《固体电子学研究与进展》 既是中文核心期刊,也是中国科技核心期刊。是双核心期刊,算是国家级核心期刊。
这方面的期刊有:1.《固体电子学研究与进展》《固体电子学研究与进展》由南京电子器件研究所主办。办刊宗旨是面向21世纪固体物理和微电子学领域的创新性学术研究。刊登的主要内容为:无机和有机固体物理、硅微电子、射频器件和微波集成电路、微机电系统(MEMS)、纳米技术、固体光电和电光转换、有机发光器件(OLED)和有机微电子技术、高温微电子以及各种固体电子器件等方面的创新性科学技术报告和学术论文,论文和研究报告反映国家固体电子学方面的科技水平。2.《中国邮电高校学报》(英文版)是由六所高校(北京邮电大学,南京邮电大学,吉林大学、重庆邮电大学,西安邮电学院,及石家庄邮电职业技术学院)于1994年联合创办, 北京邮电大学主办的国内外公开发行,以“信息学科”为特色的学术性科技核心期刊。现为季刊,大16开。主要刊载通信与信息系统、信号与信息处理、自然语言处理、高等智能、计算机软件与理论、计算机应用技术、电磁场与微波技术、微电子学与固体电子学、控制理论与控制工程等相关基础技术领域的学术论文、研究报告、综述以及学位论文等。它是以促进学术交流,推动技术创新,实现通信现代化和科学技术进步为宗旨。如果我的回答能帮到你一点点,请及时采纳。
是核心的级别。可以发评副高或者是高职的文章。
无线电电子学、电信技术类核心期刊表1、电子学报 2、半导体学报 3、通信学报 4、电波科学学报 5、北京邮电大学学报 6、光电子、激光 7、液晶与显示 8、电子与信息学报 9、系统工程与电子技术 10、西安电子科技大学学报 11、现代雷达 12、红外与毫米波学报13、信号处理 14、红外与激光工程 15、半导体光电 16、激光与红外 17、红外技术 18、光电工程 19、电路与系统学报 20、微电子学 21、激光技术22、电子元件与材料 23、固体电子学研究与进展 24、电信科学 25、半导体技术26、微波学报 27、电子科技大学学报 28、光通信技术 29、激光杂志 30、光通信研究 31、重庆邮电学院学报.自然科学版(改名为:重庆邮电大学学报.自然科学版)32、功能材料与器件学报 33、光电子技术 34、应用激光 35、电子技术应用36、数据采集与处理 37、压电与声光 38、电视技术 39、电讯技术 40、应用光学 41、激光与光电子学进展 42、微纳电子技术 43、电子显微学报
都是中文核心期刊。电力电子技术 电子学报电子与信息学报系统工程与电子技术西安电子科技大学学报 固体电子学研究与进展 电子科技大学学报电子技术应用激光与光电子学进展微纳电子技术微电子学与计算机量子电子学报核电子学与探测技术电力电子技术
《固体电子学研究与进展》 既是中文核心期刊,也是中国科技核心期刊。是双核心期刊,算是国家级核心期刊。
几乎没有好投中的
现代电力电子技术浅探电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域--电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。一、电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。1、整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。2、逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。3、变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。二、电力电子技术的应用1、一般工业工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。2、交通运输电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。4、电子装置用电源各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。5、家用电器照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。6、其他不间断电源(UPS)在现代社会中的作用越来越重要,用量也越来越大,在电力电子产品中已占有相当大的份额。航天飞行器中的各种电子仪器需要电源,载人航天器中为了人的生存和工作,也离不开各种电源,这些都必需采用电力电子技术。传统的发电方式是火力发电、水力发电以及后来兴起的核能发电。能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。其中太阳能发电、风力发电的发展较快,燃料电池更是备受关注。太阳能发电和风力发电受环境的制约,发出的电力质量较差,常需要储能装置缓冲,需要改善电能质量,这就需要电力电子技术。当需要和电力系统联网时,也离不开电力电子技术。为了合理地利用水力发电资源,近年来抽水储能发电站受到重视。其中的大型电动机的起动和调速都需要电力电子技术。超导储能是未来的一种储能方式,它需要强大的直流电源供电,这也离不开电力电子技术。核聚变反应堆在产生强大磁场和注入能量时,需要大容量的脉冲电源,这种电源就是电力电子装置。科学实验或某些特殊场合,常常需要一些特种电源,这也是电力电子技术的用武之地。以前电力电子技术的应用偏重于中、大功率。现在,在1kW以下,甚至几十W以下的功率范围内,电力电子技术的应用也越来越广,其地位也越来越重要。这已成为一个重要的发展趋势,值得引起人们的注意。总之,电力电子技术的应用范围十分广泛。从人类对宇宙和大自然的探索,到国民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。这也激发了一代又一代的学者和工程技术人员学习、研究电力电子技术并使其飞速发展。电力电子装置提供给负载的是各种不同的直流电源、恒频交流电源和变频交流电源,因此也可以说,电力电子技术研究的也就是电源技术。电力电子技术对节省电能有重要意义。特别在大型风机、水泵采用变频调速方面,在使用量十分庞大的照明电源等方面,电力电子技术的节能效果十分显著,因此它也被称为是节能技术。
:随着电子技术、通信技术的快速普及和发展,军事领域已经引入了现代化、自动化的战斗设备,因此电子对抗成为了信息化背景下的一个新型战场。下面是我整理的电子对抗技术论文,希望你能从中得到感悟!
