首页

> 学术论文知识库

首页 学术论文知识库 问题

化学反应原理小论文

发布时间:

化学反应原理小论文

研究性学习是由学生在一定的情景中发现问题、选择课题、设计方案 ,通过主体的探索、研究求得问题解决的学习活动。化学课程中的研究性学习主要是以化学知识作为载体 ,其内容有以下几方面来选择:1、探索性化学实验;2、选择具有开放性的化学问题;3、选择跨学科的综合性问题;4、选择能体现研究过程的问题;5、选择联系实际的现实问题;6、选择现代社会的热点问题本文是本人在指导研究性学习在高中化学实验应用中得出的的一点体会:首先,弄清化学实验与研究性学习的关系:在中学化学教学中,充分利用化学学科“以实验为基础”的基本特征,挖掘和开发化学实验在研究性学习中的功能,对于改变学生的学习方法,形成终身学习的能力具有重要的意义。 一、化学实验是研究性学习的一种重要途径 研究性学习是学生自主地获取知识和技能、体验和了解科学研究的过程和方法、形成和提高创新意识、树立科学的价值观和活动过程。化学实验是学生化学学习中的能动的实践活动形式。化学实验为学生创设了亲身参与实践的情境,具有获知、激趣、求真、循理、育德等教育功能。化学实验的功能和研究性学习的特征决定了化学实验必然是研究性学习的重要途径。二、化学实验作为研究性学习途径的教学策略在化学教学中提倡和鼓励学生通过化学实验进行研究性学习,要充分挖掘化学实验在研究性学习中的功能,发挥化学实验在研究性学习中创设问题情境、验证假设或猜想等环节中的作用,研究开发研究性实验,引导学生通过实验去发现和研究解决问题的方法,在化学实验中培养学生的科学素质,实现学生的学习方式由被动接受式学习向主动研究性学习的根本转变。第二、化学实验与研究性学习课题的选择:通过化学实验开展研究性学习,必须着力培养学生的化学实验能力和自主学习能力,同时也必须依据学生的知识能力来确定研究课题,特别是依据学生的化学实验能力来选择适当的研究课题。根据我们开展研究性学习的体会,在服从课题研究的原则基础上,我们主要采用以下几种方法选择课题。一、结合化学教学选择研究课题。当今课改的重要任务就是要提高学生的实践能力和创新精神,适当增加一些探索性实验,有利于提高学生的探索欲望,培养学生的创新能力。例如Fe2+和Fe3+的转化,可以改进为探索性实验:根据现有实验条件,如何实现Fe2+和Fe3+的转化?让学生首先设计实验方案,其次交流设计思想,筛选确定最佳方案,最后实施实验并得出实验结论。这种探索过程比空洞的讲授更能调动学生利用多种感官主动参与信息加工、构建知识,使学生的潜能得到更好的开发。 二、结合日常生活选择研究课题。社会生活中的问题无处不在,我们引导学生从自己身边开始思考,提出问题,并筛选确定研究课题,然后让学生收集资料、研究实验方案,通过实验自主探讨、自主学习,极大发挥学生的创新能力。如探讨铁生锈的原因,一方面学生选择了生活中常见的各种铁件,又设计了锈蚀的不同条件开展实验,另一方面学生又到工厂、商店、居民区、农村……开展实地调查,学生对铁生锈的原因、造成的危害及预防生锈的措施有了全面深刻的认识,写出了较高质量的化学小论文。三、结合当地生产实践选择研究课题。我们结合当地经济建设的实际情况,结合课外活动及实践活动的开展,让学生大胆探索、积极创新。譬如围绕水的问题,可以启发学生从我县水的资源、利用、水患、污染、监测、防治等方面去思考,学生积极性高,提出了许多问题,他们调查排污口,参观自来水厂,监测水的pH值及重金属离子、苯酚等含量,并请来环保局人员共同分析,取得了良好的社会效益。 四、结合化学课外活动选择研究课题。利用化学课外小实验、趣味化学实验、化学小魔术等积极探讨化学实验的设计方案,研究化学实验的现象、实验装置、实验操作、实验观察、实验记录、实验分析和实验报告。如自制汽水的原理与方法、热水瓶(锅炉)中水垢成分的分析、相片冲洗原理的探索等等。 第三、研究性学习在化学实验应用:1.设计实验方案 教师提出实验目的 ,让学生设计实验方案 ,然后师生共同逐个讨论 ,寻找多种方案或确定最佳方案。例如 ,在学习实验室制乙烯这一内容时,先说明乙烯中会混有SO2和CO2气体。让学生设计实验 ,证明它们的存在。结果学生都知道应先将气体通过装有品红溶液的洗气瓶 ,看到品红褪色,证明有SO2气体。但在接下来的检验CO2存在的操作中 ,意见出现了分歧 ,学生提出了如下方案 :①将气体通入澄清的石灰水中 ,石灰水变浑浊;②将气体通过装有足量的NaHCO3溶液的洗气瓶后 ,再通入澄清的石灰水中 ,石灰水浑浊 ;③将气体通过装有酸性KMnO4溶液的洗气瓶中 ,溶液褪色,再通入澄清的石灰水中 ,石灰水变浑浊 ;④将气体通过装有酸性KMnO4溶液的洗气瓶中 ,溶液不褪色 ,再通入澄清的石灰水中 ,石灰水变浑浊 ;⑤将气体再一次通过装有品红溶液的洗气瓶中 ,品红不褪色 ,再通入澄清的石灰水中,石灰水变浑浊。然后师生讨论 :方案①和③没有将可能未与品红溶液反应完全的SO2带入澄清石水中 ,方案不合理 ;方案②虽完全除去了SO2气体,但SO2与NaHCO3溶液反应会产生CO2气体 ,显然也不合理 ;方案④和⑤既能完全除去SO2气体 ,也不会减少或生成CO2气体 ,且现象明显,上述两个方案都合理。2.改进实验装置教材上有些实验装置复杂、实验费时费药 ,有些实验现象不够明显 ,还有些实验环境污染严重等等 ,教师可带领学生对这些实验进行改进。如酚醛树脂制取实验以后,试管难以洗净 ,每次实验只得更换试管 ,改进后我们用医用废磷霉素小瓶替代试管进行实验 ,不但节省了大量的试管 ,而且药品用量比原来少了许多。3.研究不同反应条件对实验的影响学生做了在AlCl3溶液中滴加NaOH溶液实验后 ,让他们将上述实验操作顺序颠倒 ,观察现象 ,并进行解释。再如用较纯净的锌粒与稀硫反应速度较慢,当在反应混合物中加入少量CuSO4溶液时 ,反应速度大大加快 ,可让学生探索原理。4.开展家庭小实验活动家庭小实验没有给出药品、仪器、步骤、现象等 ,靠学生在家中独立完成 ,对培养学生的创新精神和实践能力 ,起着十分重要的作用。总之,通过化学实验开展研究性学习,把研究性学习的教学和教育理念贯穿于化学实验之中,增强了学生开展研究性学习的主动性和趣味性。学生化学实验能力的提高,促进了研究性学习活动的开展,提高了研究课题的质量;反之,研究性学习又进一步提高了学生的实验能力和实践能力,促进了学生创新能力和综合素质的全面发展。同时学生在实验研究中树立了坚忍不拔、百折不回的意志品质,养成了追求真理、实事求是的科学精神。

我也不会啊,我现在急需一篇3000字的化学探究性小论文{学生角度}

1. 测盐酸与氢氧化钠的体积比时,用Hcl溶液滴定NaoH溶液,用甲基橙做指示剂。甲基橙由黄色变橙色小结:甲基橙(对氨基苯磺酸()、亚硝酸钠()、N,N-二甲基苯胺(,)组成)的变色范围是pH<的变红, 的呈橙色,pH>的变黄。检验碱的话用酚酞现象会比较明显,因为肉眼对红色会比较敏感。酚酞是一种弱有机酸,在pH<的溶液里为无色的内酯式结构,当醌式结构。酚酞的变色范围是 ~ ,所以酚酞只能检验碱而不能检验酸。 (浅红色)(红色)2.盐酸标准溶液的标定用Na2CO3做基准物质。用甲基橙做指示剂滴定终点。由黄色变为橙色。3.食醋中的总酸量的测定。(酚酞指示剂 无→浅粉红色)用NaoH滴定醋酸,滴定突越在碱性范围内,理论终点在Ph 左右,选用酚酞做指示剂。由无色滴定至粉红色。30秒不退色。4.混合碱的测定(采用双指示剂法)(酚酞 红→无、甲基橙黄→橙色)P206 变色 即是测定混合物中NaoH与Na2CO3的量,NaoH为第一强碱,与盐酸反应很剧烈,反应程度高,突越范围大,很容易准确滴定,以酚酞为指示剂,滴定至红色恰好消失,NaoH被完全滴定。而Na2CO3先被滴定至NaHCO3滴定反应到达第一化学计量点,第二计量点用甲基橙滴定,由黄色变为橙色。5.水的硬度的滴定(测定水中的Ca . Mg离子)(EDTA标定,金属指示剂:铬黑T,酒红→纯蓝)测Ca 与Mg离子总量时,用缓冲液调节Ph为10左右,以铬黑T为指示剂,用EDTA标准溶液滴定,铬黑T能与Ca 与Mg离子形成配合物,稳定性Ca>Mg,因此加入铬黑T后,先与Mg生成酒红色配合物,当滴定EDTA标准溶液时,EDTA先与游离出来的Ca离子配位,其次与游离的Mg离子配位,最后争夺酒红色配合物的的Mg离子,使得铬黑T游离出来,溶液由酒红色变为纯蓝色,指示达到终点。(Ca离子测定:用钙指示剂,再用EDTA滴定,溶液由红色——紫色——蓝色。Ca 与Mg离子总量的滴定:加入少量的铬黑T,用EDTA滴定,溶液由红色——纯蓝色,滴定至终点)6.高锰酸钾标准溶液的配制与标定(紫色→微红色) 称取草酸钠 ,加入硫酸,趁热用高锰酸钾滴定至微红色,即可。7.草酸钙的制备 先碳酸钙用盐酸溶解,再加入草酸铵,再往溶液中加入甲基橙,此时显红色,慢慢加入氨水,溶液由 红色——白色——乳黄色——黄色。滴定终点。8.草酸钙中钙含量的测定 用硫酸先溶解草酸钙,再在75~85°下用高锰酸钾标准溶液滴定至粉红色。30秒不退色。9.用分光光度法测定铁的时候 亚铁离子与邻菲罗啉生成橘红色的配合物,配合物的最大吸收波长为510。主要化学试剂无色酚酞(遇酸不变色,遇碱变红色),紫色石蕊(遇酸变红色,遇碱变蓝色),碘(鉴别淀粉), 三氯化铁(鉴别苯酚),溴水(鉴别三溴苯酚),氧化剂:KMnO4 HClO KCrO4 双氧水酸:HCL H2SO4 HNO3王水 浓硝酸、浓盐酸(1:3)碱: NaOH KOH Ca(OH)2 CaO 氨水盐: Na2CO3 CuSO4 KI另外还有络和物,如氢氧化二氨合银,可鉴别醛基, 氢氧化铜也可鉴别醛基.

有机化学发展介绍及前景一.发展介绍1806年首次由瑞典的贝采里乌斯(—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。 有机化学的历史大致可以分为三个时期。 一是萌芽时期,由19世纪初到提出价键概念之前。 在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。 二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。 1858年,德国化学家凯库勒(—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。 早在1848年法国科学家巴斯德(—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。 在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。 三是现代有机化学时期。 1916年路易斯(—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。 1927年以后,海特勒(—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(ückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(—1979)和霍夫曼(—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。 在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。二.21世纪有机化学的发展在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。 物理有机化学 物理有机化学是用物理化学的方法研究有机化学的科学。主要的研究发展方向有: 1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。 2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。 3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。 4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。有机合成化学研究从较简单的前体小分子到目标分子的过程和结果的科学。有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。 有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。 合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。 高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素 复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。有机合成化学的发展方向有: Z n& V& a+ 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。化学生物学在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。化学生物学研究目前大致包括以下几个部分:1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。4.发展提供结构多样性分子的组合化学。5.对于复杂生物体系进行静态和动态分析的新技术等。金属有机化学研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。主要的研究发展方向有:1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。药物化学和农药化学药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。药物化学的发展领域:1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。3. 非传统机制的药物合成、分析和功能测试。有机新材料化学有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。有机材料化学的发展方向有以下:1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。有机分离分析化学研究有机物的分离、定性定量分析和结构解析的科学。研究方向:1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。绿色化学面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。本领域的发展和研究:1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。

光催化反应原位检测论文

纳米光催化技术在大气污染治理中的应用论文

在学习和工作中,大家都跟论文打过交道吧,论文是学术界进行成果交流的工具。如何写一篇有思想、有文采的论文呢?下面是我整理的纳米光催化技术在大气污染治理中的应用论文,欢迎大家分享。

摘要: 现如今,环境污染问题已成为全球性的问题,加大环境保护力度,促进环境与经济的协调发展是世界经济发展的主要手段。大气污染作为环境污染中的一种,加大大气污染的治理力度,缓解温室效应给社会发展带来的难题,有利于实现和谐社会的建设。基于此,文章主要对纳米光催化技术进行了分析,并对其在大气污染治理中的应用进行了研究,以供相关人士参考。

关键词: 纳米光催化技术;大气污染;治理应用

纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的.雾霾问题,优化人们的生活环境,促进经济的快速发展。

一、纳米光催化技术理论

太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。

光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:

二、纳米光催化技术的实际应用

纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。

(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。

(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反应速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。

三、纳米光催化大气污染控制技术与其他技术的联用

(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。

(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。

四、结语

在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。

参考文献:

[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.

