汽车 的轻量化设计与生产提供更安全可靠的工艺技术与设备保障。随着人们对 汽车 节能环保的日趋重视,以及在新能源 汽车 方面的购买需求持续提升,铝合金压铸件在 汽车 轻量化方面的显著优势更有利于新能源 汽车 产业的发展,当然新能源 汽车 的持续高增长也更推动着铝合金压铸件产业的发展。
铝合金压铸引领我国制造业发展
就我国而言,随着整体工业化水平的提高以及下游制造业在我国日益聚集,使得我国压铸产业随之得到长足发展,且逐步成长为压铸大国。当前新能源 汽车 、通讯设备以及装备制造、轻工等产业的快速发展,更是推动我国的压铸行业迈向快速增长与稳定发展的新常态。我国作为制造大国,机器制造业也日益朝着强度化、轻量化和高寿命发展,铝合金压铸工艺能够满足特殊领域的特殊需求,达到节约原材料、降低能耗、减少污染和保护环境的目的。正因为如此,铝合金压铸技术才能在新能源 汽车 、仪表制造、家电行业越来越拥有广阔的应用前景。
合金是由金属与其它一种以上的金属或非金属所组成的具有金属通性的物质。我国是世界上最早研究和生产合金的国家之一,在商朝(距今3000多年前)青铜(铜锡合金)工艺就已非常发达;公元前6世纪左右(春秋晚期)已锻打(还进行过热处理)出锋利的剑(钢制品)。铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用者选用根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。 各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 的F-15高性能战斗机仅使用%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。 航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合
后来,它被广泛地应用于食品中,如制造果干、果脯时的熏硫;制成二氧化硫缓释剂,用于葡萄等水果的保鲜贮藏等。二氧化硫在食品中可显示多种技术效果,一般称它
提要 在焊接过程中,热源沿焊件移动时,焊件上某点温度随时间变化的过程称为焊接热循环,它是描述焊接过程中热源对母材金属的热作用。焊缝及近缝区金属组织的变化和应力的产生取决于母材金属的化学成分和焊接过程中的热循环特点。 表明焊接热循环的参数主要有加热速度、加热峰值温度、相变温度以上停留时间及冷却速度,这些因素都会影响焊后组织和性能。因此,焊接热循环的测试与分析计算具有重要的实际意义,是分析焊接接头组织性能变化及焊接缺陷生成机理的有效途径,并可通过改进焊接工艺,改善热循环过程,以达到提高焊接质量的目的。 如果焊接热循环能够实现计算机模拟仿真,我们就可以通过计算机系统来确定焊接各种结构和材料时的最佳设计、最佳工艺方法和焊接参数。本文从这一点出发,在总结前人的工作基础上,通过具体的试验并结合数值计算的方法,在对焊接过程产生的温度场进行了二维和三维模拟仿真研究的基础上,提出了基于ANSYS软件的焊接温度场、焊接热循环的模拟仿真分析方法,并针对Q235平板堆焊问题和16MnR钢焊接进行了实例计算,计算结果与试验值基本吻合。最后在模拟仿真基础上,结合焊接CCT图进行了组织预测分析。 关键词:焊接热循环 温度场 有限元 ANSYS 仿真 目录 提要I Abstract II 目录III 第一章 序 言 1 课题意义 1 本课题的国内外动态 3 数值模拟仿真技术在焊接中的应用 3 焊接热分析的研究进展 6 存在的一些问题 7 目前研究的焦点和方向 8 本论文的主要工作 10 第二章 有限元法与有限元软件 11 2. 1 有限元法 11 有限元法的发展历史 12 有限元方法介绍 12 典型分析步骤 13 通用有限元分析软件 15 有限元软件ANSYS介绍 18 ANSYS的功能 19 ANSYS的特点 19 软件的结构 20 第三章 焊接过程有限元理论 23 焊接过程有限元分析的特点 23 焊接有限元模型的简化 24 焊接温度场的分析理论 26 焊接传热的基本形式 26 转自:毕业论文网
根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找: 毕业论文网: 分类很细 栏目很多 毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导: 记得采纳啊