电子对抗中通信技术研究
摘 要:随着电子技术、通信技术的快速普及和发展,军事领域已经引入了现代化、自动化的战斗设备,因此电子对抗成为了信息化背景下的一个新型战场。电子对抗中,各个计算机设备之间的通信传输最薄弱,最容易受到攻击,经过多年的实践和研究,电子对抗中的通信技术已经诞生了自适应技术、跳频技术、差错控制技术、分集技术,同时为了能够更好地进行数据传输,未来电子对抗通信技术将逐渐向窄带、融合等方向发展,提高电子对抗的有效性。
关键词:电子对抗;通信;跳频;差错控制
中图分类号:TN97 文献标识码:A
电子对抗又被称为电子战斗或电子斗争,敌对双方可以使用电子技术设备、器材进行电磁斗争。电子对抗可以破坏、削弱敌方的电子设备应用成效,保证己方电子设备的综合利用。电子对抗起源于20世纪初,在两次世界大战中均得到应用,比如干扰对方通信网络。电子对抗的具体项目包括电子侦查、电子进攻和电子防御,电子侦查可以实现情报侦察和支援侦察;电子进攻可以实现电子干扰和电子摧毁;电子防御包括反干扰、反侦察等功能。电子对抗技术性强、时效性强、针对性强,贯穿了信息化作战的整个过程。
信息化战争中,所有的电子设备之间的信息共享、命令传输均采用通信技术,利用短波、微波、中波等传输信息和指挥命令,并且由于通信技术自身特点,其也是电子对抗中最容易受到破坏的地方。通信技术覆盖范围广、设备接入种类多、组网结构较为复杂,通信传输非常容易受到干扰因素影响,比如电磁辐射、多径时延、幅度衰落等,因此为了提高电子通信抗干扰能力,确保数据传输安全,不被敌方窃取、破坏和篡改,许多的通信学家对其进行了研究,提出了自适应技术、分集技术、跳频技术和差错控制技术等抗干扰措施,可以有效地提升战场通信的可靠性,确保战场数据的传输质量。
1.电子对抗中通信技术应用现状
通信对抗是电子对抗在通信领域中的一个分支,通信对抗主要内容包括通信干扰、通信侦查、通信抗干扰等方面,通信对抗的主要目的是接收和破译敌方密码,获取敌方的军事部署信息;获取通信传输相关的战术参数,掌握敌方的军力部署、作战指令等情报信息。通信对抗可以造成敌方的设备通信暂时失效,从而导致军事指挥系统部分或完全瘫痪,抑制对方的军事行动,保证我方军事通信系统的有效性。
军事设施通信收发地相距较远,因此信息传递中保密性、安全性、干扰性方案较为复杂,因此通信对抗过程中,需要提高电子通信的抗干扰能力,保证我方电子通信的可靠运行,目前常用的电子通信对抗技术包括自适应技术、跳频技术、差错控制技术和分集技术。
自适应技术
军队电子通信传输过程中,自适应技术可以提高通信传输的抗干扰能力,通过自动化地优化通信系统的传输频道、结构和参数,可以根据战场通信环境的变化动态地改变通信传输信号,以便能够提高战场通信的抗干扰能力。自适应技术可以动态分析战场通信的链路质量,根据实际通信传输质量扫描多个信道,参考天气状况、太阳离子、经纬度变化、敌方干扰情况进行优化,发布LQA信号探测命令之后,可以为战场通信自动选择合适的通信频率,构建一个最优化的通信链路,自动地将通信内容切换到最佳频道上,改善军事通信过程存在的信号衰落情况,提高军事通信抗干扰能力,保持一个较好的通信传输质量。
跳频技术
跳频是军队通信传输最常用的扩频方式之一,通信双方可以利用一定的规律实现载波频率的随机跳变。从时域方面来看,跳频信号是一个多频率的频移键控信号;从频域方面看,跳频信号的频谱是在一个很宽的频带上利用不等间隔随机跳变的。其中,跳频控制器是核心的部件,其可以采用伪随机码、多频频移键控等模式改变载波信道,在一定范围内实现通信信号的跳变、同步和自适应控制,控制数据发送和接收。军事通信采用跳频技术,可以保证通信信道的隐蔽性,敌方很难发现跳频规律,就无法截获通信传输内容。跳频通信具有较强的抗干扰能力,即使通信频带的部分频点被干扰,用户依然可以在其他频点上进行正常地通信传输,由于跳频通信系统是一种瞬时窄带系统,易与其他的战场通信系统兼容,因此非常有利于军事部署使用。
差错控制技术