[2]王韶昱.光催化技术在室内空气净化器中的应用研究[D].浙江大学,2013.

近五年发表文章列表: Wei Jiang,* Jiaping Qiu, Wei Qiu, Shaojun Yuan, Houfang Lu and Bin Liang,Wall-loaded Pt/TiO2/Ti catalyst and its application in ammonia oxidation reaction in microchannel reactor,RSC Advances, 2016, 6, 26637 - 26649 (C级期刊,IF= ) Wei Jiang*, Ya Zeng, Xiaoyan Wang, Xiaoning Yue, Shaojun Yuan, Houfang Lu, Bin Liang,Preparation of Silver Carbonate and its Application as Visible Light-driven Photocatalyst Without Sacrificial Reagent. Photochemistry and photobiology, 2015, 6, 1315-1323 (E级期刊,IF= ) Wei Jiang,* Jian He, Feng Xiao, Shaojun Yuan, Houfang Lu, Bin Liang,Preparation and Antiscaling Application of Superhydrophobic Anodized CuO Nanowire Surfaces, Industrial & Engineering Chemistry Research, 2015,54,6874-6883 (B级期刊,IF= ) Wei Jiang*, Zhaomei Wu, Xiaoning Yue, Shaojun Yuan, Houfang Lu, Bin Liang, Photocatalytic performance of Ag2S under irradiation with visible and near-infrared light and its mechanism of degradation, RSC Advances, 2015, 5, 24064-24071(C级期刊,IF= ) Wei Jiang*, Xiaoyan Wang, Zhaomei Wu, Xiaoning Yue, Shaojun Yuan, Houfang Lu, Bin Liang, Silver Oxide as Superb and Stable Photocatalyst under Visible and Near-Infrared Light Irradiation and Its Photocatalytic Mechanism, Industrial & Engineering Chemistry Research, 2015, 54, 832?841(B级期刊,IF= ) Wei Jiang*, Hong Zou, Chengyu Fu, Jiao Lei, Houfang Lu, Bin Liang, Continuous Biodiesel Production Catalyzed by Trace-Amount Alkaliunder Methanol Subcritical Conditions,Industrial & Engineering Chemistry Research,2014,53:12971-12982(B级期刊,IF= ) Wei Jiang*, Jian He, Jiemin Zhong, Jiuyun Lu, Shaojun Yuan, Bin Liang, Preparation and photocatalytic performance of ZrO2 nanotubes fabricated with anodization process,Applied Surface Science,2014,307:407-413 (C级期刊,IF=) Rong Zhao, Ranfeng Ding, Shaojun Yuan, Wei Jiang*, Bin Liang,Palladium membrane on TiO2 nanotube arrays-covered titanium surface by combination of photocatalytic deposition and modified electroless plating processes and its hydrogen permeability,International Journal of Hydrogen Energy,2011,36:1066-1073 (C级期刊,IF=) Wei Jiang*, Jiaping Qiu, Shaojun Yuan, Ying Wan, Jiemin Zhong, Bin Liang, Fabrication of Hematite Nanowire Arrays on Pure Iron via Anodization Process for Superhydrophilic Surfaces, Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 435–440 (E级期刊,IF=) 徐晓波,蒲学令,袁绍军,蒋炜* ,梁斌,Pt/TiO2催化剂的制备及其在氨催化剂氧化中的应用,分子催化,2014,28:75-81 (EI) 王小燕,王捷,蒋炜* ,梁斌,两步法合成磷酸银及其光催化性能研究,化工新型材料,2014,42:108-110(中文核心) 岳晓宁,龙雨谦,黄韬,蒋炜* ,陈建钧,梁斌,四氯化硅催化氢化合成三氯氢硅机理研究,分子催化,2013,27:279-286(EI) 刘彩平,何坚,蒋炜*,陶家明,梁斌,周泉水,溴化锂-氨-水吸收制冷系统的可行性研究,石油化工应用,2013,32:98-102 谭小敏,蒋炜* ,王昊,梁斌,气相色谱内标法测定乙炔气相法生产醋酸乙烯产物,辽宁工程技术大学学报,2013,32:1129-1132(中文核心) 邹鸿,鲁厚芳,雷姣,蒋炜*,梁斌,微量碱催化亚临界甲醇-菜籽油酯交换反应制备生物柴油,中国油脂,2012,37:44-48(中文核心) 刘良政,王荣福,肖尤兰,鲁厚芳,蒋炜*,梁斌,黏度法快速测试生物柴油连续生产酯交换反应转化率,中国油脂,2012,37:72-75(中文核心) 钟捷敏,赵蓉,鹿九云,蒋炜*,梁斌,银改性阳极氧化TiO2纳米管及光催化性能研究,化工新型材料,2012,40:64-67(中文核心) 万莹,赵蓉,宋筱露,刘国娟,蒋炜*,梁斌,阳极氧化法原位合成氧化铁纳米表面及其润湿性能研究,石油与天然气化工,2011,40:137-140 赵蓉,丁冉峰,蒋炜*,梁斌,多孔钛片上二氧化钛纳米管束的制备和表征,四川大学学报(自然科学版),2010,47:877-882 齐涛,鲁厚芳,蒋炜*,梁斌,Zn/Al复合氧化物催化生物柴油酯交换反应,中国粮油学报,2010,25:78-83(中文核心) 王荣福,鲁厚芳,陈晓,蒋炜*,梁斌,小型生物柴油连续生产装置的设计和运行,化工设计,2010,20:41-45 Wei Jiang*, Hou-fang Lu, Tao Qi, Shu-li Yan, Bin Liang,Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions,Biotechnology Advances,2010,28:620-627 (B级期刊,IF= ) Rong Zhao, Ranfeng Ding, Wei Jiang*, Bin Liang,Reparation of Palladium Membrane over Anodic TiO2 Nanotube Arrays on Porous Titanium,Inorganic Materials, 2010, 46:1321–1324(E级期刊,IF=0. ) Shaojun Yuan, Juntao Gu, Yu Zheng, Wei Jiang, Bin Liang, . Pehkonen, Purification of phenol-contaminated water by adsorption with quaternized poly(dimethylaminopropyl methacrylamide)-grafted PVBC microspheres, Journal of Materials Chemistry A, 2015,3: 4620-4636 Shaojun Yuan, Jia Yin, Wei Jiang, Bin Liang, . Pehkonenb, Cleo Choongc, Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates, Colloids and Surfaces B: Biointerfaces, 2013, 106: 11– 21 Qiong Shang, Jiao Lei, Wei Jiang, Houfang Lu, Bin Liang, Production of Tung Oil Biodiesel and, Variation of Fuel Properties During Storage, APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 168: 106-115 Qiong Shang, Wei Jiang, Houfang Lu, Bin Liang, Properties of Tung oil biodiesel and its blends with 0(#) diesel, BIORESOURCE TECHNOLOGY, 2012, 101: 826-828 Yingying Liu, Houfang Lu, Wei Jiang, Dongsheng Li, Shijie Liu, Bin Liang, Biodiesel Production from Crude Jatropha curcas L. Oil with Trace Acid Catalyst, CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20: 740-746 Houfang Lu, Mingyan Chen, Wei Jiang, Bin Liang, Biodiesel Processes and Properties from Jatropha curcas L. Oil, JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2011, 5: 546-551 Xiao Chen, Houfang Lu, Wei Jiang, Liangyin Chu, Bin Liang, De-emulsification of Kerosene/Water Emulsions with Plate-Type Microchannels, Industrial & Engineering Chemistry Research, 2010, 49: 9279-9288 付骋宇,李莹,梁靓,吴兆美,蒋炜,快速甲酯化-气相色谱法测试油脂组成,中国粮油学报,2014,29(6):104-107 龙雨谦,刘颖颖,叶龙泼,付勰,蒋炜,周齐岭,梁斌, 四氯化硅催化氢化制备三氯氢硅,工业催化,2012,20:26-30 雷姣,邬皓,尚琼,蒋炜,鲁厚芳,梁斌,水分和材质对生物柴油与0#柴油混配物B5水分含量和酸值的影响,化工进展,2011,30:503-508

论文格式化学反应式

化学论文格式及要求7.在关键词的下一行,标著本文的中图分类号。请用《中国图书馆分类法》第4版中的分类号。(可上网查询) 8.请写作者简介,包括:作者姓名(出生年-)、性别、民族(汉族可省略)、籍贯(省、县)、职称、学位、研究方向。(可写在论文首页地脚处或文末) 9. 特别注意:外文字母的正斜体、黑白体、大小写和上下角标的表示。 ① 外文正体的常用场合: a.计量单位的符号和SI词头符号。如:牛顿N、安培A、毫安mA等; b.数学式中的运算符号和编写号,如:微分号d,极限lim,行列式det,极大值max,极小值min, 对数号ln, 三角函数号sin, cos,等。又如:其它运算符号∑,∏,∪,∩,∈ 等; c.其值不变的数学常数符号,如圆角率π,自然对数的底e,虚数单位i(电工中常用j); d.仪器、元件、样品等的型号、代号; e.生物学中表示拉丁文学名的定名人和亚族以上(含亚族)的拉丁文学名; f.下角标如为说明性符号; g.化学元素、粒子、射线符号,如:H(氢)、Cu(铜)、e(电子)、α射线等。 ② 外文斜体的常用场合: a.用字母代表的数、一般函数式以及统计学符号等,如x,f(x)=4x-5; b.量符号、量符号中代表量或变动性数字、坐标符号的角标字。如力F、电流I、力的分量Fx等; c.文中及公式中的矩阵和矢量,其符号字母用“黑斜体”表示; d.下角标如为变量则用斜体; e.化学物的旋光性、分子构型和取代基位置等符号用斜体,d- (右旋)、L-(左型)、Z-(顺式)、p-(对位)等 ③ 正确使用有关符号: a.有关符号的使用应符合国家标准,例如:sin-1应为arcsin, ctg应为cot, tg应为tan等; b.停止使用废弃的符号,如 ∵ , ∴ , ppm等; c.除Re, Ma(其中e, a不是下标)等几个特征数外,变量应使用单个字母表示(或带下标的单字母,否则由多个字母表示单个变量,易被误解为多个变量相乘)。 10. 图、表描述应标准化。 ①所有的插图均需标注中英文图序和图题。对于函数曲线图,请注意检查横纵坐标的变量符号、单位、刻度值是否完整(对于无量纲或无单位的,请注明“无单位”)。特别注意说明坐标轴物理意义的标目,要求由物理量的名称或符号和相应的单位组成。物理量的符号用斜体字母标注,尽量避免使用中、外文的文字段 (或缩写字母) 来代替符号。单位符号应该使用正体字母标注。量与单位之间用斜线“/’’隔开,如I/A,p/Pa,V/ms-1,等。标目应该与被标注的坐标轴平行,居中放置在坐标轴与标值的外侧。 ②所有的表均需标注中英文表序和表题,表中的各栏均应标明“量和测试项目、标准规定的符号及单位”。尽量用三线表。 ③图、表的宽度尽可能小于8cm,以满足分栏排版的要求。图、表若通栏排版,其宽度要小于16 cm。 11.参考文献代表论文的起点和层次,请严格参照以下格式将所有项目著录完全,并按其在正文中被引用的顺序排列,且在正文中标注出各自的引证地。各类文献的著录格式(含标点)为: ①期刊论文——[序号]作者. 题名[J]. 刊名,出版年,卷(期)号:引文起止页码. 示例: [1]叶晓东,朱兆达. 一种分块处理斜视SAR成像方法[J]. 现代雷达,1997,19(5): 23-29. [2]Moustafa G H. Interaction of axisymmetric supersonic twin jets[J]. AIAA J, 1995,3(5): 871-875. ②专著——[序号]著者.书名[M].版次.出版地:出版者,出版年.引文起止页码. 示例: [1]刘谋 佶 , 吕志咏, 丘成昊, 等. 边条翼与旋涡分离流[M]. 北京: 北京航空学院出版社, 1988. 24-27. [2]Isidori A. Nonlinear control systems[M]. New York: Springer Press,1989:32-33. ③文集中析出文献——[序号]作者.题名[A]. 文集编者. 文集名[C].出版地:出版者,出版年.引文起止页码. 示例: [1]陈永康,李素循,李玉林. 高超声速流绕双椭球的实验研究[A]. 北京空气动力研究所. 第九届高超声速气动力会议论文集[C]. 北京:北京空气动力研究所,1997:9-14. [2]Peng Jin, Luo Xiang Zeng, Jin Cong Jing. The study about the dynamics of the approach glide-down path control of the carrier aircraft[A]. Gong Yaonan . Proceedings of the Second Asian-Pacific Conference on Aerospace Technology and Science[C]. Beijing: Chinese Society of Aeronautics and Astronautics, 1997. 236-241. ④会议论文——[序号]作者.题名[A]. 文集编者(主办单位).文集名[C],会议名称,会议地点,会议日期.出版地:出版者,出版年. 引文起止页码. 示例: [1]辛希孟. 基于局部 熵 的红外图像小目标检测[A].信息技术研究所.信息技术与信息服务国际研讨会论文集:A集[C].北京:中国社会科学出版社,. ⑤ 学位论文——[序号]作者. 题名[D]. 出版地:出版者,出版年. 示例: [1]朱刚. 新型流体有限元法及叶轮机械正反混合问题[D]. 北京:清华大学,1996. [2]Sun Ming. A study of helicopter rotor aerodynamics in ground effect[D]. Princeton: Princeton Univ, 1983. ⑥科技报告——[序号]作者.题名[R].报告名称及编号,出版地:出版者,出版年.示例: [1]孔祥福. FD-09风洞带地面板条件下的流场校测报告[R]. 北京空气动力研究所技术报告 BG7-270,北京:北京空气动力研究所,1989. [2]Carl E J. Analysis of fatigue, fatigue-crack propagation and fracture data[R]. NASA CR-132332, 1973. ⑦专利——[序号]专利权人.专利题名[P].专利国别:专利号,公告或公开日期. 示例: [1]黎志华,黎志军. 反馈声抵消器[P].中国专利:85100748, 1986-09-24. ⑧标准——[序号]标准编号, 标准名称[S].出版地:出版者,出版年. 示例:

