一、教学方法类的,可选主题:1、如何促进优秀生数学成绩更加拔尖;2、如何转化数学后进生;3、复习课怎么上;4、如何提高学生计算能力;等等。二、具体教学内容:1、常见函数单调性的求法;2、如何提高解析几何解答题得分率;3、空间向量方法解决立体几何策略;4、概率统计主要问题分析;等等。三、也可结合同一年级正在讲的内容进行研讨。
有很多呀,我就分享几个教育进展这本期刊上的论题给你看看吧1、面向物理核心素养下《加速度》教学设计2、基于结构方程模型的大学生抑郁影响因素研究3、新时代持续加强高校思想政治教育的思考4、大数据背景下的民办高校教育信息化建设发展规划研究5、“双减”政策下,家校如何为学生“减负”“增识”6、从“国际化”到“本土化”:中外合作办学的发展历程研究
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
高中数学论文。。写微积分发展史就好了啊,如果要写解题思路或者公式的话就参考市面上有卖的高中数学杂志。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!
最全组合数学论文题目
1、并行组合数学模型方式研究及初步应用
2、数学规划在非系统风险投资组合中的应用
3、金融经济学中的组合数学问题
4、竞赛数学中的组合恒等式
5、概率 方法 在组合数学中的应用
6、组合数学中的代数方法
7、组合电器局部放电超高频信号数学模型构建和模式识别研究
8、概率方法在组合数学中的某些应用
9、组合投资数学模型发展的研究
10、高炉炉温组合预报和十字测温数学建模
11、证券组合的风险度量及其数学模型
12、组合数学中的Hopf方法
13、PAR方法在组合数学问题中的应用研究
14、概率方法在组合数学及混合超图染色理论中的应用
15、一些算子在组合数学中的应用
16、陀螺/磁强计组合定姿方法的相关数学问题研究
17、高中数学人教版新旧教材排列组合内容的比较研究
18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究
19、基于数学形态学-小波分析组合算法的牵引网故障判定方法
20、证券组合投资的灰色优化数学模型的研究
21、一些算子在组合数学中的应用
22、概率方法在组合数学中的应用
23、组合数学中的Hopf方法
24、概率方法在组合数学中的某些应用
25、概率方法在组合数学及混合超图染色理论中的应用
26、竞赛数学中的组合恒等式
27、Stern-Lov醩z定理及在组合结构中的应用
28、几类特殊图形的渐近估计及数值解
29、Fine格路和有禁错排
30、基于DFL的Agent自主学习模型及其应用研究
31、基于DFL的多Agent自动推理平台设计
32、预应力混凝土斜拉桥施工监控概率方法研究
33、最大概率方法与最近邻准则下的图像标注
34、亚式期权定价的偏微分方程方法和概率方法
35、编目空间碎片的碰撞概率方法研究及应用
36、基于概率方法的机器人定位
37、民用建筑内部给水设计秒流量的概率方法研究
38、图论中的组合方法和概率方法
39、物理概率方法预估贮存寿命研究
40、静载下结构参数识别的误差分析和概率方法
41、概率方法在组合计数证明中的应用
42、基于非概率方法的结构全寿命总费用评估
43、概率方法在组合数学中的应用
44、概率方法与邻点可区别全染色的色数上界
45、既有钢筋混凝土结构耐久性评定的概率方法
46、概率方法在多任务EEG脑机接口中的应用研究
47、应用概率方法对居住小区给水设计秒流量的推求
48、概率方法与图的染色问题
49、概率方法对居住小区设计秒流量的推求
50、概率方法在组合数学中的某些应用
51、概率方法在组合恒等式证明中的应用
52、遗传算法的研究与应用
53、基于空间算子代数理论的链式多体系统递推动力学研究
54、关于Weidmann猜想及具有转移条件微分算子的研究
55、实数编码遗传算法杂交算子组合研究
56、基于OWA算子理论的混合型多属性群决策研究
57、序列算子与灰色预测模型研究
58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究
59、高精度径向基函数拟插值算子的构造及其应用
60、多线性算子加权Hardy算子与次线性算子的相关研究
数学建模论文题目
1、高中数学核心素养之数学建模能力培养的研究
2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例
3、培养低年段学生数学建模意识的微课教学
4、信息化背景下数学建模教学策略研究
5、数学建模思想融入解析几何的实际应用探讨
6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例
7、基于高等数学建模思维的经济学应用
8、以数学建模促进应用型本科院校数学专业的发展
9、高等代数在数学建模中的应用探讨
10、融入数学建模思想的线性代数案例教学研究
11、以“勾股定理的应用”为例谈初中数学的建模教学