军事通信涉及部门、设备较多,因此承载的业务数量也是海量的,受到敌方攻击、自然条件的影响非常大,电子对抗非常容易造成通信传输存在乱码和错码现象,数据传输过程中自身也会发生丢包现象,因此为了保证通信传输的准确度,需要采用差错控制技术。差错控制技术经过多年的使用和改进,已经诞生了自动重发请求、前向纠错技术和混合纠错技术,这些技术可以大大地提升数据信息、控制命令的传输精确度。电子对抗通信传输采用自动重发请求是指当某一个军事部门接收到数据包之后,其可以对其进行验证是否存在错误,如果存在错误,则可以自动地请求发送方重新发送数据包。同时,为了能够提高数据通信和差错控制效率,如果接收方收到的错误码元较少,可以自行采用前向纠错技术改正错误的码元,将其调整为准确的信息包。混合纠错就是集成了前向纠错和自动重发请求的优点,可以快速化地、有效地对错误码元进行改正,保障通信传输的时效性、准确性和完整性,进一步提升军事通信应用成效。
分集技术
军事通信应用环境非常复杂,通信信道也会根据不同的传输距离存在衰落情况,有的信道具有较强的传输信号、有的信道传输信号则非常弱,因此为了保证信道传输信号的质量,可以利用分集技术,有条件地选择、组合信息传输通道,补偿衰落信道传输时造成的损耗,并且可以使两个或更多的接收天线均衡传输信号。军事通信环境中,各个通信设备均可以采用分集技术,可以从空间、时间、频率和角度等方面进行分集,分集技术可以选择不同的信道,将其组合在一起,并且不需要增加无线发射机、接收机的传输功率和带宽,可有效地改善军事环境无线通信的传输质量。
2.电子对抗中通信技术未来发展趋势 近年来,随着通信技术在电子对抗中的应用和改进,战场通信采用的对抗措施也越来越多,由于战场通信环境日趋复杂,传统的抗干扰技术已经逐渐不能适应现代战争需求,因此电子对抗中通信技术发展呈现出以下趋势:
(1)融合多种自适应技术,改进通信传输质量。军事电子对抗涉及的硬件、软件和传输资源非常多,因此采用的自适应技术具体措施也非常多,单一的自适应技术无法最大程度地提升军事通信质量,可以采用融合传输技术,整合多种自适应技术,形成一个集成的军事通信系统。军队通信时可以将智能天线、多输入多输出、空分编码、软件天线、软件无线电和数字波束成型技术进行整合,形成一个全自动化的军队通信传输系统,进一步改进和提高通信抗干扰能力。
(2)通信抗干扰技术从低速窄带向高速宽带发展。军队通信传输系统承载的业务增多,传输数据也亟需较高的速率和带宽,因此通信抗干扰技术也需要从窄带向高速宽带发展迈进,以便能够延长前向纠错长度、加入较多密码保护码元,可以大幅度提高通信传输的抗干扰性能,满足军队多业务高速率传输带宽需求。
(3)军事通信传输跳频码序列优化。跳频抗干扰技术可以采用伪随机码,比如Gold序列码、Walsh序列码、M序列码等技术。为了更好地防止军事通信由于跳频技术自身缺陷等而被黑客、病毒、木马攻击,可以引入非线性动力学混沌理论、模拟退火思想、机器学习算法等优化序列编码,寻找一个更好的跳频序列码,以进一步提升军事通信抗干扰能力。
(4)军事通信抗干扰技术可视化、智能化。军事通信已经随着软件设计、电子器件开发技术的提升向前迈进,军事通信抗干扰监控过程中引入了先进的数字化、可视化技术,这样就可以把干扰信号发生的时间、频段等进行定位,以利于干扰抑制军事通信信号精准识别,选择干扰较低或无干扰的频段进行军事通信传输。
结语
通信对抗可以使用专业的侦察设备、干扰设备等搜寻、定位、识别、截获敌方战场的相关传输数据,也可以干扰对方的通信传输,造成敌方通信系统瘫痪,直接打击敌方的军事部署。因此,为了提高通信传输的抗干扰能力,人们针对通信对抗提出了抗干扰措施,利用自适应、跳频、差错控制和分集技术等实现阻拦式干扰、瞄准式干扰,显著提高通信传输质量和能力,保证战场通信设备正常、可靠和安全地运行。
参考文献
[1]陈超.自适应跳频技术在通信对抗中的应用研究[D].南京邮电大学,2014:1-7.
[2]赵鹏,庞天杰.信息战电子对抗中大数据引导通信优化仿真[J].计算机仿真,2015,32(1):15-18.
[3]张健.电子对抗环境下飞行器测控通信技术的发展[J].太赫兹科学与电子信息学报,2006,4(2):81-88.
[4]白春惠,赵凌伟.数据链网络通信对抗技术及试验系统研究[J].无线电工程,2014,10(6):63-65.