写上面如何正确书写化学方程式化学方程式反映化学反应的客观事实.因此,书写化学方程式要遵守两个原则:一是必须以客观事实为基础,绝不能凭空臆想,随意臆造事实上不存在的物质和化学反应;二是要遵守质量守恒定律,等号两边各原子的种类与数目必须相等.木炭在氧气中燃烧生成二氧化碳的化学方程式:C+O2CO2该化学方程式等号两边的原子种类和数目都相等,这个化学方程式我们称配平了.但并不是所有的化学方程式都这么简单.例如,氢气与氧气反应生成水:H2+O2—→H2O在这个式子中,右边的氧原子数少于左边的,这时为使式子两边每一种元素原子的总数相等,就需要配平,即在式子两边的化学式前面配上适当的化学计量数.在H2前配上2,在H2O前配上2,式子两边的H原子、O原子数目就都相等了,亦即化学方程式配平了.2H2+O22H2O下面以磷在空气中燃烧生成五氧化二磷的反应为例,说明书写化学方程式的具体步骤.1.根据实验事实,在式子的左、右两边写出反应物和生成物的化学式,并在式子左、右两边之间画一条短线(或标出一个指向生成物的箭头).P+O2——P2O52.配平化学方程式①,并检查.4P+5O2—2P2O53.标明化学反应发生的条件,把短线改成等号.4P+5O2=2P2O5化学反应只有在一定条件下才能发生,因此,需要在化学方程式中注明反应发生的条件.如把点燃、加热(常用“△”号表示)、催化剂等,写在等号的上方.如果生成物中有气体,在气体物质的化学式右边要注“↑”号;溶液中反应如果生成物中有固体,在固体物质的化学式右边要注“↓”号.例如:2KMnO4=K2MnO4+MnO2+O2↑CuSO4+2NaOH=Na2SO4+Cu(OH)2↓但是,如果反应物和生成物中都有气体,气体生成物就不需注“↑”号.同样,溶液中反应如果反应物和生成物中都有固体,固体生成物也不需注“↓”号.例如:S+O2SO2Fe+CuSO4=Cu+FeSO4

化工论文格式范文

导语:化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。下面是我分享的化工论文格式的范文,欢迎阅读!

题目:化学工程中的化工生产工艺

摘要:

化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。也正是随着这些理念的出现,一系列新型的化学工艺以及加工生产技术逐渐走进化学工程当中。综合生产效益和生产效率的两个点,化工生产应该在环保化的基础之上促进高效化发展。将对化学工程中的化工生产工艺进行全面的分析。希望对相关技术人员有所启发。

关键词:化学工程;化工生产工艺;化工技术

目前,化学生产工艺在化学生产中的发展一直处于开发阶段,而化学工艺的研发在近几年却变得逐渐火热起来,其护腰原因还是因为化工生产在一定程度上对我们的自然环境造成了污染。随着节能环保和低碳生活理念的持续火热,人们对环境的关注度也越来越重,因此,化工生产就应该及时做出改变。在过去,化工生产的污染排放问题一直得不到科学合理的解决,化工废料污染的排放,给我们的生活环境造成了较大的污染。

1我国化工生产的现状

机械工业、煤矿工业和化学工业是我国三大工业主体。之所以化学工业能够成为三大工业中的一部分,其主要原因就是因为化学工业能够生产出大量我们生活所需的物件,能够最大限度的满足人们的生活需求,进而推动了我国农业和工业的进一步发展。肥料是支撑我国农业不断发展的基础要素,在很多程度上维持这我国的经济水平稳定。但是,在化学生产过重,势必会产生一定的化学废料并对周围环境造成一定范围的污染,尤其是化工企业所排放出来的“三废”。

化工生产效率较低

我国三大工业存在一个相同的问题,那就是整体生产效率较低。而在化学工业这方面,其主要的原因就是因为生产环境较为恶劣,再加上化工生产设备存在质量问题。例如,在生产化学肥料时,反应器皿往往不能达到正常化学反应所需的温度,进而导致化学反应不充分,最终导致废气问题出现。另外,如果化学反应不充分,那么最终形成的化学产品合格率就比较低,难以满足人们生活的使用需求。

对自然环境污染较为严重

化工生产可以说是我国目前最为严重的污染源之一,尤其是重金属和化学废料的污染。从化工厂附近的水源当中抽取检测发现,水中的污染物严重超标,进而导致水源受到污染,间接影响到周围的土质,导致范围内的环境出现失衡问题。另外,化工企业为了节约生产成本,违反国家的环保法律,直接将一些化工废料排入到自然环境当中,进而造成大范围严重的化工污染。而在化学反应过程中,化学生产的连续性较低,进而导致整个化学工程反应迟缓,工程的进度受到严重的影响,进而导致整个生产环节出现脱节现象,这就会导致化工生产受到较大的影响。而导致脱节问题出现的主要原因还是应该化工生产工艺不合格所导致的。简单来说,我国的化工生产主要存在生产效率低、企业环境保护意识差“、三废”处理不科学和化工生产技术低下等问题。也正是这些问题的存在,严重阻碍了我国化工生产的发展。

2降低我国化工生产污染的措施

从分析我国化工生产现状发现,我国的化工生产技术和环境还不是很完善,各个工作环节都还存在缺陷。而针对这些问题的特点,我们就应该对化工工艺进行改进,而从化工工艺角度来看,我们又应该从哪几个方面做起呢?笔者经过实践工作总结了解,要想降低化工生产中的污染问题就必须做好以下几点:

优化反应环境,强化反应条件

反应条件是化工生产中最为重要的环节,为了达到最高效的化工反应,提高生产效率,降低废料的出现量,反应条件就必须做到最好。所以,提升化工生产质量的关键点就在于提高化工生产中的反应条件。所使用的催化剂必须在一定反应时间之后才能够使用,进而保障生产过程中的高效性,降低化学废料的产出量。

做好废料环保处理工作

目前,我国法律明文规定,化工生产中产生的`重度污染物不能直接排放到自然环境当中。另外,还有我们常见的废气,这些化工生产废料都应该在经过处理之后才能够进行排放。化工生产废水的排放必须采用化学综合的方式来对其进行处理。其工作原理非常简单,就是通过化学反应的原理,将废水中的重金属物质通过沉淀的方式过滤出来,进而降低废水的污染度。

从化工生产技术入手

只有从化工生产技术入手,才能够从化工生产根本上解决环境污染问题。例如,生产氧气的方式有很多,那么哪一种生产方式才是最有效和最环保的呢?因此,我们应该针对生产环境的不同,选择科学的生产方式,对于原料的选择更是应该灵活应对。

3结论

化工生产中的工艺问题还有待进一步的研究,更多的技术点还有待进一步的强化,自然和化工生产之间的平衡点我们还未找到,因此,则应该更加努力的加强研究,对传统化工工艺进行优化。

参考文献

[1]李积云.化学工程中化工生产的工艺解析[J].中国石油和化工标准与质量,2013(2):22.

[2]王杲,吴晶.关于化学工程中化工生产的工艺的分析[J].化工管理,2015(18):167.

[3]刘伟,李霞.化学工程与工艺专业煤化工特色建设浅谈[J].河南化工,2014(5):61-63.

[4]高改轻.化学工程中化工生产的工艺解析[J].民营科技,2014(7):73.

题目:化学工程技术创新在石化工业装置实践研究

摘要: 化学工程技术是石油工业发展的重要基础,其技术的创新和发展对推动整个石化行业发展有着重要的意义。化学工程技术能有效解决石化工业装置建设中的问题,并且能对其进行改造,让石化工业得到更好的发展。本文主要通过讲述石化工业装置中关于工业炉的改造,以体现化学工程创新在其中的意义。

关键词:化学工程;技术创新;石化工业;装置建设

引言

化学工程是研究化学工业为代表的,是对石化工业的生产过程中有关化学过程与物理过程的原理和规律进行研究,并利用这些规律来解决工业装置的建设。随着石化工业的不断发展,石化工业所涉及的范围也越来越广,因此重视化学工程技术的创新,并在石化工业装置建设中得到实践与发展是非常必要的。而同时,随着石化工业装置建设的发展,化学工程技术创新提供了必要的条件。

一、石化工业装置建设中的主要改造的部分

在石化工业装置中,工业炉是整个生产工艺中的重点设备,无论是炼油、有机原料的炼成和合成树脂的工艺都需要借助不同工业炉完成。比如在炼油中,最为常见的石化工业装置有裂解炉、转化炉和加热炉等。它们能够按照不同的作用,不同的工艺要求,发挥不同的效果。但目前大多数的石化工业装置仍然是根据其外形将工业炉分为五类:

1.管式加热炉:按形状分为圆筒炉、立式炉、箱型炉。管式炉炉体一般由钢架及筒体(或箱体)组成,炉内衬有耐火材料和隔热材料,还有炉管系统、炉配件和烟囱等部分。根据其受热形式有纯辐射式和辐射-对流式。管式加热炉是石油化工行业最常用的炉型,以后各节主要围绕管式加热炉展开介绍。

2.立式反应炉:这类炉的炉体基本上是受压容器,如甲烷化炉、中(低)温变换炉、气化炉、二段转化炉等;另一部分类似平顶(底)或锥形顶(底)的常压容器,如沸腾炉、蓄热炉、煤气发生炉等,炉体多数均有复杂的内件和衬耐火材料,催化剂填料等。

3.卧式旋转反应炉:炉体呈卧式旋转筒体,内部装有螺旋输运器或加热炉管,外部有传动及减速装置,如HF旋转反应炉等。

4.带传动、升降投料装置的反应炉:这类炉设备类似容器,但外部有投料提升装置,炉内有内衬或砌筑耐火和隔热材料,如电热炉等。

5.其他工业炉:焚烧炉:用于废气、废液、废渣的焚烧。将其中有害物质经焚烧转化为无害物质排出。如污泥焚烧炉、硫磺回收装置焚烧炉。干燥炉:用于干燥工艺物料。热载体炉:塑料厂用的较多。当化学工程技术得到创新,石油化工装置也需要做出相应的改变,以发挥化学工程技术的作用,提升自我生产率。所以为了进一步提升我国石油工业事业的发展,并且配合化学工程技术的创新发展,石化工业装置的主体——工业炉也应该进行相应的改造。

二、化学工程技术创新在炼油方面的实践与进展

1.催化裂化技术

在炼油装置中的创新体现催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化的主要工程需要在裂解炉中完成,裂解炉,主要以石油馏分为原料,进行热裂解生产烯烃,其结构特征为:立管加热裂解炉。裂解炉大多数为立式钢架结构炉体,将几种不同管径组合成一组,炉底有油气联合喷嘴;对流室在顶部,为卧式盘管,预热原料或燃料等。如今催化裂化技术已经成为石化工业装置建设中的核心技术,是石化工业炼油都需要用到的一种方式。在这项技术中就体现了许多化学工程技术的创新之处,如自动开发的高效雾化喷嘴,PV高效旋风分离器、油浆旋液除尘和烟气能量回收等。这些技术的创新与使用,很好的解决了炼油中长期存在的回收烟气压力、取出多余热量等难题。有效的提升了炼油的效率和环保性,让炼油取得了更好的经济效益。

2.炼油装置

炼油装置中的核心部分为常压装置,是处理炼油的重要装置。能有效提升其处理能力,降低能耗,提升拔除率。镇海炼化与SEI对炼油装置大型化开发应用了一系列化学工程创新技术,如在两段闪蒸、三级蒸馏节能型常压蒸馏技术应用其中,并使用真空技术来降低低压降、高减压的拔除率,是其研发出的炼油装置成为目前国内最大的长减压装置。经过实际的投入运用,该常减压设置的处理能力达到了102%,总拔除率达到了,整个装置的能耗量低至每吨11千克标油。

3.催化重整技术创新

在炼油装置中的体现催化重整是在催化剂的作用下,对油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。石油在炼制的过程中需要在加热、氢压和催化剂发挥作用的共同环境中,让原油中蒸馏所得的轻汽油馏分转变成富含芳烃的高辛烷值汽油,并副产液化石油气和氢气的过程。催化重整中可以用作汽油调合组分,也可以使用芳烃抽提制取苯、甲苯和二甲苯,副产的氢气是炼油厂中重要的氢气来源。需要注意的是,制氢装置转化炉的结果与其他工业炉的结构不同,炉管里都装有催化剂,并在关于制氢反应过程是在炉管内完成的。炉内温度较高,达到1000°C,反应介质出口温度为800°C左右。而催化重整技术的创新主要是在其中应用了新型再生器催化剂分布器,能均匀的分布下料,有效提升反应器的利用率和催化剂的再生治疗。该技术在进气方式及气体分配流动技术也有所创新改进,通过改善气体的轴向及径向分流的均匀性及提升了气体在径向床成内的压力降和气体在轴向的压力分布情况。这些技术方面的创新都有助于提升整个催化重整技术的效果。

