首页

> 学术论文知识库

首页 学术论文知识库 问题

毕业论文中的数据分析方法有哪些

发布时间:

毕业论文中的数据分析方法有哪些

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

本科论文常用分析方法有:定量分析与定性分析,定性分析与定量分析是人们认识事物时用到的两种分析方式。

1、定量分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,用数学语言进行描述。它是依据统计数据,建立数学模型,并用数学模型针对数量特征、数量关系与数量变化去分析的一种方法。

2、定性分析法

定性分析法就是对研究对象进行“质”的方面的分析。定性就是用文字语言进行相关描述。它是主要凭分析者的直觉、经验,运用主观上的判断来对分析对象的性质、特点、发展变化规律进行分析的一种方法。

扩展资料:

定量分析法的具体方法:

1、比率分析法。它是财务分析的基本方法,也是定量分析的主要方法。

2、趋势分析法。它对同一单位相关财务指标连续几年的数据作纵向对比,观察其成长性。通过趋势分析,分析者可以了解该企业在特定方面的发展变化趋势。

3、结构分析法。它通过对企业财务指标中各分项目在总体项目中的比重或组成的分析,考量各分项目在总体项目中的地位。

4、数学模型法。在现代管理科学中,数学模型被广泛应用,特别是在经济预测和管理工作中,由于不能进行实验验证,通常都是通过数学模型来分析和预测经济决策所可能产生的结果的。

参考资料来源:百度百科-定量分析法

毕业论文分析数据的方法有哪些

本科论文常用分析方法有:定量分析与定性分析,定性分析与定量分析是人们认识事物时用到的两种分析方式。

1、定量分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,用数学语言进行描述。它是依据统计数据,建立数学模型,并用数学模型针对数量特征、数量关系与数量变化去分析的一种方法。

2、定性分析法

定性分析法就是对研究对象进行“质”的方面的分析。定性就是用文字语言进行相关描述。它是主要凭分析者的直觉、经验,运用主观上的判断来对分析对象的性质、特点、发展变化规律进行分析的一种方法。

扩展资料:

定量分析法的具体方法:

1、比率分析法。它是财务分析的基本方法,也是定量分析的主要方法。

2、趋势分析法。它对同一单位相关财务指标连续几年的数据作纵向对比,观察其成长性。通过趋势分析,分析者可以了解该企业在特定方面的发展变化趋势。

3、结构分析法。它通过对企业财务指标中各分项目在总体项目中的比重或组成的分析,考量各分项目在总体项目中的地位。

4、数学模型法。在现代管理科学中,数学模型被广泛应用,特别是在经济预测和管理工作中,由于不能进行实验验证,通常都是通过数学模型来分析和预测经济决策所可能产生的结果的。

参考资料来源:百度百科-定量分析法

毕业论文数据分析的做法如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

论文数据分析方法有哪些

1、获取数据

获取数据也有两种途径,要么就是手上有的或者是能直接使用到的现成数据,还有一种就是二手数据。现在的数据分析库主要分为了调查数据和政府数据。

2、整理数据

整理数据就是对观察、调查、实验所得来的数据资料进行检验与归类。得出能够反映总体综合特征的统计资料的工作过程。并且,对已经整理过的资料(包括历史资料)进行再加工也属于统计整理。

3、呈现数据

当数据收集充分且真实过后,研究者可运用数据,但要清楚的说明数据来源以及如何对原始的数据进行加工的。需要尽可能的描述获取数据的过程,提供足够多的细节,以便同行能重复研究过程,并保障原生作者的创作性。

通过数据进行分析的论文用数据是数学方法。

数据分析方法:将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系。

此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

数据分析目的:

数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。

这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。

如果研究一个X或多个X对Y的影响关系,其中Y为定量数据,可使用线性回归分析,构建回归模型。如果研究一个X或多个X对Y的影响关系,其中Y为定类数据,可使用Logistic分析,构建Logistic回归模型。如果要分析1组X与一组Y之间的关系情况,可使用典型相关分析。如果要分析多个X与多个Y之间的影响关系情况,且样本量较小(通常小于200),可使用PLS回归分析。

毕业论文数据处理的方法有哪些

我在这里想总结一下在做毕业论文过程中关于“如何进行文献整理以及数据处理”的经验。数据录入:1. 在施测之前,就要对变量的排列有总体的规划,尽量每一次施测的变量排序一致,那样以后录入时才不会混淆;2. 数据录入时,往往用的是数字代码,此时务必做好各个代码所代表的含义的备份,建议用记事本保持,以防时间长了遗忘,带来不必要的麻烦;数据处理:1. 务必做好数据备份,对不同的转换,建立不同的文档;2. 建立数据处理日志,以防当你的数据处理逐渐增多、数据有所转换之后不至于混淆,以及方便进行数据回述和检查;3. 建立“数据”和“结果”文件夹,分开保存数据和处理结果,避免不必要的混乱;4. 在給数据处理的程序命名时,建议按照处理顺序写上“序号.程序处理名称”,如“1.频数分析”、“2.因素分析”,这样可以一目了然地了解你的数据处理过程和数据处理内容;5. 保存具有代表性的数据处理的程序,这样做的好处是,一方面日后进行相同的数据处理时可以直接“copy”“paste”,很方便;另一方面也避免时日一长遗忘了部分程序;文献整理:1. 所收集的中外文献卷帙浩繁,建议保存文件名包括一下内容:“年份.序号.标题”;如“ ”、“ ”;2. 对所有收集的文献进行归类整理,分别放置于不同的文件夹;3. 有时你需要对外文文献摘要整理和翻译,此时建议你把摘要保存于当前文献所在的文件夹;或者专门建立“摘要整理/翻译”文件夹,以保存各类专题的摘要翻译,以防文献一多便混乱了,想要的时候找不到;4. 外文文献摘要整理文件名格式:“摘要整理.专题名.整理日期”。