雷达电子对抗新技术探讨
0 前言
所谓雷达电子对抗,具体指的是以雷达充当探测传感头的探测以及武器作战系统的相关电子技术。随着现代化科学技术的迅猛发展,雷达电子对抗在诸如压制式干扰、欺式干扰以及组合式干扰等现有电子对抗技术基础之上又有新的进展。纵观当今雷电电子对抗发展现状,结合国外雷达电子战一体化趋势,对雷达电子对抗新技术进行深入分析和探讨具有重要意义。针对雷达电子战一体化进行合理性分析,同时对超宽带雷达今后发展趋势进行展望,提炼出新的雷达电子对抗技术和作战方式,并且极有可能在今后与雷达对抗中获得验证和普遍应用。
1 雷达电子对抗新技术分析
由于普通的雷达数据链和雷达传感器不能满足信息侦查传递的要求,九十年代,美国研发出雷达通用数据链,通用数据链除了在控制组织之间传递交换更多的数据之外还能将侦察机所获取的大容量信息传递到控制中心,雷达通用数据链是用于监视侦查抗干扰的通信传感器,是用于平台和地面终端的通信设备,当国防部队或是政府等高端机构需要秘密情报时,就可以采用侦察机的雷达通用数据链来传递信息情报,很多国家的国防部都需要通用数据链作为网络中心传感器和地面终端的传输纽带,通用数据链主要有五大类数据链路组成,一类是地面平台八万英尺高的通信平台,第二类是高于第一类七万英尺的空中平台,第三类的空中平台高度有五十万英尺,第四类和第五类恶毒数据链路属于卫星的运作链路,一类用于七百五十海里的轨道的卫星运行,另一个运用在更高高度的卫星运行。
相干噪声干扰
以往的噪声干扰主要有两种方式,分别是非相关宽带阻塞式干扰以及测频瞄准式窄带阻塞式干扰,最为显著的特点体现在其与雷达信号之间并不具备任何联系。正是因为非相干噪声信号和雷达目标回波信号之间不具备联系,因此,在雷达信号的处理过程中,极有可能造成这样一种后果,即:相比较于噪声而言,回波处理有所增加。通过适当的增加噪声干扰功率可以确保干扰效果,此外,为了实现对能量的充分利用,需要选择瞄准式干扰。假如选择相干噪声干扰,就不能使雷达信号处理增益有所增加,此时所需要的噪声干扰功率也相对不高,并且因为所选择的是相干噪声,具备精确瞄频信号,因此,可以确保对噪声干扰能量进行充分有效的利用。相干噪声干扰属于转发式噪声范畴,在完成雷达信号的接收之后,对其进行相应的噪声调制处理,再将经过处理的雷达信号进行转发,这样包括连续波在内的诸多种波形形式均可以得到实现。与之前的噪声干扰相比较而言,相干噪声干扰所需要的干扰能量十分有限,由此可以推断出,在干扰能量一样的情况下,相干噪声干扰所作用的距离可以达到更远。
传统的噪声干扰是采用非相干宽带阻塞式干扰或测频瞄准式窄带阻塞式干扰,其一大特点是与雷达信号不相关。正由于非相干噪声信号与雷达目标回波信号是非相干的在雷达如机载火控雷达和导弹末制导雷达的信号处理中,对回波的处理增益相对噪声来说就可 能会变大,大约可增加十几dB。为了达到较好的干扰效果,就必须加大噪声干扰的功率, 同时为了有效的利用能量,需要采用瞄准式干扰。
对单脉冲雷达的角度欺干扰
根据单脉冲雷达工作机理,可以确定其抗角度欺干扰的性能十分优越,这也在一定程度上促使其近些年来保持迅猛的发展态势,并且影响范围越来越广,特别是在导弹控制以及雷达引导等方面,其应用日益普遍。有关干扰单脉冲雷达技术的研究最初始于上世纪五十年代,六十年代开始部署战术自卫干扰系统,随后得到美国及前苏联的关注,展开了一系列的试验,并取得了相应的成果。我国在此领域经过十几年的研究,也已经取得初步成果,积累了一定的经验,但在干扰效果有效方式方面较为欠缺。结合单脉冲雷达特点,在干扰技术的设计方面要注意以下几点:1)针对雷达设计以及制造方面存在的不足,选择闪烁干扰或者是间断干扰等;2)结合雷达工作基本原理,选择交叉极化干扰或者是交叉眼干扰等;3)选择有源诱饵假目标。
首先,交叉极化干扰。所谓交叉极化干扰,主要指的是干扰信号与雷达回波,在极化方向上是互相垂直的。针对幅度单脉冲雷达而言,交叉极化干扰会导致相反的误差信号,这样就可以达到单脉冲雷达角跟踪能力彻底消失的效果;对于相位单脉冲雷达而言,交叉极化干扰会导致误差信号出现畸变的后果。在交叉极化干扰不存在的情况下,雷达主波束相位波前不会发生变化,在存在交叉极化干扰的情况下,天线瞄准轴位置的相位波前会出现一百八十度的相移。交叉极化干扰有两大要求,其一就是可以实现对雷达所发射的信号的极化进行准确的测量;其二就是具备对正交极化信号的转发功能,交叉极化欺干扰框架示意图详见下图所示。
交叉极化正交性还可以根据输入的信号极化对天线极化进行调整,新阿红极化参数和天线极化信号的生成并不是必备条件。
其次,交叉眼干扰。在本体上进行设备设置,所设置的两组设备需要具备一致的收发信号通路,同时还要确保在走向上是互相交叉的。在设备接收机捕获到单脉冲雷达信号后,会通过发射天线将其辐射出去,如果在作用雷达处的信号保持一百八十度的相位差,并且幅度比与一接近的情况下,所导致的后果将是单脉冲雷达探测本体等效位置中心出现明显偏置,这样会造成单脉冲雷达跟踪与本体相偏离。而只有可以确保单脉冲雷达在本体两套设备连接天线的法向中心线的交叉眼干扰才可以称之为有效。