4.新型塔板、填料和冷换设备

在改进炼油中相关的化学工程技术中,选择合适的材料能有效保证创新技术的效果发挥,并能帮助炼油厂的合理成本管理。新型规整的填料或乱堆填料已经成为催化裂化中吸收稳定塔和常减压塔的主要材料。高效换热器也已经成为常减压装置的主要构件,其能很好的回收烟气热能,将热炉热效率提升到90%以上。此外,表面蒸发冷凝器、表面多孔管换热器也已经在炼油装置中得到广泛的应用与普及。

三、化学工程技术创新在有机原料方面

1.乙烯成套技术

自“九五”计划以来,我国乙烯事业就开始快速的发展,仅2000年中国石化集团公司的乙烯产量就达到287×104t,并且在乙烯成套技术方面有了很好的创新和发展。石化股份公司对裂解炉和分离工艺技术进行了创新改进,通过在文丘里管流量控制技术对裂解原料在众多的辐射段炉管中的流量实现了精密的均匀分布控制;应用“湿壁”模型解决了废热锅炉结焦的问题。此外,在底部供热和侧壁供热中是由辐射段,建立有效的供热模式系统,让供热更快、更为均匀。乙烯分离技术一直是化学工程技术集中度非常密集的一个范围,并且对于乙烯大型化节能效果与深冷条件都有着非常严苛的要求。通过对该技术的不断研究与创新,在通过多种考虑后,石化公司选择中型乙烯作为乙烯分离技术创新、改进的切入点。如今该项技术已经成功的在石油化工中得到使用。

2.甲苯歧化和烷基转移成套技术

甲苯歧化和烷基转移技术是芳烃技术中的一个重要组成单元,是满足石油化工对二甲苯需求的有效的措施之一。上海石油化工研究将HAT系列作为催化剂,并以此为基础研制出大型轴向固定床反应器和反应器进口气体分布器,以提升甲苯歧化反应的效率,并提升对二甲苯的回收率,满足了石油化工对二甲苯日渐增大的需求。如今一套甲苯歧化和烷基转移成套技术所使用的40×104t/a已经安全、稳定的使用了6年。

3.苯乙烯成套技术

在苯脱氢制成苯乙烯的成套技术中,乙苯脱氢轴径向反应器是该项技术的创新点。对反应器中的原料与反应物料流向进行更合理、更环保、更节约的改进,能降低对催化剂的使用量,并提升乙苯烯的制成率。华东理工大学在6×104t/a和10×4t/a的反应器中进行多次实验后,终于建立了两维气体的数学模型,并计算出反应器入口处轴向催化器的气封高度。另外,也有研究发现使用新型的高效静态混合器,是解决原有反应器入口处乙苯与水蒸气在高温和高速流动状态发生的质量偏离及乙苯脱氢转化率偏低的问题的最好方式。

4.化工型MTBE合成及裂解一体化成套技术

化工型MTBE合成及裂解一体化技术为制出高纯度的聚合级异丁烯,上海石油化工研究院就以下两点进行了创新:(1)使用带有环柱形催化剂装填构件,以实现深液层塔盘的催化蒸馏技术的使用;(2)在预反应器中是由外循环工艺,改变床层抽出的位置。这两点的创新抓住了化工型MTBE合成及裂成一体化技术的关键所在,因此其所发生的效果也是颠覆性的。在MTBE裂解单元中使用固体酸裂解工艺技术,并适当的放大固定床反应器,并对裂解产物分离和精馏塔系进行合理的设计。目前该项技术已经得到很好的使用,以燕化公司为例,其所生产的高纯度异丁烯很好的与丁基橡胶合成。

结论

化学工程技术的创新对石化工业装置建设的发展发挥着重要的促进作用,但也正是因为石化工程装置建设要不断满足市场的需求,不断自我发展,自我突破,才为化学工程技术提供了良好创新环境。二者相辅相成,相互促进。所以只有不断注重化学工程技术的创新,重视合理的引进、吸收国外的经验,并根据本国的国情与条件进行合理的研究,是能有发现好的创新点,大大提升化学工程技术的效率。

科学技术报告、学位论文、学术论文以及其它类似文件是主要的科技信息源,是记录科学技术进步的历史性文件.为了统一这些文件的撰写、编辑、印刷、出版、发行,便于处理、储存、检索、利用、交流、传播.现将中华人民共和国国家标准GB 7713-87中有关论文格式、参考文献著录格式摘录如下:论文格式1.论文格式——题目:题目应当简明、具体、确切地反映出本文的特定内容,一般不宜超过20字,如果题目语意未尽,用副题补充说明。2.论文格式——作者:署名的作者只限于那些选定研究课题和制订研究方案、直接参加全部或主要研究工作、做出主要贡献,并了解论文报告的全部内容,能对全部内容负责解答的人。其他参加工作的人员,可列入附注或致谢部分。3.论文格式——摘要:摘要应具有独立性和自含性,有数据结论,是一篇完整的短文。摘要一般200-300字.摘要中不用图、表、化学结构式、非公知公用的符号和术语。4.论文格式——正文:论文中的图、表、附注、参考文献、公式等一律采用阿拉伯数字编码,其标注形式应便于互相区别,如图1,图2-1;表2,表3-2;附注:1);文献[4];式(5),式(3-5)等.具体要求如下;论文格式——图:曲线图的纵.横坐标必须标注量、标准规定符号、单位(无量纲可以省略),坐标上采用的缩略词或符号必须与正文中一致。论文格式——表:表应有表题,表内附注序号标注于右上角,如“XXX1)”(读者注意:前面“”引号中的实际排版表示方式应该是“1)”在“XXX”的右上角),不用“*”号作附注序码,表内数据,空白代表未测,“一”代表无此项或未发现,"0"代表实测结果确为零。论文格式——数学、物理和化学式:一律用“.”表示小数点符号,大于999的整数和多于三位的小数,一律用半个阿拉伯数字符的小间隔分开,不用千位擞“,”,小于1的数应将0列于小数点之前。例如94,652应写成94 652;.319,325应写成 325。应特别注意区分拉丁文、希腊文、俄文、罗马数字和阿拉伯数字;标明字符的正体、斜体、黑体及大小写、上下角,以免混同。论文格式——计量单位:论文中使用的各种量、单位和符号,必须遵循国家标准GB3100-82, GB3101-82,GB3102/1-13-82等的规定.单位名称和符号的书写方式,一律采用国际通用符号。没有相应符号的非物理量单位可使用中文(如“件”、“台”、“人”等),它们可以与其他单位的符号构成组合单位(如“件每秒”的符号为“件/S”)。参考文献格式参考文献的格式:论文参考文献的写法应按下列次序——著者/题名/出版事项,由于论文的参考文献品种繁多,择其主要示例如下:谭炳煌,1982.怎徉撰写科学论文.辽宁人民出版社,59Guinier A,施士元译,1959. X射线晶体学.科学出版社,148Pettetssen S, 1941. Introduction to Meterclogy. New York, McGraw-Hill, 200-210即著录书的著者的姓和名的首字母(中国人的名不缩写),出版年,句点,书名,句点,出版地点,出版者,特定页码。李薰,1964.十年来中国冶金科学技术的发展.金属学报,7:442Bachmann W , 1973. Verallgemeinerung and Anwendung der Rayleighschen Theorie der , 28 (4):223-228即著录论文的著者的姓和名的首字母(中国人写全姓名),出版年,句点,论文题目,句点,期刊名缩写,卷(期):页(每卷编连续页码的期刊不写期)。多著者的参考文献标注,在著录文献的著者时,如著者为三人以内,全部著录,如为四人以上,只著录至第三著者,加“et al.,著者最后的两人之间,不加“&”、“和”等类似的连接词。(摘自 《环境化学》,原文:“科学技术报告、学位论文和学术论文的编写格式” )

化学反应速率论文范文

化学是一门以实验为基础的学科。化学上的许多理论和定律都是从实验中发现归纳出来的。那么你们知道大学的化学实验 报告 要怎么写吗?下面是我为大家带来的大学化学实验 报告 范文 _大学化学实验 总结 怎么写,希望可以帮助大家。

更多关于化学实验报告内容推荐(点击进入↓↓↓)

化学实验报告格式范文

初中化学实验报告范文

化学实验报告格式范文

化学实验报告论文

大学化学实验报告范文3篇

一、实验目的

1. 了解复盐的制备 方法 。2. 练习简单过滤、减压过滤操作方法。3. 练习蒸发、浓缩、结晶等基本操作。

二、实验原理

三、实验步骤

四、实验数据与处理 1. 实际产量:

2. 理论产量:

3. 产率:

实验二 化学反应速率、活化能的测定

姓名: 班级:学号: 指导老师: 实验成绩: 一、实验目的

1. 通过实验了解浓度、温度和催化剂对化学反应速率的影响。 2. 加深对活化能的理解,并练习根据实验数据作图的方法。

二、实验原理

三、实验数据记录及处理

1. 浓度对反应速率的影响,求反应级数 确定反应级数:m= n=

2. 温度对反应速率的影响,求活化能

表2 温度对反应速率的影响 利用表2中各次实验的k和T,作lg 求出直线的斜率,进而求出反应活化能Ea。 ?k?-图,

3. 催化剂对反应速率的影响

实验三 盐酸标准溶液的配制、标定及混合碱的测定

1.了解间接法配制标准溶液的方法。2.学习用双指示剂法测定混合碱中不同组分的含量。

二、实验原理

三、实验数据记录及处理

1. HCl标准溶液的标定结果

2. 混合碱的测量结果

实验日期: 20_ 年 11 月 18 日 开始时间: 9 时 30 分; 结束时间:11 时 30 分; 实验题目:金属的腐蚀 同 组 者:___

编号 NO: 1

一、实验目的和要求

1) 2) 3) 掌握动电位扫描法测定阳极钝化曲线的方法; 测量金属在 H2SO4 中的阳极极化曲线,确定有关特征电位和电流密度; 测量金属在 H2SO4+ 中的阳极极化曲线并考察氯离子对金属 钝化行为的影响。

二、 实验原理与方法

阳极极化曲线一般可分为四个区: 1)活性溶解区:从腐蚀电位( ? c )开始,金属溶解按活性溶解的规律进行; 2)过渡区:金属表面开始发生突变,由活态向钝态转化。此时,电流随电位的正移而 急剧下降; 3)钝化区:金属处于稳定的钝态,表面生成一层钝化膜,此时阳极溶解电流密度( i p , 称为维钝电流密度)很小,并且基本与电位无关; 4)过钝化区:电流密度又开始随电位的正移而增大; 当介质中存在氯离子时, 不锈钢等耐蚀金属材料表面的钝化膜容易被破坏, 存在点蚀电 位,此时,当 ? ? ?b 时,材料表面开始发生点蚀,电流迅速增大;当电流密度增大到一定 值时(如 1mA/cm2) ,改变扫描方向,开始向阴极方向扫描,可能形成一个滞后环。当 ? < ? s14rp 时,钝化膜重新愈合,金属恢复完全钝化状态;而当 ? s14rp < ?< ?b, 时已形成的点蚀继续进行,但不会产生新的点蚀。

三、 主要仪器设备、材料和试剂

1)主要仪器设备 CorrTest 腐蚀电化学测试系统;电解池;玻璃活栓盐桥;洗耳球、金相砂纸、 镊子、丙酮棉球(处理电极表面) ;量筒;滤纸(保护电极表面不被腐蚀) 。 2)三电极种类、材料和有效工作面积 工作电极(电极材料为镍、钛或耐蚀合金) 、饱和甘汞电极(SCE) 、大面积铂辅 助电极(有效截面积为 1cm2) ; 3)测试温度及其控制方法 测试在室温下进行

四、 实验操作步骤

1)启动CorrTest腐蚀测试系统软件,打开恒电位仪的电源开关,开始预热; 2)将玻璃活栓盐桥洗净、烘干后,把玻璃活塞插入盐桥,并使活塞孔对准盐桥 的测试溶液端;将活栓插紧后,向盐桥的参比电极室注入适量的过饱和 KCl 溶液。洗净电 解池,安装辅助电极、盐桥和参比电极; 3)处理电极,将处理好的工作电极置于电解池中使盐桥毛细管尖端对准工作电极 的中心,并且它到电极表面的距离为毛细管尖端外径的

1倍。然后将三个电极连接到恒电位 仪; 4)打开“自腐蚀电位测量”窗口(快捷键F2 ) ,输入数据文件名和注释,设置测 量时间: 15分钟, 采样速率: 1Hz, 其他参数保持默认值。 然后, 向电解池内注入 溶液约200ml后,立即开始计时,并接通盐桥,点击窗口中的“开始”按钮,开始开路电位 的测量; 5)当开路电位测量到所设置的测量时间后将自动停止。此时,打开“动电位扫描” 窗口(快捷键 F4 ) ,输入数据文件名和注释,设置初始电位:? (相对于开 路电位) ,终止电位:(相对于开路电位) ,扫描速率:1mV/s,采样速率:1Hz,其他 参数保持默认值。然后,立即点击窗口中的“确定”按钮,开始极化曲线的测量;

6)测量结束后,取下电极接线夹头,取出工作电极和参比电极,清洗电解池和盐桥 (测试溶液端内、外侧) ,将工作电极按上述方法进行处理,更换 NaCl 溶液而上述步骤进行下一次实验。注意:此时,在设置“动电位扫描”控制参数时, 应设置回扫电流密度:1mA/cm2。在测量中,当回扫曲线与正扫曲线; 7)待实验结束后,取下电极接线夹头,取出工作电极和参比电极,观察工作电极表 面腐蚀形态。然后,清洗电解池和盐桥(测试溶液端内、外侧) ,将工作电极按上述方法进 行处理,放入干燥器备用。

