这儿的数学博士应该很少.
该报告书写方式:1、首先要简要介绍正项级数判别法的概念和研究意义,说明为什么选择这个话题进行研究。2、其次要明确研究的目的和内容,即要解决的问题和研究方法。3、在确定研究目的和内容后,需要介绍研究所采用的方法和步骤。4、最后要阐述研究预期的成果和意义。
这个内容我知道怎么做选我
我能完成的任务就这么多,我来写,选我
1、一级标题:标题序号为“一、”,4号黑体,独占行,末尾不加标点符号。
2、二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。
3、三级标题:标题序号为“1.”与正文字号、字体相同。
4、四级标题:标题序号为“(1)”与正文字号、字体相同。
5、五级标题:标题序号为“①”与正文字号、字体相同。
扩展资料
标准格式
1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。
2、论文摘要和关键词。
论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以300字左右为宜。关键词是能反映论文主旨最关键的词句,一般3-5个。
3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。
4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。
5、正文。是毕业论文的主体。
6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。
7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。
参考资料来源:百度百科——论文格式
4个 绪论 基本知识 研究内容 结论
类似于这样: 一,xxx,一级标题 1,c,二级标题 ,三级标题 2,uiuu 不同院校标记的数字也不尽相同。看你学校要什么样子的数字记号。
好的论文要有好的明确的题目,我一般是先写一个然后整篇论文写好后,再修改、定稿。我知道一家比较不错的网站,叫小柯毕业论文的,写作速度快,通过率还高,最主要的是安全,你可以试一下。写论文时候,有些需要注意的语言表述的地方。首先,尽量拼写、语法正确。保证全文没有单词错误和明显的语法错误,这个非常重要。论文学术是非常严谨的,错误拼写容易让人觉得水平不高。另外,写作句子尽量简单,每个句子只包含一个意思,这个和中文论文差别很大。记住一定用简单的句子,一般情况下,即使算上从句也尽量不要超过两句话。第三,避免用口语。
首先,要对这个题材很感兴趣,从大三时就开始关注。其次,这个题材某某和某某都研究过,某某写过什么什么书,我觉得对自己启发很大。最后,前一段时间新闻上出现过什么什么事件,我所研究的课题正好可以对解决这个事件有所助益。我当时是百度了流星毕业论文网最后才通过的,想想自己做就闹心,不如花点小钱省事。我当初就是因为找不到思路和合适的角度,迟迟写不出来。。。当然我的导师是要求很高那种人
学会表达自己的想法。工科生很多情况就是知道干活,但不会表达。表达能力很差,说了半天别人也不知道你要表达的意思。造成表达困难的原因,我认为有两个:首先,思维是跳跃的。我们通常在解决问题时会有灵光一闪的情况,这时思维方式是跳跃的。直接将跳跃的思维告诉他人,其他人是很难理解。其次,用语不准确。因为平时工作中会使用到大量自己创造的语言,或者将某个术语移作他用,而不是遵循学术界通用的名词与概念,这样也容易造成别人无法理解。我建议你直接交给小柯毕业论文就好了,花点小钱,啥都不用管,写作和修改他们都会帮你搞定,到日子直接拿毕业证不是更好?论文的标题有画龙点睛的作用。标题应该与文章的内容非常贴切。这一点往往不被注意。有的标题过大;有的又过于局限。
当我阅读了一些资料,结合自己的工作进行了一段时间的思考,心中自然也就有了一些想法,这时我感到困难的是心中有话写不出来。很多现象的描述不知道该用什么样的术语表达。自己遇到的问题也不知道该如何阐述,口语化非常严重。很多人都是找一些名气比较大的网站来写的,比如小柯毕业论文,希望对你有帮助老师让你改你就一定要改,不要和导师犟嘴,事实证明老师说的一定是对的。
减少论文中的assumption(假设),一般来说,所有的假设都是约束条件,去除约束条件就是形成新的方法的过程。因为我网上找了一家叫小柯毕业论文的完成,现在已经基本通过,就等答辩了,但我身边的室友就不行了,那一天天罪受的,跟上刑似的。有能力就自己做,没能力就网上找人帮忙~~~爱生活爱论文~~一篇文章首先需要确定自己的观点,或者说自己的创新点。一篇文章一个创新点就好,太多这一篇文章承载不了,同时论述起来也容易顾此失彼。创新点的得来不容易。首先你需要充分了解现有解决方法的特性,这是一个需要时间积累的过程。其次,你需要一个合适的观察角度,从而发现现有方法的不足。这个合适角度的来源,可能是真实的需求,也可能是你反复思考提炼出来的。就算你觉得你找到了创新点,还面临一个问题,如何准确地表述出来。准确地表述出创新点,需要在你对别人研究成果全面把握的基础上,用你发现的视角重新进行总结,从而说明你的创新点。有了创新点之后,这就是全文的主线。