之前的交叉眼干扰对相对位置关系以及相位差条件的要求较为严格,从而在一定程度上对其广泛应用造成限制。随着现代化科学技术的迅猛发展,雷达电子战技术也取得长足发展,使得我们有条件对交叉眼干扰进行改进和完善。当前,发达国家正在积极致力于定位准确、识别性格优越的雷达告警及侦察设备的相关研究,可以预见不久,借助本体向交叉眼干扰设备提供辐射源也就是雷达精确位置信息将成为现实。一旦交叉眼干扰设备具备了此种性能,角度欺可信度将会极大的提升,与此同时,借助对实时反馈信息的研制,设备状况也会有所改善,从而向辐射源偏离本体提供引导。这边是依托于辐射源定位实时校准的自适应引导交叉眼干扰。
对宽带及超宽带雷达的干扰
脉冲压缩波形雷达是宽带及超宽带信号的主要适用范围,其中主要涉及脉压雷达、SAR以及ISAR等。其中,脉压雷达由于具备超宽带线性调频信号,因此其距离分辨率相对较高;SAR以及ISAR雷达成像主要依赖于提升距离维以及角度维的分辨率,而雷达的距离维与角度维在数据方面存在一定关系,简单的说,只需要干扰距离维,将会导致成像功能失效的后果,SAR以及ISAR采取脉冲压缩体制实现距离维探测,所以,对SAR以及ISAR成像干扰便可以视为脉冲压缩雷达干扰。按照脉压雷达体制的相关规定,线性调频、脉间频率步进以及相位编码信号是比较具有代表性的几种信号形式。从本质上讲,脉间频率步进雷达波形就是线性调频信号的脉间离散化形式,所以,其同样具备线性调频信号距离特性。
线性调频脉压雷达抗噪声干扰能力及抗欺干扰性能均十分优越,一旦遇到噪声干扰信号,雷达信号处理机制与信号相匹配,这样,滤波器将会输出更大的信干比。为确保有效的噪声干扰,需要保持雷达接收机输入端干扰信号功率强于回波信号功率,但依据目前技术水平,实现起来还存在一定难度。通过增加多抽头延时网络的可变加权系数,可以导致幅度调制效应,这样所得到的干扰信号具备欺性压制干扰效果。
2 结语
综上所述,随着现代化科学技术的迅猛发展,雷达电子对抗在诸如压制式干扰、欺式干扰以及组合式干扰等现有电子对抗技术基础之上又有新的进展。在研究电子对抗以及雷达电子战一体化技术的过程中,发现通过相干噪声得到性能较高的干扰技术手段只需要付出极小的代价;在单脉冲雷达角度欺干扰方面,大功率交叉极化干扰以及对来袭目标进行实时校准判定的交叉眼干扰极具发展空间;宽带及超宽带雷达干扰具有一定难度和挑战性,比较有效的方式就是利用复合式干扰。
参考文献:
[1]晁磊,基于雷达对抗研究的电子对抗仿真系统设计与实现,华中科技大学,2011,01.
[2]李丹、童天爵、毛少杰、闵荣宝,雷达网电子对抗仿真及雷达自卫距离的修正,系统仿真学报,2006,05.
[3]贾蒙、李辉、沈莹、张安,机载雷达电子对抗系统的仿真,火力与指挥控制,2010,04.
本文将介绍国外在固态电池的发展现状:
日本:
2018年7月,日本国立研究机构——新能源产业技术综合开发机构(NEDO)宣称,日本部分企业(包括丰田、松下等23家 汽车 、电池和材料企业)及15家学术机构将在未来5年内联合研发电动车全固态锂电池。目前第二阶段固态锂离子电池研发项目已经启动,预计将投资100亿日元(约合人民币亿元)。
在整车厂商的研究进展方面,丰田 汽车 凭借雄厚的技术经验积累处于领先地位:2018年9月,丰田披露了其全固态电池的框架,并计划于本世纪20年代初实现商业化。
丰田全固态电池基础就是降低固态电池内电阻的技术。凭借该技术,丰田将全固态电池的能量输出密度(按照体积)提高至约。同时,成功将能量密度提高至400Wh/L,比2010年左右生产的锂离子(Li-ion)电池的能量密度高一倍。
但是目前丰田的全固态电池的性能远远比不上现有的锂离子电池。因此,为了使固态电池可以尽早商业化,丰田正努力提高其性能。
韩国:
韩国企业选择抱团研发固态电池技术:
2018年11月消息,韩国三大蓄电池厂商LG化学、三星SDI和SKI将联手开发固态电池、锂金属电池和锂硫电池,此外,它们将成立一个规模1000亿韩元(约合9000万美元)的基金,来打造下一代电池产业生态系统。
三星SDI在2017年北美车展便已展出过固态电池和基于21700圆柱电芯的电池模组;LG化学本身在固态电池的研发上也有布局。
整车厂商现代 汽车 则选择投资材料技术公司——位于马萨诸塞州的初创固态电池材料企业Ionic Materials来布局固态电池,推动电池技术发展。有业内人士透露,现代正通过南阳研发中心(Namyang R&D Center)旗下的电池研发团队进行固态电池的研发,目前已取得一定的技术水平,预计2025年可实现固态电池量产。
德国:
德国政府在资金上给予了固态电池研发工作支持。
据外媒报道,为了减少德国车企对于中日韩电池供应商的依赖,德国总理默克尔将计划拨发10亿欧元用于支持德国的一家电池生产商,同时也将资助一家电池研发机构,用于开发下一代的固态电池。