5 实验结果与讨论

实验结果

分析与讨论 ?~i曲线图分析 当工作电极在 H2SO4溶液中时,由图1-2及表1-1的特征值可知,从 腐蚀电位 ? c 开始,金属的溶解规律呈现活性溶解规律,当电位达到时 电流随电位的增大而增大,基本符合tafel方程;当电极电位正移到钝化电位?cp =时,金属表面开始发生突变,由活态向钝态变化,此时电流随电位正 移而急剧下降直至电位达到稳定钝化电位即 ?p =,与钝化电位?cp相对应 的阳极电流密度称为钝化电流密度icp =;当电位正移到稳定钝化电位 p =时,金属处于稳定的钝化状态,表面生成一层钝化膜,此时阳极溶 解电流密度ip =(即维电流密度)很小且基本不随电位变化;当电位 达到过钝化电位?tp =时,由于金属表面钝化膜遭到破 坏,腐蚀再次加剧, 电流随电位的正移而增大。 当工作电极在 H2SO4+溶液中时,图1-1以及表1-1中特 征值可知,活性溶解区基本不发生变化,而当电位正移到?cp之后电位先正移至稳 定钝化电位?p =,而后迅速达到过钝化电位?tp =,达到过钝化电 位后由于点蚀的存在电流密度随电位的正移而再次增大; 氯离子对钝化过程的影响分析 由以上分析可知, 在溶液中不含氯离子时,由稳定钝化电位正移至过钝化电 位经历的时间远大于含有氯离子时的时间,可见,当溶液中存在氯离子时金属表 面的钝化膜溶液破坏从而过早进入过钝化区,这是由于钝化膜的溶解和修复(再 钝化)处于动平衡状态当介质中含有活性阴离子(常见的如氯离子)时,氯离子 能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子 结合成可溶性氯化物,使平衡便受到破坏,金属表面钝化膜发生破坏。 结论 1)金属的阳极极化随着电位的正移金属表面会发生钝化,但是随着电位的 继续正移金属表面的钝化膜会发生破坏从而使腐蚀从新加剧;

2)氯离子能时金属表面的钝化膜发生破坏从而加剧腐蚀;

六、 意见和建议

可以取含不同氯离子浓度的溶液进行实验从而验证氯离子浓度对钝化膜破坏的影响; 可以取不同电极及钝化剂进行实验从而验证钝化介质对钝化的影响;

一.实验目的

1.观测 CO2 临界状态现象,增加对临界状态概念的感性认识; 2.加深对纯流体热力学状态:汽化、冷凝、饱和态和超临流体等基本概念的理 解;测定 CO2 的 PVT 数据,在 PV 图上绘出 CO2 等温线 3.掌握低温恒温浴和活塞式压力计的使用方法。

二.实验原理

纯物质的临界点表示汽液二相平衡共存的最高温度 ( T C) 和最高压力点 (PC) 。 纯物质所处的温度高于 TC,则不存在液相;压力高于 PC,则不存在汽相;同时 高于 TC 和 PC,则为超临界区。本实验测量 TTC 三种温度条 件下等温线。其中 T

三.实验装置流程和试剂

实验装置由试验台本体、压力台和恒温浴组成(图 2-3-1) 。试验台本体如图 2-3-2 所示。实验装置实物图见图 2-3-3。 实验中由压力台送来的压力油进入高压容器和玻璃杯上半部 ,迫使水银进入 预先装有高纯度的 CO2 气体的承压玻璃管(毛细管),CO2 被压缩,其压力和容积通 过压力台上的活塞杆的进退来调节。温度由恒温水套的水温调节,水套的恒温水 由恒温浴供给。

CO2 的压力由压力台上的精密压力表读出(注意:绝对压力=表压+大气压) ,温 度由水套内精密温度计读出。比容由 CO2 柱的高度除以质面比常数计算得到。 试剂:高纯度二氧化碳。

图 2-3-1 CO2 PVT 关系实验装置图

2-3-2 试验台本体 1.高压容器 2-玻璃杯 3-压力油 4-水银 5-密封填料 6-填料压盖 7-恒温水套 8-承压玻璃管 9-CO210精密温度计

四、实验操作步骤

1.按图 2-3-1 装好试验设备。 2.接通恒温浴电源,调节恒温水到所要求的实验温度(以恒温水套内精密温度 计为准) 。 3.加压前的准备——抽油充油操作 (1)关闭压力表下部阀门和进入本体油路的阀门,开启压力台上油杯的进油阀。 (2)摇退压力台上的活塞螺杆,直至螺杆全部退出。此时压力台上油

筒中抽满 了油。 (3)先关闭油杯的进油阀,然后开启压力表下部阀门和进入本体油路的阀门。 (4)摇进活塞杆,使本体充油。直至压力表上有压力读数显示,毛细管下部出 现水银为止。 (5)如活塞杆已摇进到头,压力表上还无压力读数显示,毛细管下部未出现水 银,则重复 (1)--(4)步骤。

(6)再次检查油杯的进油阀是否关闭,压力表及其进入本体油路的二个阀门是 否开启。温 度是否达到所要求的实验温度。如条件均已调定,则可进行实验测定。

4.测定低于临界温度下的等温线(T= 20℃ 或 25℃ ) (1)将恒温水套温度调至 T= 23℃ 左右,并保持恒定。 (2)逐渐增加压力,压力为 左右(毛细管下部出现水银面)开始读取 相应水银柱上端液面刻度,记录第一个数据点。读取数据前,一定要有足够的平 衡时间,保证温度、压力和水银柱高度恒定。 (3)提高压力约 ,达到平衡时,读取相应水银柱上端液面刻度,记录第 二个数据点。注意加压时,应足够缓慢的摇进活塞杆,以保证定温条件,水银柱 高度应稳定在一定数值,不发生波动时,再读数。 (4)按压力间隔 左右,逐次提高压力,测量第三、第四……数据点, 当出现第一小滴 CO2 液体时,则适当降低压力,平衡一段时间,使 CO2 温度和 压力恒定,以准确读出恰出现第一小液滴 CO2 时的压力。 (5)注意此阶段,压力改变后 CO2 状态的变化,特别是测准出现第一小滴 CO2 液体时的压力和相应水银柱高度及最后一个 CO2 小汽泡刚消失时的压力和相应 水银柱高度。此二点压力改变应很小,要交替进行升压和降压操作,压力应按出 现第一小滴 CO2 液体和最后一个 CO2 小汽泡刚消失的具体条件进行调整。 (6)当 CO2 全部液化后,继续按压力间隔 左右升压,直到压力达到 为止(承压玻璃管最大压力应小于 ) 。 5.测定临界等温线和临界参数,观察临界现象 (1)将恒温水套温度调至 T= ℃ 左右,按上述 4 的方法和步骤测出临界等温 线,注意在曲线的拐点( P=)附近,应缓慢调整压力(调压间隔可为 ) ,以较准确的确定临界压力和临界比容,较准确的描绘出临界等温线上 的拐点。 (2)观察临界现象 a. 临界乳光现象 保持临界温度不变,摇进活塞杆使压力升至 Pc 附近处,然后突然摇退活塞杆(注意 勿使试验台本体晃动)降压,在此瞬间玻璃管内将出现圆锥型的乳白色的闪光现象, 这就是临界乳光现象。这是由于 CO2 分子受重力场作用沿高度分布不均和光的 散射所造成的。可以反复几次观察这个现象。 b. 整体相变现象临界点附近时,汽化热接近

于零,饱和蒸汽线与饱和液体线接 近合于一点。 此时汽液的相互转变不象临界温度以下时那样逐渐积累,需要一定 的时间,表现为一个渐变过程;而是当压力稍有变化时,汽液是以突变的形式相 互转化。 c. 汽液二相模糊不清现象 处于临界点附近的 CO2 具有共同的参数(P,V,T) ,不能区别此时 CO2 是汽 态还是液态。如果说它是气体,那么,这气体是接近液态的气体;如果说它是液 体,那么,这液体又是接近气态的液体。下面用实验证明这结论。因为此时是处

于临界温度附近,如果按等温过 程,使 CO2 压缩或膨胀,则管内什么也看不到。现在,按绝热过程进行,先调 节压力处于 MPa(临界压力)附近,突然降压(由于压力很快下降,毛细管 内的 CO2 未能与外界进行充分的热交换,其温度下降) , CO2 状态点不是沿等 温线,而是沿绝热线降到二相区,管内 CO2 出现了明显的液面。这就是说,如 果这时管内 CO2 是气体的话,那么,这种气体离液相区很近,是接近液态的气 体;当膨胀之后,突然压缩 CO2 时,这液面又立即消失了。这就告诉我们,这 时 CO2 液体离汽相区也很近,是接近气态的液体。这时 CO2 既接近气态,又接 近液态,所以只能是处于临界点附近。临界状态流体是一种汽液不分的流体。这 就是临界点附近汽液二相模糊不清现象。 7. 测定高于临界温度的等温线(T = 40℃ 左右) 将恒温水套温度调至 T=℃ ,按上述 5 相同的方法和步骤进行。

五、实验数据处理

表 原始数据表 23℃ 压强 (Mpa)

将数据绘图如下:

六、实验结果讨论

1.由于实验器材的老化,实验数据本身的准确度不高,所以根据实验数据画出来 的曲线误差较大。 2.加压的时候要缓慢加,不能过快,实验操作的时候有一组加压不够缓慢出现了 较小的气泡,使得实验数据不够准确。

七.注意事项

1.实验压力不能超过 MPa,实验温度不高于 41℃。 2.应缓慢摇进活塞螺杆,否则来不及平衡,难以保证恒温恒压条件。 3.一般,按压力间隔 左右升压。但在将要出现液相,存在汽液二相和 汽相将完全消失以及接近临界点的情况下,升压间隔要很小,升压速度要缓慢。 严格讲,温度一定时,在汽液二相同时存在的情况下,压力应保持不变。

T2.

大学化学实验报告范文相关 文章 :