12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》
13、数学建模实例——河西学院校内充电站最佳选址问题
14、基于数学建模探讨高职数学的改革途径
15、大数据时代大学生数学建模应用能力的提升研究
16、“数学写作之初见建模”教学设计及思考
17、大学数学教学过程中数学建模意识与方法的培养简析
18、基于建模思想的高等数学应用研究
19、小学数学建模教学实践
20、依托对口支援平台培养大学生的数学建模能力
21、跨界研究在数学建模教与学中的应用
22、基于结构参数的机织物等效导热率数学建模
23、数学建模对大学生综合素质影响的调查研究
24、计算机数学建模中改进遗传算法与最小二乘法应用
25、数学建模在高中数学课堂的教学策略分析
26、发动机特性数字化处理与数学建模
27、数学建模中的数据处理——以大型百货商场会员画像描绘为例
28、数学建模竞赛对医学生 学习态度 和自学能力的影响
29、数学建模思想与高等数学教学的融会贯通
30、试论数学建模思想在小学数学教学中的应用
31、浅析飞机地面空调车风量测控系统数学建模及工程实施
32、高中数学教学中数学建模能力的培养——基于核心素养的视角
33、注重数学建模 提炼解题思路——对中考最值问题的探究
34、在数学建模教学中培养思维的洞察力
35、刍议数学建模思想如何渗透于大学数学教学中
36、数学建模竞赛背景下对高校数学教学的思考
37、数学建模课程对高职学生创新能力的培养探究
38、高等数学教学中数学建模思想方法探究
39、初中数学教学中数学建模思想的渗透
40、无线激光通信网络海量信息快速调度数学建模
41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析
42、中学数学建模教学行为探究
43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究
44、基于数学建模活动的高校数学教学改革
45、数学建模与应用数学的结合研究
46、谈初中数学建模能力的培养
47、数学建模在初中数学应用题解答中的运用
48、基于数学建模思想的高等数学 教学方法 研究
49、数学建模融入高等数学翻转课堂模式研究
50、数学软件融入数学建模课程教学的探讨
最新小学数学教学论文题目
小学数学教材问题探析
小学数学生活化教学研究
小学数学___教学方法有效性分析
小学数学多媒体课件设计研究
小学生数学思维培养探究
小学数学中创新意识的培养
数学作业批改中巧用评语
新课标下小学数学教学改革研究
数学游戏在小学数学教学中的应用
《9和几的进位加法》教学设计
小学数学教学中素质 教育 研究
小学数学学困生的转化策略
小学数学教学中的情感教育
《六的乘法口诀》教学 反思
浅谈数学课堂中学生问题意识的培养
问答式学习课堂教学怎样转向小组合作学习
浅谈农村课堂的有效交流
浅谈在实践活动中提高学生解决实际问题的能力
浅谈小学应用题教学
浅谈学生合作意识的培养
“层次性体验”在数学课堂中的应用
数学课堂教学中学生探索能力的培养
小学数学低段学生阅读能力培养点滴
“观察、 品味、 顿悟” 我谈小学数学空间与图形教学
浅谈小学数学课堂教学中的“留白”
润物细无声--小班化数学作业面批有效策略的尝试
“我的妈妈体重 50 千克” 对培养良好数感的思考
“圆的面积” 教学一得
利用图解法解决逆推题
我教《24 时计时法》
《解简易方程》 教学反思
“可能性” 的反思
折线统计图折射出的“光芒”
《平均数》 教学反思
数学课堂上的“失误“也是一种资源
幽默语言在教学中的应用
“圆的认识” 教学片断与反思
计算机多媒体与小学数学教学的整
充分发挥学生的主体作用
“圆柱的体积” 教学反思
“平行四边形的面积” 听课反思
听“逆向求和应用题” 有感
小学低年级教学策略的实践与反思
“相遇问题” 建立“数学模型”
如何提高课堂语言评价的有效性
“20 以内退位减法” 教学反思
关于数学方向的优秀论文题目相关 文章 :
★ 关于数学专业毕业论文题目
★ 数学方面毕业论文题目参考大全
★ 关于数学专业毕业论文题目参考
★ 数学的优秀论文
★ 数学优秀论文范文
★ 数学学术论文的题目
★ 数学教育论文题目
★ 数学教育方向的论文范文
★ 数学教育方向相关论文(2)
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。