宝马:宝马一方面在自建电芯研发中心,研发固态电池技术并有望于2026年实现固态电池突破性进展并随后量产。另一方面,宝马也积极和Solid Power在固态电池方面深度合作,快速提升电池研发能力。
大众:老牌 汽车 厂商大众此前宣布将计划自主生产固态电池,可能从2024或2025年开始批量生产,工厂或将建在欧洲或德国。此外,大众还获得了美国外国投资委员会(CFIUS)的许可,同意其向电池技术公司-QuantumScape投资1亿美元成为QuantumScape最大股东,增持股份。QuantumScape拥有200多项固态电池技术专利和专利申请量,这将为大众研发固态电池提供强有力的帮助。目标在2025年前建立固态电池生产线。
美国:
2018年10月,菲斯克宣称其新款固态锂电池充电仅需9分钟,并将实现量产。此后,该公司的固态电池技术获得了重型机械制造商卡特彼勒(Caterpillar)的投资,但并未透露具体投资数额。菲斯克表示,正申请专利的菲斯克柔性固态电池的成本每千瓦时不到100美元,可用于建筑、储能、交通和采矿业。预计将于2018-2033年间实现商业化。
英国:
2018年10月,Ricardo宣布与4家机构/企业合作开展PowerDrive Line项目,目的是建立固态电池的预试验线,并为固态电池材料供应链开发流程。
项目合作方包括Ilika technologies公司、英国技术创新中心- Centre for Process Innovation、本田欧洲研发中心(Honda R&D Europe)以及英国伦敦大学学院(University College)。
澳洲:
2018年10月,澳洲马格尼斯资源有限公司(Magnis Resources Limited)宣布其合作伙伴C4V(Charge CCCV)已经生产出固态电池的原型。该原型电池容量目前为380Wh/kg和700Wh/L,预计进一步优化可达400Wh/kg和750Wh/L。该新型电池降低了生产成本,并且无需使用钴金属,减少了制约因素。
C4V计划将于2019年第二个季度开始商业生产。
若要看全球固态电池平均的进度,目前整个产业有一起向前的趋势,越来越多机构可以做出钮扣型或小型的样品,目前已有辉能和博洛雷两家可以量产固态电池。前景部分,若固态电池产能可以冲起来,基本上能够直接接手传统锂电池的市场。
hcufudysydyfufigivivibobobononoblnlboblblnlblblnlnlbbpblbkbkvjv
化学进展,美国化学会等。化学是自然科学的一种,在分子、原子层次上研究物质的组成、性质、结构与变化规律,创造新物质的科学。世界由物质组成,化学则是人类用以认识和改造物质世界的主要方法和手段之一。作为一门历史悠久而又富有活力的学科,那么发表该类的论文可投稿的化学期刊有哪些呢。《化学进展》(月刊)是由中国科学院基科学局、化学部、文献情报中心和国家自然科学基金委员会化学科学部共同主办,以开答化学领域综述与评论性文首为主的学术性期,读者可从中了解化学专业领域国内外研究动向,最新研究成里入发展超势。主要栏目有。综述与评论,专题论坛,科学基金,基础研究论文评介,动态与信息等。该刊可供化学及相关学科领域的科研、教学、决策管理人员及大学生、研究生阅读。《有机化学》(月刊)创刊于1980年,由中国化学会、中国科学院上海有机化学研究所主办,是中国自然科学核心期刊之一。集中反映有机化学领域里各分支学科新的研究成果、研究动态以及发展趋势,主要刊登有机化学领域基础研究和应用基础研究的原始性研究成果。
化学作为一个独立的学科存在已经很久了,所以相应的著作与书本都有很多,今天给大家介绍的是期刊杂志。我在这里整理了10种化学期刊杂志相关资料,希望能帮助到您。
著名的10种化学期刊杂志
1,Science
创刊于 1880年,创办人是电灯的发明人、鼎鼎大名的科学家 — 托马斯·爱迪生 (Thomas Alva Edison)。Science 周刊每星期都以高超的编辑手段,向世界各地的订户提供两种不同的科学信息:该星期有关科学和科学政策的最重要的新闻报道以及报告全球科学研究最显著突破的精选论文。它的科学新闻报道、综述、分析、书评等部分,都是权威的科普资料,该杂志也适合一般读者阅读。
2, Nature
创刊于1869年, 一共有十一种刊物在Nature 这个大家族里:周刊Nature;月刊Nature Genetics(1992创刊);Nature Structural Biology (1994创刊);Nature Medicine (1995创刊); Nature Biotechnology(1996创刊);Nature Neuroscience (1998创刊);Nature Cell Biology (1999创刊);Nature Immunology (2000创刊);及另外三份综述性期刊Nature Reviews Genetics, Nature ReviewsMolecular Cell Biology and Nature Reviews Neuroscience (2000创刊)。nature宗旨在于将科学发现的重要结果介绍给公众,让公众尽早知道全世界自然知识的每一分支中。nature主要报道科学世界中的重大发现、重要突破为使命,要求科研成果新颖。