★ 大学化学实验报告范文

★ 政治理论学习总结_政治理论学习心得体会6篇

★   考研英语学习总结范文

★   个人学习总结范文3篇

★   高中学生学习总结1000字

★   本学期学习总结下学期学习计划

★ 大学生有机化学实验报告总结

★ 大学生化工实习心得体会范文5篇

★ 化工实训报告范文3篇

★ 做化学实验的心得体会

化学如同物理一样皆为自然科学的基础科学。下面我给大家分享一些化学与科技论文范文,大家快来跟我一起欣赏吧。 化学与科技论文范文篇一 实用化学应用教学 摘要:化学教育目标的确定,决定于化学教育的价值取向.化学教育里的价值研究,成了化学教育理论与实践的必备基础.近年来,在试题中出现了越来越多的有化学知识应用的命题,越来越接近化学教学价值取向.化学教育目标是让学生了解化学与社会、化学与材料、化学与能源、化学与环境、化学与生命科学等的密切关系,会应用化学知识去解决实际问题,具有化学的综合素质和创新意识. 关键词:两面性;实用性;化学教学 一、 化学是一门实用的学科 近些年来,化学物质好象成了有毒、有害的代名词,一提到某化学药品,总跟污染,健康的杀手扯到一起,但这不是化学物质的本质特点.任何化学物质都具有两面性,一方面他带给我们不利的地方,另一方面,他承担了一定的功能.王佛松院士等主编的“展望21世纪的化学”一书中提到一个很重要的观点:任何物质和能量以至于生物,对于人类来说都具有两面性.在现在现实生活中,我们经常夸大化学药品的有害性,却忽略其有用性的一面,造成了一种不好的形象,它需要我们去纠正这种片面的看法.三聚氰胺毒奶粉事件给全国人民带来很大的心理创伤,但三聚氰胺无罪,它与甲醛缩合聚合可制得三聚氰胺树脂,可用于塑料及涂料工业,也可作纺织物防摺、防缩处理剂.其改性树脂可做色泽鲜艳、耐久、硬度好的金属涂料.其还可用于坚固、耐热装饰薄板,防潮纸及灰色皮革鞣皮剂,合成防火层板的粘接剂,防水剂的固定剂或硬化剂,可用作阻燃剂等. 化学作为一门基础学科,它来源于生活,生活中很多东西都跟化学有关,处理这些问题,我们必须具备一定的化学知识,同样是污染,最后解决这个问题的关键还是化学知识.在日常生活中,没有一点化学常识的人是无法生存下去的.我们每天都在跟化学知识打交道.没有化学知识帮助我们解决问题,我们衣食住行都不可能得到发展.没有它,人类的生存和生活质量无法保证.利用化学生产化肥和农药,以增加粮食产量;利用化学合成药物,以抑制细菌和病毒,保障人体健康;利用化学开发新能源、新材料,以改善人类的生存条件;利用化学综合应用自然资源和保护环境以使人类生活得更加美好. 二、实用化学知识教育 教师是教学过程的组织者、设计者和控制者, 同时也是教学信息的发送者和评判者,要树立正确的教学理念,明确教学目标、教学对象,合理组织、设计教学过程的各要素.我们在化学教学中自已必须先认识到化学教学理念,我们教学生学习化学,是让学生去感受的化学知识的用途,了解化学知识在解决我们很多问题的方法,从而激发学生学习化学的热情. 不能仅侧重于化学知识的学术性,要让所有学生能从一些实际生活中遇到的东西去学习知识,或者学完知识能去解决一些能触摸到的问题.不要让很实用知识,变成纯理论化的知识,反而让学生无法去应用.在不同的教学思想下,学生的地位、活动及培养方法和评价方法是不同的.掌握学科的知识是一件可喜的事,但让学生学会各种有用的东西是我们最希望看到的,当学生能尝试从生活应用中学习化学知识,或者能把刚学会的化学知识应用到实际生活中去的时候,我们还会怕学生学不好化学吗?学生就会对化学产生新的认识. 在教学过程中,教学素材选择很重要,只要我们认真关注生活中知识的应用,教学就会信息丰富、科学、先进.从而促进学生综合能力的提高.化学学科的知识体系不是教条,在教学过程中加入应用性知识教育,引导学生去关注生活,去研究生活,在生活的应用中得到更大的发展,对学生的进入社会后的发展是有利的. 三、实用化学在教学过程中的应用 1.学习兴趣是学习活动的重要动力,一方面学生容易对新颖的、能引起好奇的事物产生兴趣,进而诱发内驱力,激起求知、探究、操作等意愿.同时,现实生活中的一些常识也会引导学生进入自我学习的状态.(1)合理使用教材中的资源,在“金属的腐蚀与防护”课题教学中,我们教材先谈腐蚀再研究原理,根据原理实施防护.从发现问题到研究化学知识,再谈化学知识应用,合情合理,但书本知识金属腐蚀仅从物质角度来加以研究,我们认真关注一下这节内容的课后题,就会发现当铁吸氧腐蚀的一个实用案例,利用吸氧腐蚀所释放的能量生产的取暖设备,这是教学中一个很好的素材,也有利于学生能正确认识化学知识的两面性.(2)适当拓展教学资源.如,在高中化学的“化学反应中的能量变化”,该节内容学生在初中已积累了一定的基础知识,且内容与社会生活息息相关,也是当今家喻户晓的话题, 学生很易于发挥,是把学生广泛兴趣与中心兴趣有机结合、培养的较好内容.在学习醇类的时候,我们可以把家中的食用酒拿出来作为引题,再结合医用酒精,还能联系到工业酒精(甲醇).从用途到危害,引导学生进入学习研究之中.在学习碳酸钠和碳酸氢钠的过程中,我们可以引导学生从灭火器中进入问题的思考,学生就能接受到灭火器的相关常识教育.当我们在生活中面临重金属中毒的时候,为什么一碗豆浆能解决问题呢,如果没有豆浆,能不能找出替代品呢?当我们进入蛋白质的学习之后就能解决这个问题.(3)合理引入课外资源.门捷列夫是怎么发现这个规律的,它对我们处理日常繁杂的事务有什么样的帮助呢,这种解决问题的方法对学生的成长是很有好处的,学生会发现许多解决问题的方法其实是相通的,积累了人生的智慧.学习不能仅仅为了考试,学习后能应用这才是我们的目标. 2.在教学交流过程中,我们其实就是让学生体验化学的应用并应用知识去解决问题,不仅要让学生去应用已经知道的东西,还要让学生从更多的方面去了解、理解并能尝试着找到新的使用方法.首先,学生要去认识物质使用并不是单方面的,当我们让学生认识CO2的温室效应的同时,在解析原理的同时,我们是否可以想象一下小范围的温室——大棚种植,如何应有是我们在学习过程要深刻去加以体会的.我们也可以让学生去认识一下它在多方面的应用,比如,我们都要碰到的灭火器,植物的光合作用,就会完善学生心目中的CO2的形象.当我们认识到CO煤气中毒的同时,解析原理的同时,我们也可以让学生知道它在生理病理的调节作用.当我们为有O2存在而庆幸的时候,我们也应该让学生去认识到氧中毒.其次,化学最初的知识来源于生活的经验的总结,这些知识的发展最终还是要就用于实践.当我们学习到中和水解的时候,让学生去认识肥料的搭配.当我们了解了化学反应速速率之后,我们就应当让学生清楚如何确实有效的保存家中的食物. 3.一堂课完成以后,我们不希望看到学生作业只有习题.知识只有在应用中才能得到巩固、发展.只有习题是远远不够的,它恐怕只是其中一种比较无奈的选择.当我们学完醇类之后,假酒就是学生学有所用的一个舞台,如何去检测酒中甲醇的含量就是一个很好的例子.当我们学会醛类之后,室内装潢的气体污染会成学生关注的一个方面.当我们学完电化学之后,小小的电池会吸引很多学生的眼球.当我们面临着更多生存危机的时候,我们应当相信化学能解决这些问题的. 参考文献: [1]王佛松,等.展望21世纪的化学.北京:化学工业出版社,2000. [浙江省临海市大田中学 (317000)] 化学与科技论文范文篇二 浅谈“绿色”化学教育 摘要:随着社会不断发展,人口不断增长,环境污染日益成为当今世界的突出社会问题,作为与环境问题有密切联系的中学化学,应义不容辞的承担起培养学生环保意识之职责。在中学阶段进行绿色化学理念的教育,是培养具有绿色意识和环保能力的高素质人才的根本途径,也是解决环境问题的根本途径。 关键词:绿色化学化学教育绿色化学教育 环境与发展问题,已成了当代世界共同面临的两难选择,成了对21世纪人类最严峻的挑战,人类不得不面临新的环境问题。为了从根本上预防和治理环境污染,必须依靠近年在国际上引起极大关注的化学领域——绿色化学(Green Chemisty)。 一、“绿色化学”的提出和内涵 “绿色化学”这个名称最早出现在美国环保局的官方文件中,以突出化学对环境的友好。1995年,美国总统克林顿、副总统戈尔专设了“总统绿色化学挑战奖”,以推动社会各界进行化学污染预防和工业生态学研究,鼓励支持重大的创造性的科学技术突破,从根本上减少乃至杜绝化学污染源。由于上述原因,使得“绿色化学”这个名称广为传播。 “绿色化学”是当今社会提出的一个新概念。在“绿色化学工艺”中,理想状态是反应物中原子全部转化为欲制得的产物,即原子利用率为100%(原子经济性)。原子的利用率越高,意味着生产过程中废物的排放量越少,对环境的影响也越小。 把绿色化学融合于中学课程教材改革和课堂教学改革之中,便绿色化学成为中学化学教育的一个重要的组成部分,这是中学化学教育的崭新课题。 二、“绿色化学”在中学化学中的渗透 在化学教学中培养学生的环保意识,应该抓住教学中的各个方面,多角度的进行环保教育。 1.抓住教材的环保内容渗透环保教育 化学教师应该结合化学教材中的许多章节向学生介绍环保的相关知识。如结合硫、氮的氧化物,介绍空气污染,酸雨的形成及其危害;结合一氧化碳等有毒气体的教学,在课堂上介绍其对环境和人体的影响和相关的实验操作注意事项;结合炼钢炼铁的工业流程,介绍工业污染及废气、废渣的处理;结合重金属元素的教学,介绍重金属对水的污染并给人体健康带来的危害;结合磷肥的相关知识,介绍湖泊水质的富营养化;结合有机高分子化合物的内容介绍白色污染及其危害和解决方法等等。课堂是教师的第一阵地,作为化学教师,我们要抓住这一阵地,紧密联系教材,在日常教学中渗透环保教育,让学生理解环保的必要性和紧迫性,逐步培养起环保意识。 2.在实验教学中推进环保教育 作为化学教师,我们要利用实验教学,让学生参与到环境保护的实践中来。首先,我们要培养学生的实验习惯,如在密闭系统或通风橱中操作有毒气体,对反应后的尾气进行吸收,不让其扩散到空气中,反应后的废液、废渣不随意倒入水池,而是分类回收等等,使学生养成环保的好习惯。其次,我们要帮助学生学会从环保角度设计、改进、挑选实验方案,选取实验药品。使学生尽可能采用一些无毒无害、低污染、低能耗的实验方案和选择一些无污染、可回收、可循环利用的药品。从小培养学生在科学实验和工业生产上的环保意识。 3.发挥考试的导向功能,强化环保教育 近年来,环境保护试题在各地中考试卷中都有出现。这些题有的落点仍在化学的基础知识上,发挥考试的导向作用和教育功能,引导学生关心社会、了解社会,推动中学的素质教育,提高学生对环境保护的认识。我觉得,中考中环保试题应向着综合型发展,难度有所提高,范围更加广泛,促进我们更要培养学生的环保意识,鼓励学生多了解环保常识,多把书本中的理论与社会实践相联系。我们化学教师要在平时就注重把身边实际与知识相结合,在日常考试练习中给学生营造一个重视环境保护的外部环境。 4.利用丰富的课外活动开展环保教育 根据现行《中学化学教学大纲》的要求,学生环保意识的培养仅靠在课堂上的培养是不够的。我们应该把环保活动作为化学课外活动的一个重要组成部分,把培养学生环保意识作为化学课外活动的一个重要目标来认真有效的实施。 ① 专题讲座。结合国内外重大的环境污染问题和重大的环保活动举办专题讲座。如结合6月5 日世界环境日向学生介绍当前世界关注的全球性环境问题有哪些;结合9月16 日国际保护臭氧层日向学生介绍臭氧层的相关知识及其被破坏的原因和氟里昂的应用及其替代技术;结合我国提倡消除白色垃圾活动谈谈白色垃圾的起源及其危害。 ② 组织学生参观活动。我们可以利用假期组织学生到附近典型的污染工厂(如焦化厂、水泥厂和镀锌厂)和受污染河流等处参观,与厂里工人和技术人员及河流周围的居民交谈,明确环境污染的危害性和环保的紧迫性。③ 组织学生进行小课题调查研究 a.组织学生对雨水、江水和工厂废水、民用废水的pH值测定后进行比较;b.了解空气质量是怎样评估的,API值与空气质量级别的对应关系,调查繁忙公路上二氧化碳及空气污染气体的含量;,c.调查目前各品牌冰箱中氟里昂的使用情况,与以前情况对比如何;d.对比小白鼠在不同空气质量、不同酸度的饮用水的条件下的生长情况;e.从环保角度改进课本上一些实验,并进行讨论研究。通过这样一些课外活动,让学生活动在环保第一线,把平时所学的化学知识用到实处,亲身参与环保活动,真真切切体会到环保任务的艰巨性,有利于学生把被动的培养环保意识转为自发的主动的培养自身的环保意识。 随着世界经济的发展,一场绿色变革浪潮正席卷全球,二十一世纪将成为绿色世纪。在中学化学教学中开展绿色化教育是历史赋予我们的责任。绿色化教育有利于保护人类赖以生存的环境,实现人类社会可持续发展,中学化学必须体现绿色化学教育,要让绿色化学的思想和内容贯穿于整个教育活动之中,真正做到绿色无所不在,只有这样我们的教育才能够充满生机,绿意盎然。 参考文献: (1) 《十万个为什么—环境化学分册》 (2)《化学教育》 郑长龙、李得才、 (3)《科技素质教育的几个问题的探讨》王秀红看了"化学与科技论文范文"的人还看: 1. 大学化学科技论文范文 2. 初中化学科技论文范文 3. 大学化学小论文范文 4. 关于化学论文范文 5. 化学毕业论文范文精选