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

1.答:一、调整好自己的心态 (一)正确理解撰写毕业论文 本科毕业论文的撰写是我们在大学四年学习的一个总结,也就是给我们大学生活一个完美的句号。所以,应该抱着愿意、敬畏的...2.答:大四狗最近刚刚定稿,这个问题应该是每一个大四人的痛了。要解决这个问题,可以问自己几个...3.答:第一:继续努力,修改论文 论文没过肯定是有原因的,和指导老师沟通一下存在的问题!如果...4.答:实在写不出也没办法,临时抱佛脚也没用,只能做好最坏打算了。查看更多

?如果处理不出来会有以下几种可能:1、请求导师帮助,让导师帮忙分析、探索或建议相关的处理思路。2、请教同行、老师或同学的帮助,看是否有人有经验可以分享。3、多查阅参考资料,看看有哪些方法可以用来有效地处理这些数据。 4、放弃原定的处理方法,采用更合理、更可行的办法来处理,比如,使用一些已有的统计应用软件,将数据分析、处理更加容易。

毕业论文统计分析方法有哪些

论文分析方法有哪几种

论文分析方法有哪几种,随着时间的流逝,新的毕业季即将来临,而论文写作也是毕业生们不得不过的关卡,只有论文通过了才能顺利拿到毕业证,走向社会。现在我就跟大家分享下论文分析方法有哪几种,希望能给毕业生带来帮助!

论文分析方法有哪几种

调查法

调查法是科研中最常见的方式 之一,这是有目地、有方案、有系统化收集相关科学研究目标现实情况或历史状况的原材料的方式 ,调查方法是科研中常见的基础研究法,它灵活运用历史时间法、观察等方式 及其谈话内容、问卷调查、个案研究、测试等科学研究方法,对文化教育状况开展有方案的、缜密的和系统软件的掌握,并对调研收集到的很多材料开展解析、综合性、较为、梳理,进而为大家出示周期性的专业知识。

观察法

观察法就是指学术研究依据一定的科学研究目地、科学研究大纲或观查表,用自身的感观和辅助软件去立即观查被科学研究目标,进而得到材料的一种方式 ,科学研究的观查具备功利性和目的性、针对性和精确性,在科学试验和调查报告中,观察具备以下好多个层面的功效:

①扩张大家的'感性认识

②启迪大家的逻辑思维

③造成新的发觉

实验法

实验法是根据主支转型、操纵科学研究目标来发觉与确定事情间的因果关系联络的一种科学研究方式 。

其关键特性是:

第一、积极变革性观查与调研全是不在干涉科学研究目标的前提条件下来了解科学研究目标,发觉在其中的难题,而试验却规定积极控制试验标准,人为因素地更改目标的存有方法、转变全过程,使它听从于科学认识的必须。

第二、分区规划科学试验规定依据科学研究的必须,依靠各种各样方式 技术性,降低或清除各种各样将会危害科学研究的不相干要素的影响,在简单化、提纯的情况下了解科学研究目标。

第三、因果性试验以发觉、确定事情中间的因果关系联络的合理专用工具和必需方式。

论文分析方法有哪几种

文献研究法

文献研究法是依据一定的科学研究目地或课题研究,根据调研参考文献来得到材料,进而全方位地、恰当地掌握把握所需科学研究难题的一种方式 。文献研究法普遍用以各种各样课程科学研究中,其功效有:

①能掌握相关难题的历史时间和现况,协助明确课题研究。

②能产生有关科学研究目标的一般印像,有利于观查和浏览。

③能获得实际材料的较为材料

④有利于掌握事情的全景

实证分析法

实证分析法是科学探究科学研究的一种独特方式,其根据目前的科学研究基础理论和实践活动的必须明确提出设计方案,运用仪器设备和机器设备,在当然标准下,根据有目地有步骤地控制,依据观查、纪录、测量与其相随着的状况的转变来明确标准与状况中间的逻辑关系的主题活动,关键目地取决于表明各种各样自变量与某一个因变量的关联。

定量分析法

定量分析法在科研中,根据定量分析法能够使大家对科学研究目标的了解进一步精确化,便于更为科学研究地表明规律性,掌握实质,梳理关联,预测分析事情的发展趋向。

定性分析法

定性分析法就是说对科学研究目标开展"质"的层面的解析,具体地说是应用梳理和演译、解析与综合性及其抽象性与归纳等方式 ,对得到的各种各样原材料开展逻辑思维生产加工,进而能去伪存真、去其糟粕、由此及彼、由浅入深,超过了解客观事物、表明本质规律性。

作用分析法

作用分析法是人文科学用于解析社会问题的一种方式 ,是社会调研常见的统计分析方法之一,它根据表明社会问题如何考虑一个社会发展系统软件的必须(即具备如何的作用)来表述社会问题。

模拟法(实体模型方式 )

模拟法是先按照原形的关键特点,构建一个类似的实体模型,随后根据实体模型来间接性科学研究原形的一种描述方式 ,依据实体模型和原形中间的类似关联,模拟法可分成物理学仿真模拟和数学模拟二种。

一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。

相关百科

热门百科

首页
发表服务