3, Chemical Reviews
创刊于1924年,宗旨在于发表广泛,专业,可读性强的研究成果,这些工作涉及各个化学领域,主要是某一领域内的综合性的批判性的评论,而非原创研究。该期刊为月刊,它从1985年也开始在每期发表有关某一主题或方向的研究综述,每个主题都会有若干篇相关的评论。
4, The Journal of the American Chemical Society
. 创刊于1879年,是the American Chemical Society的旗舰刊物,在业界有极高的声誉。 .创刊的宗旨是想通过发表全世界化学领域最好的论文,来追踪化学领域的最新前沿,其中包括对一些重要问题的应用性方法论,新的合成方法,新奇的理论发展和有关重要结构和反应的新进展。主要发表科学论文,通讯,新书综述,及电脑软件综述。
4, Angewandte Chemie International Edition in English
创刊于1962年,该刊收录有简讯类文章(有时有小型综述), 主要分布在有机化学、生命有机化学、材料学、高分子化学这几块。
5,Chemical Society Reviews
创刊于1972年,化学综述类期刊。主要是约稿文章。相对来说Chemical Reviews往往可看作一部专著了,而chemicalsociety reviews更小巧精干,可读性强一些。
6, 化学学报
创刊于1933年,是我国创刊最早的化学学术期刊,1952年更名为《化学学报》,并从外文版改成中文版。刊载化学各学科领域基础研究和应用基础研究的原始性、首创性成果,涉及物理化学、无机化学、有机化学、分析化学和高分子化学等。本期刊为 SCI 收录成为国际核心期刊.
7, 化学进展
创刊于1989年,双月刊, 以刊登化学领域综述与评论性文章为主的学术性期刊。读者可从中了解化学专业领域国内外研究动向、最新研究成果及发展趋势。
8, Chinese Journal of Chemistry (中国化学)
1983 年创刊,1990 年改成目前名称,.刊载物理化学、无机化学、有机化学和分析化学等各学科领域基础研究和应用基础研究的原始性研究成果。以英文书写, 报导综合化学, 为 SCI 收录。
9,高等学校化学学报 (Chemical Journal of Chinese University)
1980 年创刊, 月刊.本学报是综合性学术刊物。以研究论文、研究快报、研究简报和综合评述等栏目集中报道我国化学学科及其交叉学科、新兴演算产边缘学科等领域中新开展的基础研究、应用研究和开发研究中取得的最新研究成果。 本期刊为 SCI 收录。
10, 大学化学 (University Chemistry)
创刊时间:1986年。2016年1月起改为月刊出版。主要介绍化学科学的新发展,开展与教学有关的重大课题的研讨,交流教学改革经验。报导化学及其相关学科的新知识、新动向,促进教师知识更新,扩大学生知识面,为提高教学水平服务。
化学最容易丢分的30个地方
1、排列顺序时,分清是“由大到小”还是“由小到大”,类似的,“由强到弱”,“由高到低”,等等。
2、书写化学方程式时,也要分清楚。
3、别忽视题干中“混合物”、“化合物”、“单质”等限制条件。
4、有单位的要写单位,没有单位的就不要写了。如“溶解度”单位是克,却不写出,“相对分子质量”、“相对原子质量”无单位,却加上“g”或“”。摩尔质量有单位()却不写单位,失分。
5、要求写“名称”却写分子式或其他化学式,要求写分子式或结构式却写名称。电子式、原子或离子结构示意图、结构简式、结构式不看清,张冠李戴。要求写离子方程式而错写成化学方程式。
6、所有的稀有气体都是单原子分子而误认为双原子分子。
7、273℃与273K不注意区分,是“标况”还是“非标况”,是“气态”还是“液态”“固态”不分清楚。的适用条件。注意三氧化硫、乙烷、己烷、水等物质的状态。区分液态氯化氢和盐酸,液氨和氨水,液氯和氯水。
8、计算题中往往出现“将样品分为两等份”(或“从1000mL溶液中取出50mL”),最后求的是“原样品中的有关的量”,你却只求了每份中的有关量。
9、请注意选择题“正确的是”,“错误的是”两种不同要求。请注意,做的正确,填卡时却完全填反了,要十分警惕这种情况发生。
10、求气体的“体积分数”与“质量分数”不看清楚,失分。
11、描述实验现象要全面,陆海空全方位观察。
12、表示物质的量浓度不写C(HCl),失分。
13、气体溶解度与固体溶解度表示方法、计算方法混为一谈。(标况下,将20L氨气溶解在1L水中,……)