电化学原理及应用课程论文

在网站上找了一份,希望对你有帮助。一电化学腐蚀原理�1.腐蚀电池(原电池或微电池)金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。在这个过程中金属被氧化,所释放的电子完全为氧化剂消耗,构成一个自发的短路电池,这类电池被称之为腐蚀电池。腐蚀电池分为三(或二)类:(1)不同金属与同一种电解质溶液接触就会形成腐蚀电池。例如:在铜板上有一铁铆钉,其形成的腐蚀电池。铁作阳极(负极)发生金属的氧化反应:Fe→Fe2++2e-;(Fe→Fe2++2e)=-.阴极(正极)铜上可能有如下两种还原反应:(a)在空气中氧分压=21kPa时:O2+4H++4e-→2H2O;(O2+4H++4e-→2H2O)=,(b)没有氧气时,发生2H++2e-→H2;(2H++2e-→H2)=0V,有氧气存在的电池电动势E1=-()=;没有氧气存在时,电池的电动势E2=0-()=。可见吸氧腐蚀更容易发生,当有氧气存在时铁的锈蚀特别严重。铜板与铁钉两种金属(电极)连结一起,相当于电池的外电路短接,于是两极上不断发生上述氧化—还原反应。Fe氧化成Fe2+进入溶液,多余的电子转向铜极上,在铜极上O2与H+发生还原反应,消耗电子,并且消耗了H+,使溶液的pH值增大。在水膜中生成的Fe2+离子与其中的OH—离子作用生成Fe(OH)2,接着又被空气中氧继续氧化,即:Fe2++2OH-→Fe(OH)24Fe(OH)2+2H2O+O2→4Fe(OH)3Fe(OH)3乃是铁锈的主要成分。这样不断地进行下去,机械部件就受到腐蚀。(2)电解质溶液接触的一种金属也会因表面不均匀或含杂质微电池。例如工业用钢材其中含杂质(如碳等),当其表面覆盖一层电解质薄膜时,铁、碳及电解质溶液就构成微型腐蚀电池。该微型电池中铁是阳极:Fe→Fe2++2e-碳作为阴极:如果电解质溶液是酸性,则阴极上有氢气放出(2H++2e-→H2);如果电解质溶液是碱性,则阴极上发生反应O2+2H2O+4e-→4OH-。总结:从上面的分析可以看出:所形成的腐蚀电池阳极反应一般都是金属的溶解过程:M→Mz++ze-阴极反应在不同条件下可以是不同的反应,最常见的有下列两种反应:�①在缺氧条件下,H+离子还原成氢气的反应(释氢腐蚀)2H++2e-→H2。(=)该反应通常容易发生在酸性溶液中和在氢超电势较小的金属材料上。②氧气还原成OH-离子或H2O的反应(耗氧腐蚀)中性或碱性溶液中O2+2H2O+4e—→4OH-。(=)在酸性环境中,O2+4H++4e-→2H2(=)2.腐蚀电流一旦组成腐蚀电池之后,有电流通过电极,电极就要发生极化,因而研究极化对腐蚀的影响是十分必要。在金属腐蚀文献中,将极化曲线(电势~电流关系)绘成直线(横坐标采用对数标度),称为Evans(埃文斯)极化图(图10—8)。在Evans极化图中的电流密度j腐蚀表示了金属腐蚀电流,实际上代表了金属的腐蚀速率。影响金属表面腐蚀快慢(即腐蚀电流j)的主要因素:①腐蚀电池的电动势——两电极的平衡电极电势差越大,最大腐蚀电流也越大。②金属的极化性能——在其它条件相同的情况下,极化程度愈大(即极化曲线的斜率),腐蚀电流愈小。③氢超电势——释氢腐蚀时,氢在金属表面析出的超电势逾大,极化曲线的斜率就逾大,腐蚀电流反而减小。二、金属的稳定性“在所处环境下金属材料的稳定性如何?”是研究金属腐蚀与防腐首先必须考虑的问题。因此,金属-水系统的电势—pH图无疑是很有用的工具。1.电势(E)—pH关系的一般表达式若有如下电极反应:xO(氧化态)+mH++ze-�-→yR(还原态)+nH2O例如:Fe3O4+8H++2e-=3Fe2++4H2O式中O代表氧化态、R代表还原态;x,m,z,y,n为各反应物、产物的计量系数。当T=时E=-(10—14)因pH=-lg[a(H+)],a(H2O)=1上式可写成E=--(10—15)在a(R),a(O)被指定时,电势E与pH值成直线关系。①.电势与pH无关的反应:②.这些反应只有电子得失,没有H+或OH-离子参加。例如反应Zn2+(aq)+2e-=Zn(s);E(Zn2++2e-→Zn)=[a(Zn2+)/a(Zn)]。当a(Zn2+)=10-6、a(Zn)=时,E(Zn2++2e-→Zn)=.水溶液中的氢、氧电极反应因为反应在水溶液中进行,反应与H2,O2,H+,OH-有关。所以凡是以水作为溶剂的反应系统都一定要考虑氢、氧电极反应。氢电极反应(①线):电极反应式2H+(a)+2e-→H2(p);当p(H2)=时,有E(2H++2e-→H2)=(10—13)在E—pH图上是一条截距为零的直线,斜率为。氧电极反应(②线):电极反应式O2(p)+2H+(a)+2e-→H2O(l)在(H2O)=1、p(O2)=时,E(O2+2H++2e-→H2O)=该式表示氧电极反应的E—pH直线与氢电极的E—pH直线斜率相同,仅截距不同。4.电势-pH图的应用(1)图10—9中每条线上的点都表示Zn—H2O系统的一个平衡状态。凡不在直线上的任何一点均为非平衡状态,且每条线上方为该线所代表电极反应中氧化态稳定区,下方为还原态稳定区。因此,在图上分别得到Zn2+,Zn,Zn(OH)2的各自稳定存在区。线②以上是O2(氧化态)的稳定区,下方是H2O(还原态)的稳定存在区;在线①以上是H+(氧化态)的稳定区、线①以下是H2(还原态)的稳定存在区。(2)在E—pH图中任意两条线所代表的电极反应都能构成一个化学反应。例如线①与②所代表的电极反应构成的化学反应为:O2(g)+2H2(g)=2H2O(l)。该反应可视为氧电极和氢电极组成的燃料电池。一般而言,高电势区直线所代表电极反应中的氧化态能氧化低电势区直线所代表反应中的还原态即:[氧化态]上+[还原态]下→[还原态]上+[氧化态]下且二直线相距愈远,以此二直线所代表电极反应组成电池时,电池的电动势就愈大,因此该氧化还原反应的趋势就愈大。如Zn2++2e-=Zn是线段a代表的平衡系统,该平衡位于①线下方,说明Zn在水溶液中是不稳定的。溶液中H+被还原成H2(g),Zn被氧化成Zn2+的反应2H++Zn=Zn2++H2是自发进行的。又因Zn的稳定区也在O2还原反应的②线以下,Zn被氧化成Zn2的反应:+2H++Zn=Zn2++H2O①线与a线反应组成电池:②线与a线组成电池,比①线距离线a更远,说明在含有O2的水溶液中Zn的热力学稳定性更差。(3)E—pH图可用来指导防腐、金属保护等方面的研究。从图10—9可知,当E<-时,Zn在酸性溶液中,既使在有氧存在的情况下都可以稳定存在,这就是金属电化学防腐的阴极保护原理;(4)水-Fe的E-pH图:Fe2++2e-→Fe(1线)Fe2O3+6H++2e=2Fe2++3H2O(2线)Fe3++e-=Fe2+(3线)Fe2O3+6H+=2Fe3++3H2O(4线)Fe3O4+8H++2e-=3Fe2++3H2O(5线)3Fe2O3+2H++2e-=2Fe3O4+H2O(6线)Fe3O4+8H++8e-=3Fe+4H2O(7线)总之,E—pH图在解决水溶液中发生的一系列反应及平衡问题,如元素分离,湿法冶炼,金属防腐,金属电沉积,地质问题等方面均得到广泛的应用。三、电化学保护1.阳极保护(适用有钝化曲线的金属)凡是在某些化学介质中,通过一定的阳极电流,能够引起钝化的金属,原则上都可以采用阳极保护法防止金属的腐蚀。例如我国化肥厂在碳铵生产中的碳化塔已较普遍地采用阳极保护法,取得了良好效果,有效地保护了碳化塔和塔内的冷却水箱。使用此法注意点:钝化区的电势范围不能过窄,否则容易由于控制不当,使阳极电势处于活化区,则不但不能保护金属,反将促使金属溶解,加速金属的腐蚀。2.阴极保护就是在要保护的金属构件上外加阳极,这样构件本身就成为阴极而受到保护,发生还原反应。阴极保护又可用两种方法来实现。(1)称为牺牲阳极保护法:它是在腐蚀金属系统上联结电势更负的金属,即更容易进行阳极溶解的金属(例如在铁容器外加一锌块)作为更有效的阳极,称为保护器。这时,保护器的溶解基本上代替了原来腐蚀系统中阳极的溶解,从而保护了原有的金属。此法的缺点是用作保护器的阳极消耗较多。(2)外加电流的阴极保护法:目前在保护闸门、地下金属结构(如地下贮槽、输油管、电缆等)、受海水及淡水腐蚀的设备、化工设备的结晶槽、蒸发罐等多采用这种方法,它是目前公认的最经济、有效的防腐蚀方法之一。该法是将被保护金属与外电源的负极相连,并在系统中引入另一辅助阳极,与外电源的正极相连。电流由辅助阳极(由金属或非金属导体组成)进入腐蚀电池的阴极和阳极区,再回到直流电源B。当腐蚀电池中的阴极区被外部电流极化到腐蚀电池中阳极的开路电势,则所有金属表面处于同一电势,腐蚀电流消失。因此,只要维持一定的外电流,金属就可不再被腐蚀。(3)气相中阴极保护。电化学方法能否在气相环境中使用是人们一直希望解决的问题。1988年,中国研究出了气相环境中的阴极保护技术,用于架空金属管道、桥梁、铁轨、海洋工程构件上的飞溅区保护,并在架空金属管道的实际试验中取得了非常好的保护效果,使材料的寿命延长了20多倍,为气相环境中的构件保护提供了一个崭新的途径。气相阴极保护原理与溶液中的阴极保护原理相同,只是用固体电介质代替溶液,成为阴极保护电流从阳极层流向阴极层的主要离子迁移通道。外加阴极电流从辅助阳极流入,经过固体电介质至阴极(即被保护的结构材料),从而使处于气相环境中的结构得到保护。3.缓蚀剂的防腐作用把少量的缓蚀剂(如万分之几)加到腐蚀性介质中,就可使金属腐蚀的速率显著的减慢。这种用缓蚀剂来防止金属腐蚀的方法是防腐蚀中应用得最广泛的方法之一。下面我们根据极化图来说明缓蚀剂抑制金属腐蚀的基本原理。电化学腐蚀的速率是由阳极过程和阴极过程的极化特征所决定的。只要加入的缓蚀剂能够抑制上述过程中的一种或二种,腐蚀速率就会降低。根据缓、蚀剂所能抑制的过程,我们可以把缓蚀剂分为阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。加入缓蚀剂,加快极化程度,降低腐蚀电流。作用的机理主要是在电极表面形成钝化膜或者吸附膜。缓蚀剂的种类繁多,属于无机类的缓蚀剂有亚硝酸盐、铬酸盐、重铬酸盐,磷酸盐等等;属于有机类的缓蚀剂有胺类、醛类、杂环化合物、咪唑啉类等等。具体使用时,需根据要保护的金属种类和腐蚀介质等条件通过筛选试验来确定。

《咏石灰》 于谦 千锤万凿出深山,烈火焚烧若等闲。 粉身碎骨浑不怕,要留清白在人间。 同学们!见过这首诗吗?如果见过,你又知道其中蕴涵的化学知识吗?也许你知道,也许你不知道。没关系,看了下文,你就会明白! 一、 开启化学之门 我们周围的世界,是一个物质的世界。这些物质,无时无刻不在变化:巨大的岩石逐渐风化变成泥土和沙砾;由于地壳变动而埋没在地下深处的古代树木变成了煤;铁器在潮湿的空气里逐渐生锈;等等。 人类为了生活和生产,在长期跟自然作斗争的过程里,积累了许多有关物质变化的知识。从而逐渐认识到,自然界里一切物质变化的发生都有一定的原因和条件。掌握了物质变化的原因和条件,就能进一步控制物质变化的发生,以达到利用自然和改造自然的目的。 化学就是一门物质性质和物质变化规律的基础自然学科,它研究物质发生变化的原因和条件,以及随着变化发生的各种现象(例如发光、放热、发生气体等)。 二、 进入化学之门 我国社会主义现代化建设的发展和能源消费的增长密切相关。常规性能源主要为化石燃料的煤、石油、天然气等,提高这些能源的有效利用率,在进行这些技术的革新中,离不开化学知识,离不开化学工作者的努力。在开发新能源中,化学同样发挥着巨大的 优势,如核能和太阳能发电装置都离不开特殊材料的研制。 1. 实用的新能源——电池 铝-空气-海水为能源的新型电池是我国首创的,可用作水标志灯已研制成功。还有 特种电池,如太阳能电池就是利用晶体硅和非晶体硅为材料制成的一种将太阳能转化为电能的装置。这种电池的前景最为广阔,因为它没有污染,据预测到21世纪中期全世界的电力总耗量的20%~30%将由太阳能电池提供。主要用于航天领域的氢氧燃烧电池是一种高效低污染的新型电池。它的电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等,电解质溶液一般为40%的KOH溶液。电极反应如下 负极: H2====2H 2H+2OH�0�4—2e=2H2O 正极:O2+2H2O+4e ===== 4OH�0�4 电池总反应:2H2+O2 2H2O 电子手表之所以能昼夜走动,袖珍电子计算机的液晶显示器显示数字等都靠的是微型电池。电子手表用的是银锌电池,化学反应方程式为:Ag2O+2Zn ===== Ag + 2ZnO,银-锌电池安装在电子手表中可以使用长达两年之久。1958年第一个心脏起搏器在瑞典植入成功,植入人体内,使用寿命长达10年之久。这种能源起搏器的安装寿命最长、可靠性最高的是锂-碘电池。这是多么神奇呀! 2.未来的能源——水中取“火” 目前世界各国都在探索新能源,如太阳能、潮汐能、地热、氢燃料和核能等,其中氢气是一种最有发展前途的新燃料,而氢气来自取之不尽,用之不竭的水。H2O ==== H2↑+O2↑,可用光化学法、生物方法或太阳能直接将海水转变为氢气。一旦水真正成为制氢的原料,人类又获得一种经久的能源。随着科技的发展,能提取的水将成为人类广泛使用的一种廉价能源,汽车、轮船、飞机和各种动力设备都将用氢气作燃料。更有意义的是氢气燃料又与氧气化合成水,如此循环不息,使氢气成为人类永不枯竭的能源。 三.化学之门处处开 1. 衣 随着生活水平的提高,人们都喜欢穿羊毛衫和羊毛外套。俗话说“羊毛出在羊身上”,但也有不出在羊身上的“羊毛”。这就是在百货商店大量充满毛线柜台色彩特别耀眼的腈纶毛线。腈纶有“合成毛线”之称,它的学名叫聚丙烯腈,它具有羊毛的特点,并且有优于羊毛之初。腈纶是怎样合成的呢?制取腈纶的原料是丙烯腈(CH2===CHCN),丙烯腈可以由电石制造,也可以用石油裂解和炼油废气中的丙烯来制造,丙烯经过氨氧化后,便成了丙烯腈: CH2====CH—CH3 + NH3 +3/2O2 磷钼酸铵 400~500°C CH2====CH—CN +3H2O 丙烯腈通过聚合反应变成聚丙烯腈,然后通过喷丝、纺织便成了腈纶纤维。 2 食 炸油条时,向面团里常加入纯碱和明矾,这是为什么呢?其实发明油条的 人可能并不懂得化学,但是他不自觉地利用了三个化学原理,才得到受人喜欢的油条。纯碱(NaHCO3)和氢氧化钠(NaOH),这就是做油条的第一个反应: Na2CO3+H2O ==== NaHCO3+NaOH。第二个反应是生成的碳酸氢钠受热分解成碳酸钠、水和二氧气化碳:2NaHCO3=====Na2CO3+H2O+CO2↑两个反应结果使面团里形成了许多充满二氧化碳的微小气室,气体受热会发生膨胀,所以在炸油条时,油条迅速膨胀起来。但上面两个反应结果会产生较多的氢氧化钠,因氢氧化钠是强碱,那是不能吃的,巧在发明油条的知道用明矾,来中和氢氧化钠的碱性。反应产生的氢氧化铝呈胶体形式存在,有利于包裹二氧化碳气体和使面团具有较大限度的伸胀性。氢氧化铝是胃舒平的主要成分,它能中和胃中产生过多的胃酸(盐酸),保护胃壁黏膜,因此患有胃病的人,常吃油条有好处。不但营养价值高,而且舒坦了自己的胃。 3 住 聚氯乙烯(PVC),你知道它的作用吗?它就是家居中广泛应用的墙壁装饰材料墙纸的化学原料,把它用刮刀均匀地涂在底纸,再经过一定的工序后,印刷和沟底轧花而成。我们用的肥皂盒、梳子、拖鞋、凉鞋、床单、水桶等都是由聚氯乙烯制成的,有的比丝绸还要柔软,有的比钢铁还要坚硬。在这些材料的制作中掺入不同量和质的添加剂,以至塑料制品达到人们的预计要求。 好了,就说到这儿吧,于谦的那一首诗所蕴涵的化学知识就请同学们自己去想吧,读书百遍,其意自见嘛!上面所讲的一些都是日常生活中常见到的,这是微乎其微的,如果想了解更多的化学知识,那就到生活中去看、去听、去感受吧。