注意的是以后你自己的论文也会上网,所以要是让别人看出你论文的抄袭肯定是不行的,所以一定要改。如果有一段资料只有一篇文章里面有,你就必须先看那篇文章,理解后自己写,这样思路是一样的但是语言绝对不同,不算抄袭。如果你有多篇文章一起拼凑的话,一定要把语言充分融合,这样也不算是抄袭。自己搞不定就找名气大些的小柯毕业论文,通过率还是挺高的。知网上啥的抄抄就差不多了,不过本科论文现在要求严格了……硕士论文不敢抄,有些还要翻译的英文文献,语言学没有翻译好写,一般好写的是文学翻译,好过的是二语和语用,一定要抓紧时间写,有思路就写,不要拖延……
写论文时候,有些需要注意的语言表述的地方。首先,尽量拼写、语法正确。保证全文没有单词错误和明显的语法错误,这个非常重要。论文学术是非常严谨的,错误拼写容易让人觉得水平不高。另外,写作句子尽量简单,每个句子只包含一个意思,这个和中文论文差别很大。记住一定用简单的句子,一般情况下,即使算上从句也尽量不要超过两句话。第三,避免用口语。象流星毕业论文网,很多人都是在他们那写过并最后通过的。多下载一网上的内容,在里面找思路,多看多看,自己写的时候可以综合这些思路列个大概作为参考,整理新增一下自己的思路在里面,查询各种文献资料自己整理归纳填充进去(当然你得自己脑子里有东西,前面看论文也是帮助你找思路)。这样既丰富又不是抄袭,还能快速找到方向。
题目需要准确、新颖的将你的工作点出来。摘要有字数限制,所以必须精炼。在摘要里面通常需要说清楚四个方面的内容。问题是什么,别人方法的局限,你的方法是什么,取得了什么效果。当然这四个方面的内容并不一定需要按顺序回答,很多文章的摘要会直接给出自己的工作,然后再论述针对的问题。同时因为字数的限制,对以别人方法局限有时也不一定会给出。关键字也很重要,并不是随意列举。三到四个关键字,需要说明研究领域、研究点、创新点。写作的网站有很多,比如小柯毕业论文,就是个不错的选择一篇文章首先需要确定自己的观点,或者说自己的创新点。一篇文章一个创新点就好,太多这一篇文章承载不了,同时论述起来也容易顾此失彼。创新点的得来不容易。首先你需要充分了解现有解决方法的特性,这是一个需要时间积累的过程。其次,你需要一个合适的观察角度,从而发现现有方法的不足。这个合适角度的来源,可能是真实的需求,也可能是你反复思考提炼出来的。就算你觉得你找到了创新点,还面临一个问题,如何准确地表述出来。准确地表述出创新点,需要在你对别人研究成果全面把握的基础上,用你发现的视角重新进行总结,从而说明你的创新点。有了创新点之后,这就是全文的主线。
一级、二级、三级标题是论文正文中的标题格式。
一级标题:标题序号为“一、”, 4号黑体,独占行,末尾不加标点符号。
二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。
三级标题:标题序号为“ 1. ”与正文字号、字体相同。
四级标题:标题序号为“(1)”与正文字号、字体相同。
五级标题:标题序号为“①”与正文字号、字体相同。
论文标题2号黑体加粗、居中。
论文副标题小2号字,紧挨正标题下居中,文字前加破折号。
扩展资料:
设置分标题的主要目的是为了清晰地显示文章的层次。有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用。需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性。
为了点明论文的研究对象、研究内容、研究目的,对总标题加以补充、解说,有的论文还可以加副标题。特别是一些商榷性的论文,一般都有一个副标题,如在总标题下方,添上“与××商榷”之类的副标题。
另外,为了强调论文所研究的某个侧重面,也可以加副标题。如《如何看待现阶段劳动报酬的差别——也谈按劳分配中的资产阶级权利》、《开发蛋白质资源,提高蛋白质利用效率——探讨解决吃饭问题的一种发展战略》等。
参考资料来源:百度百科-标题
标题一般分为总标题、副标题、分标题。而一级标题和二级标题和以此下去的标题代表的是一个序号,而且字体大小不一样;
设置分标题的主要目的是为了清晰地显示文章的层次。有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用。需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性。
一级标题:标题序号为“一、”, 4号黑体,独占行,末尾不加标点符号。
二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。
三级标题:标题序号为“ 1. ”与正文字号、字体相同。
另外还有四、五级标题;
四级标题:标题序号为“(1)”与正文字号、字体相同。
五级标题:标题序号为“ ① ”与正文字号、字体相同。
扩展资料:
对于标题的要求,概括起来有三点:
一要明确。要能够揭示论题范围或论点,使人看了标题便知晓文章的大体轮廓、所论述的主要内容以及作者的写作意图,而不能似是而非,藏头露尾,与读者捉迷藏。