14、表示离子电荷与元素化合价混为一谈。
15、原电池正负极不清,电解池、电镀池阴阳极不清,电极反应式写反了。
16、求“转化率”、“百分含量”混淆不清。
17、两种不同体积不同浓度同种溶液混和,总体积是否可以加和,要看题目情景和要求。
18、化学计算常犯错误如下:①分子式写错②化学方程式写错或不配平或配平有错③用关系式计算时,物质的量关系式不对,以上情况发生,全扣分④分子量算错⑤讨论题,缺讨论过程,扣相当多的分⑥给出两种反应的量,不考虑一反应物过量(要有判断过程)⑦要求写出计算规范过程:解、设未知量、方程式或关系式,计算比例关系、比例式主要计算过程、答、单位、有的题目还要写出推理过程,不要省略步骤,计算过程要带单位。注意题中对有效数字的隐性要求。
19、推断题。请注意根据题意,无机物、有机物均应考虑(全面,综合)。
20、要注意试题中小括号内的话,专门看。
21、回答简答题,一定要避免“简单化”,要涉及原理,应该有因有果,答到“根本”。
22、看准相对原子质量,Cu是还是64,应按卷首提供的用。
23、mA(s)+nB(g),pC(l)+qD(g)这种可逆反应,加压或减压,平衡移动只考虑其中的气态物质(g)的化学计量数。
24、配平任何方程式,最后都要进行“系数化简”。书写化学反应方程式,反应条件必须写,而且写正确。,氧化—还原反应配平后,得失电子要相等,离子反应电荷要守恒,不搞假配平。有机化学方程式未用“→”热化学反应方程式不漏写物质的聚集状态,不漏写反应热的“+”或“-”,反应热的单位是kJ?mol-1。
25、有机结构简式中原子间的连结方式表达正确,不要写错位。结构简式有多种,但是碳碳键、官能团不要简化,酯基、羧基的各原子顺序不要乱写,硝基、氨基写时注意碳要连接在N原子上。如,COOHCH2CH2OH(羧基连接错),CH2CHCOOH(少双键)等(强调:在复杂化合物中酯基、羧基最好不要简化)。化学用语中文名称不能写错别字。如,“酯化”不能写成“脂化”,“羧基”不能写成“酸基”。酯化反应的生成物不漏写“水”、缩聚反应的生成物不漏写“小分子”。错把环烯或环二烯、杂环(含非碳原子环)当作苯环。
26、遇到做过的类似题,一定不要得意忘形,结果反而出错,一样要镇静、认真解答,不要思维定势;碰到难题决不能一下子“蒙”了,要知道,机会是均等的,要难大家都难。应注意的是,难度大的试题中也有易得分的小题你应该得到这分。
27、化学考题难易结合,波浪型发展。决不能认为前面的难,后面的更难!有难有易,难题或较难题中一定有不少可以得分的地方,不可放弃。
28、解题时,切莫在某一个“较难”或“难”的考题上花去大量的宝贵时间,一个10分左右的难题,用了30多分钟甚至更多时间去考虑,非常不合算,不合理。如果你觉得考虑了几分钟后还是无多少头绪,请不要紧张、心慌,暂把它放在一边,控制好心态,去解答其他能够得分的考题,先把能解决的考题先解决。再回过头来解决它,找到了感觉,思维活跃了,很可能一下子就想通了,解决了。
29、解推断题,实验题。思维一定要开阔、活跃,联想性强。切不可看了后面的文字,把前面的话给忘了,不能老是只从一个方面,一个角度去考虑,应该是多方位、全方位进行考虑。积极地从考题中字字、句句中寻找出“突破口”。
6月24日上午,由中国化学会与英国皇家化学会主办、我校化学与环境学院承办的第一届Chem Soc Rev国际学术研讨会在我校新主楼第一报告厅举行,徐惠彬副校长、英国皇家化学会Chem Soc Rev编委会总编及部分委员、国内化学领域杰出专家、中科院化学研究所、清华大学、北京大学的师生代表参加了本次研讨会。 徐惠彬副校长在欢迎致辞中表示,随着国民经济的迅速发展以及材料科学和化学科学领域的不断进展,作为新兴学科的材料化学发展日新月异。北航与英国皇家化学会携手共同举办本次研讨会,对推进北航化学学科的学科建设,拓宽专业视野与研究领域,提高北航化学学科在国内外的研究实力和国际学术影响力将起到很好的促进作用。中国科学院院士、化学与环境学院院长江雷教授在致辞中表示,作为组织者我们非常荣幸地邀请有关英方和中方各位专家在北航进行研讨交流,分享化学、材料和生物化学的最新研究成果。研讨会的一个重要目的是促进两国之间的化学以及先进材料方面的学术合作。 英国皇家化学会Chem Soc Rev编委会总编Robert Eagling在致辞中表示,能来到北京参加此次两国化学会组织的学术交流会感到非常荣幸,并简单介绍了一下Chem Soc Rev期刊,希望大家关注CSR,CSR不仅是一本一流的化学领域的学术杂志,而且是英国化学和世界交流的重要平台。Robert希望在中国能够有更多的学者了解、关注和投稿。随后,中英两国的专家学者先后登台做了专题学术报告,共同研讨包括化学学科领域的前沿问题,探讨化学的前沿发展趋势及其在各个领域的应用。 Chem Soc Rev期刊为英国皇家化学会下的主要期刊,主要报道化学学科前沿科学领域相关研究进展,截至目前影响因子已达到。