擦银棒工作原理的技术论文有很多,以下是其中一些论文:1. 《电化学反应在擦银棒的清洁中的应用》:本文详细介绍了擦银棒中使用的电化学反应原理,分析了银氧化物还原成银的电化学反应机理和相关操作参数的影响。2. 《擦银棒的材料、制备及清洁效果研究》:本文介绍了擦银棒的材料制备方法和实验结果,着重比较了不同材料擦银棒的清洁效果,从而为擦银棒的制备提供了依据。3. 《擦银棒的工作原理及应用研究》:本文详细阐述了擦银棒的工作原理,并探讨了其在清洁银饰品和实验室玻璃仪器中的应用,方便读者更好地理解和应用擦银棒。需要注意的是,这些论文都是在特定的条件下进行的实验和研究,而且有些文章所涉及的技术含量较高,不太适合一般读者阅读。

在网站上找了一份,希望对你有帮助。一电化学腐蚀原理?1.腐蚀电池(原电池或微电池)金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。在这个过程中金属被氧化,所释放的电子完全为氧化剂消耗,构成一个自发的短路电池,这类电池被称之为腐蚀电池。腐蚀电池分为三(或二)类:(1)不同金属与同一种电解质溶液接触就会形成腐蚀电池。例如:在铜板上有一铁铆钉,其形成的腐蚀电池。铁作阳极(负极)发生金属的氧化反应:Fe→Fe2++2e-;(Fe→Fe2++2e)=-.阴极(正极)铜上可能有如下两种还原反应:(a)在空气中氧分压=21kPa时:O2+4H++4e-→2H2O;(O2+4H++4e-→2H2O)=,(b)没有氧气时,发生2H++2e-→H2;(2H++2e-→H2)=0V,有氧气存在的电池电动势E1=-()=;没有氧气存在时,电池的电动势E2=0-()=。可见吸氧腐蚀更容易发生,当有氧气存在时铁的锈蚀特别严重。铜板与铁钉两种金属(电极)连结一起,相当于电池的外电路短接,于是两极上不断发生上述氧化—还原反应。Fe氧化成Fe2+进入溶液,多余的电子转向铜极上,在铜极上O2与H+发生还原反应,消耗电子,并且消耗了H+,使溶液的pH值增大。在水膜中生成的Fe2+离子与其中的OH—离子作用生成Fe(OH)2,接着又被空气中氧继续氧化,即:Fe2++2OH-→Fe(OH)24Fe(OH)2+2H2O+O2→4Fe(OH)3Fe(OH)3乃是铁锈的主要成分。这样不断地进行下去,机械部件就受到腐蚀。(2)电解质溶液接触的一种金属也会因表面不均匀或含杂质微电池。例如工业用钢材其中含杂质(如碳等),当其表面覆盖一层电解质薄膜时,铁、碳及电解质溶液就构成微型腐蚀电池。该微型电池中铁是阳极:Fe→Fe2++2e-碳作为阴极:如果电解质溶液是酸性,则阴极上有氢气放出(2H++2e-→H2);如果电解质溶液是碱性,则阴极上发生反应O2+2H2O+4e-→4OH-。总结:从上面的分析可以看出:所形成的腐蚀电池阳极反应一般都是金属的溶解过程:M→Mz++ze-阴极反应在不同条件下可以是不同的反应,最常见的有下列两种反应:?①在缺氧条件下,H+离子还原成氢气的反应(释氢腐蚀)2H++2e-→H2。(=)该反应通常容易发生在酸性溶液中和在氢超电势较小的金属材料上。②氧气还原成OH-离子或H2O的反应(耗氧腐蚀)中性或碱性溶液中O2+2H2O+4e—→4OH-。(=)在酸性环境中,O2+4H++4e-→2H2(=)2.腐蚀电流一旦组成腐蚀电池之后,有电流通过电极,电极就要发生极化,因而研究极化对腐蚀的影响是十分必要。在金属腐蚀文献中,将极化曲线(电势~电流关系)绘成直线(横坐标采用对数标度),称为Evans(埃文斯)极化图(图10—8)。在Evans极化图中的电流密度j腐蚀表示了金属腐蚀电流,实际上代表了金属的腐蚀速率。影响金属表面腐蚀快慢(即腐蚀电流j)的主要因素:①腐蚀电池的电动势——两电极的平衡电极电势差越大,最大腐蚀电流也越大。②金属的极化性能——在其它条件相同的情况下,极化程度愈大(即极化曲线的斜率),腐蚀电流愈小。③氢超电势——释氢腐蚀时,氢在金属表面析出的超电势逾大,极化曲线的斜率就逾大,腐蚀电流反而减小。二、金属的稳定性“在所处环境下金属材料的稳定性如何?”是研究金属腐蚀与防腐首先必须考虑的问题。因此,金属-水系统的电势—pH图无疑是很有用的工具。1.电势(E)—pH关系的一般表达式若有如下电极反应:xO(氧化态)+mH++ze-?-→yR(还原态)+nH2O例如:Fe3O4+8H++2e-=3Fe2++4H2O式中O代表氧化态、R代表还原态;x,m,z,y,n为各反应物、产物的计量系数。当T=时E=-(10—14)因pH=-lg[a(H+)],a(H2O)=1上式可写成E=--(10—15)在a(R),a(O)被指定时,电势E与pH值成直线关系。①.电势与pH无关的反应:②.这些反应只有电子得失,没有H+或OH-离子参加。例如反应Zn2+(aq)+2e-=Zn(s);E(Zn2++2e-→Zn)=[a(Zn2+)/a(Zn)]。当a(Zn2+)=10-6、a(Zn)=时,E(Zn2++2e-→Zn)=.水溶液中的氢、氧电极反应因为反应在水溶液中进行,反应与H2,O2,H+,OH-有关。所以凡是以水作为溶剂的反应系统都一定要考虑氢、氧电极反应。氢电极反应(①线):电极反应式2H+(a)+2e-→H2(p);当p(H2)=时,有E(2H++2e-→H2)=(10—13)在E—pH图上是一条截距为零的直线,斜率为。氧电极反应(②线):电极反应式O2(p)+2H+(a)+2e-→H2O(l)在(H2O)=1、p(O2)=时,E(O2+2H++2e-→H2O)=该式表示氧电极反应的E—pH直线与氢电极的E—pH直线斜率相同,仅截距不同。4.电势-pH图的应用(1)图10—9中每条线上的点都表示Zn—H2O系统的一个平衡状态。凡不在直线上的任何一点均为非平衡状态,且每条线上方为该线所代表电极反应中氧化态稳定区,下方为还原态稳定区。因此,在图上分别得到Zn2+,Zn,Zn(OH)2的各自稳定存在区。线②以上是O2(氧化态)的稳定区,下方是H2O(还原态)的稳定存在区;在线①以上是H+(氧化态)的稳定区、线①以下是H2(还原态)的稳定存在区。(2)在E—pH图中任意两条线所代表的电极反应都能构成一个化学反应。例如线①与②所代表的电极反应构成的化学反应为:O2(g)+2H2(g)=2H2O(l)。该反应可视为氧电极和氢电极组成的燃料电池。一般而言,高电势区直线所代表电极反应中的氧化态能氧化低电势区直线所代表反应中的还原态即:[氧化态]上+[还原态]下→[还原态]上+[氧化态]下且二直线相距愈远,以此二直线所代表电极反应组成电池时,电池的电动势就愈大,因此该氧化还原反应的趋势就愈大。如Zn2++2e-=Zn是线段a代表的平衡系统,该平衡位于①线下方,说明Zn在水溶液中是不稳定的。溶液中H+被还原成H2(g),Zn被氧化成Zn2+的反应2H++Zn=Zn2++H2是自发进行的。又因Zn的稳定区也在O2还原反应的②线以下,Zn被氧化成Zn2的反应:+2H++Zn=Zn2++H2O①线与a线反应组成电池:②线与a线组成电池,比①线距离线a更远,说明在含有O2的水溶液中Zn的热力学稳定性更差。(3)E—pH图可用来指导防腐、金属保护等方面的研究。从图10—9可知,当E<-时,Zn在酸性溶液中,既使在有氧存在的情况下都可以稳定存在,这就是金属电化学防腐的阴极保护原理;(4)水-Fe的E-pH图:Fe2++2e-→Fe(1线)Fe2O3+6H++2e=2Fe2++3H2O(2线)Fe3++e-=Fe2+(3线)Fe2O3+6H+=2Fe3++3H2O(4线)Fe3O4+8H++2e-=3Fe2++3H2O(5线)3Fe2O3+2H++2e-=2Fe3O4+H2O(6线)Fe3O4+8H++8e-=3Fe+4H2O(7线)总之,E—pH图在解决水溶液中发生的一系列反应及平衡问题,如元素分离,湿法冶炼,金属防腐,金属电沉积,地质问题等方面均得到广泛的应用。三、电化学保护1.阳极保护(适用有钝化曲线的金属)凡是在某些化学介质中,通过一定的阳极电流,能够引起钝化的金属,原则上都可以采用阳极保护法防止金属的腐蚀。例如我国化肥厂在碳铵生产中的碳化塔已较普遍地采用阳极保护法,取得了良好效果,有效地保护了碳化塔和塔内的冷却水箱。使用此法注意点:钝化区的电势范围不能过窄,否则容易由于控制不当,使阳极电势处于活化区,则不但不能保护金属,反将促使金属溶解,加速金属的腐蚀。2.阴极保护就是在要保护的金属构件上外加阳极,这样构件本身就成为阴极而受到保护,发生还原反应。阴极保护又可用两种方法来实现。(1)称为牺牲阳极保护法:它是在腐蚀金属系统上联结电势更负的金属,即更容易进行阳极溶解的金属(例如在铁容器外加一锌块)作为更有效的阳极,称为保护器。这时,保护器的溶解基本上代替了原来腐蚀系统中阳极的溶解,从而保护了原有的金属。此法的缺点是用作保护器的阳极消耗较多。(2)外加电流的阴极保护法:目前在保护闸门、地下金属结构(如地下贮槽、输油管、电缆等)、受海水及淡水腐蚀的设备、化工设备的结晶槽、蒸发罐等多采用这种方法,它是目前公认的最经济、有效的防腐蚀方法之一。该法是将被保护金属与外电源的负极相连,并在系统中引入另一辅助阳极,与外电源的正极相连。电流由辅助阳极(由金属或非金属导体组成)进入腐蚀电池的阴极和阳极区,再回到直流电源B。当腐蚀电池中的阴极区被外部电流极化到腐蚀电池中阳极的开路电势,则所有金属表面处于同一电势,腐蚀电流消失。因此,只要维持一定的外电流,金属就可不再被腐蚀。(3)气相中阴极保护。电化学方法能否在气相环境中使用是人们一直希望解决的问题。1988年,中国研究出了气相环境中的阴极保护技术,用于架空金属管道、桥梁、铁轨、海洋工程构件上的飞溅区保护,并在架空金属管道的实际试验中取得了非常好的保护效果,使材料的寿命延长了20多倍,为气相环境中的构件保护提供了一个崭新的途径。气相阴极保护原理与溶液中的阴极保护原理相同,只是用固体电介质代替溶液,成为阴极保护电流从阳极层流向阴极层的主要离子迁移通道。外加阴极电流从辅助阳极流入,经过固体电介质至阴极(即被保护的结构材料),从而使处于气相环境中的结构得到保护。3.缓蚀剂的防腐作用把少量的缓蚀剂(如万分之几)加到腐蚀性介质中,就可使金属腐蚀的速率显著的减慢。这种用缓蚀剂来防止金属腐蚀的方法是防腐蚀中应用得最广泛的方法之一。下面我们根据极化图来说明缓蚀剂抑制金属腐蚀的基本原理。电化学腐蚀的速率是由阳极过程和阴极过程的极化特征所决定的。只要加入的缓蚀剂能够抑制上述过程中的一种或二种,腐蚀速率就会降低。根据缓、蚀剂所能抑制的过程,我们可以把缓蚀剂分为阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。加入缓蚀剂,加快极化程度,降低腐蚀电流。作用的机理主要是在电极表面形成钝化膜或者吸附膜。缓蚀剂的种类繁多,属于无机类的缓蚀剂有亚硝酸盐、铬酸盐、重铬酸盐,磷酸盐等等;属于有机类的缓蚀剂有胺类、醛类、杂环化合物、咪唑啉类等等。具体使用时,需根据要保护的金属种类和腐蚀介质等条件通过筛选试验来确定。

相关百科

热门百科

首页
发表服务