二要简炼。论文的标题不宜过长,过长了容易使人产生烦琐和累赘的感觉,得不到鲜明的印象,从而影响对文章的总体评价。标题也不能过于抽象、空洞,标题中不能采用非常用的或生造的词汇,以免使读者一见标题就如堕烟海,百思不得其解,待看完全文后才知标题的哗众取宠之意。
三要新颖。标题和文章的内容、形式一样,应有自己的独特之处。做到既不标新立异,又不落案臼,使之引人入胜,赏心悦目,从而激起读者的阅读兴趣。
我来帮你搞定
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 建立实数的原则与完备有序域 * 戴德金分划说简介 无限小数与实数 实数完备性的等价命题 * 上极限与下极限 第二章 连续性 n维欧氏空间 函数概念的演进 函数极限和连续的一般定义 连续函数的整体性质 不动点与压缩映射原理简介 第三章 微分学 可微性的统一定义 可微函数的性质 微分中值定理与导函数的性质 凸函数 例题续编 第四章 积分学 定积分概念与牛顿-莱布尼兹公式 可积条件 定积分的性质 变限积分 反常积分 第五章 级数 数项级数综述 一致收敛概念的提出 一致收敛判别 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.
这个论文开题报告可以从定义、性质、函数项级数和函数的求解方法等方面入手。比如:概述研究函数项级数的和函数求法的意义;再通过列举典型例题,全面综述函数项级数的和函数的求法技巧。等等。
1、一级标题指的是序号为【一、】的标题,也是最大的标题,是4号黑体,单独一行,也不加标点符号;
2、二级标题指的是序号为【(一)】的标题,一般和正文字体大小一样,单独一行,也不加标点符号;
3、三级标题指的是序号为【1. 】的标题,一般和正文字体大小一样,字体一样;
设置分标题的主要目的是为了清晰地显示文章的层次。有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用。需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性。
扩展资料:
主要的格式要求:
论文正文
要点
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义,并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级。
1、一级标题:标题序号为“一、”,4号黑体,独占行,末尾不加标点符号。
2、二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。
3、三级标题:标题序号为“1.”与正文字号、字体相同。
4、四级标题:标题序号为“(1)”与正文字号、字体相同。
5、五级标题:标题序号为“①”与正文字号、字体相同。
扩展资料
标准格式
1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。
2、论文摘要和关键词。
论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以300字左右为宜。关键词是能反映论文主旨最关键的词句,一般3-5个。
3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。
4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。
5、正文。是毕业论文的主体。
6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。
7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。
参考资料来源:百度百科——论文格式
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
1、一级标题指的是序号为【一、】的标题,也是最大的标题,是4号黑体,单独一行,也不加标点符号;
2、二级标题指的是序号为【(一)】的标题,一般和正文字体大小一样,单独一行,也不加标点符号;
3、三级标题指的是序号为【1. 】的标题,一般和正文字体大小一样,字体一样;
设置分标题的主要目的是为了清晰地显示文章的层次。有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用。需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性。
扩展资料
为了点明论文的研究对象、研究内容、研究目的,对总标题加以补充、解说,有的论文还可以加副标题。特别是一些商榷性的论文,一般都有一个副标题,如在总标题下方,添上“与××商榷”之类的副标题。
另外,为了强调论文所研究的某个侧重面,也可以加副标题。如《如何看待现阶段劳动报酬的差别——也谈按劳分配中的资产阶级权利》、《开发蛋白质资源,提高蛋白质利用效率——探讨解决吃饭问题的一种发展战略》等。