学好高一数学论文:如何学好高一数学高中数学与初中数学相比,不仅是内容增多了,更大的变化体现在思维形式上,数学语言的抽象化对思维能力提出了更高的要求,因此,不少同学进入高一学习后很不适应,觉得数学特别难学,这种状况如果不及时改变,他们的成绩将越来越差。下面就高一数学的学习谈几点建议,供同学们参考。一、培养学生学习数学的兴趣兴趣是最好的老师,有了兴趣就有了动力,才能发挥自己的潜能,才会增强学习的主动性和积极性。在平时的学习中,要不断地从成功(哪怕是微不足道的进步)中获得愉悦,从而激发学习的热情,提高学习的兴趣。平时应注意数学知识与日常生活、生产、现代科技的密切联系,让数学概念回归自然、回归现实,从实践中增强学习数学的兴趣。另外多参加数学的研究性学习,多参加数学兴趣小组的活动,在参与中不断培养学习数学的兴趣。二、转变学习观念初中数学知识内容少,相对比较浅显,老师将各种题型建立起统一的思维方法,通过反复练习,即可提高成绩,这使得一部分同学产生了这样一种观念:跟着老师走就行了,这种观念其实是极其错误的,因为高中数学内容多、系统性强,理论性、抽象性更强,这就需要同学们在学习上更积极、更主动、多思考、多研究。三、提高课堂效率课堂是同学们学习的主要场所,是同学们获取知识的主要途径,因此听课效率的高低,直接影响着学习效果的好坏。提高听课效率应注意以下几点:1.搞好课前预习通过预习可以了解本节课要学的基本内容,发现学习中的重点、难点、易混点,对本节课要用到的没有掌握好的旧知识,提前复习一下,可以降低听课的难度,在听课时更有针对性,更好地掌握听课的主动权,另外预习也能使学生锻炼自己的自学能力。2.认真听课新知识的接受、数学能力的培养主要在课堂上进行,预习中的重点、难点、易混点是听课中要重点解决的问题。(1)关注老师对新课的导入,温故而知新,激发起对新知的好奇心;(2)认真领会老师的主要精神和意图,特别是老师对定义、定理的加工解读,要把老师讲的真正听懂听会;(3)要学会独立思考、分析问题,把自己对知识的理解与老师的讲解对比、分析,不断提高自己的思辨能力。3.做好笔记在听课的过程中,能否做好数学笔记对数学学习的影响也很大。做好笔记一方面有利于同学们及时复习小结,另一方面也有利于以后整理和修改数学笔记,同时也是回归教材的重要一环。要重点记好老师和其他同学思维的闪光点、自己的疑点、失误分析、注意事项等,但不要面面俱到,否则影响了听课将得不偿失。四、课后及时复习对老师讲的每一节课,当天必须做好复习,先把上课老师讲的内容回忆一遍,尽量想得完整一些,然后再与课本、笔记对照,当场出现的问题及时抓,遗留问题有针对性地补,注重实效,然后适当做一些有针对性的练习,以检验知识的掌握程度。五、注意反思,提高能力数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题和解决问题的能力的重任。只有通过反思,才能使能力不断提高,因为反思是一次再学习的过程,是对所学知识再加工的过程;通过反思,进一步揭示知识间的内在联系,才能把所学知识由“活”到“悟”地掌握,融会贯通。
1、 数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用
浅谈中学数学中的反证法数学选择题的利和弊浅谈计算机辅助数学教学论研究性学习浅谈发展数学思维的学习方法关于整系数多项式有理根的几个定理及求解方法
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。
可以通过线性关系,计算生活中手机充话费,什么样的人群使用什么样的套餐比较划算。希望能帮到你
如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1
初中数学教研主题题目有:1、创设问题情境,活跃课堂气氛激发学习兴趣教学过程既是学习认知的过程,又是学生思维发展的过程,教师要善于创设问题情境,激发学生学习兴趣,引导学生经过努力成功地解决问题,必须营造愉悦的学习氛围,创设良好的活动情境。把数学知识融于生活实践中,使学生在情绪上引起共鸣,发现数学奥秘。使他们认识到数学离不开生活,生活中处处蕴涵着数学知识。2、优化教学环境,改进教学方法,调动学生的学习兴趣。根据学生的年龄特征和认识规律,充分利用学生的好奇心,采用各种手段诱发他们的求知欲望。中学生逻辑思维能力、理解能力想象能力等逐步形成,在教学中要给学生创设一些独立思考的机会,发展学生对问题进行分析、判断、概括的能力,使他们的技能得以表现,兴趣得到升华。3、让学生体验成功的喜悦,培养自信心。当学生取得成功时,可以使学生产生一种满足,快乐、自豪等积极的情绪体验,我们要抓住机会多表扬、鼓励,特别是后进生我们要把他的积极的情绪转化到学习上,从而提高学习兴趣。
教育教学论文题目一: 1、试析提高高中数学教学质量的探讨 2、高等教育成本分担机制研究 3、基于提高大学生素质的审美教育研究 4、广西高等教育国际化及对策研究 5、中国石油管道局职业教育培训发展规划研究 6、国际教育与国际人才培养路径研究 7、深入发展时期教育技术理论演变的研究 8、大学生绿色教育若干问题研究 9、高校网络思想政治教育环境研究 10、法制教育的功能探究 11、运用教育技术实现有效教学 12、高职会计教育模式改革的研究 13、中小学心理健康教育评估的探索 14、关于分层作业在农村初中英语教学中的探索 15、中小学教师实践新课程的若干问题
康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!康托尔的集合论论文篇1:《基于集合论思想的人性》 摘要:作为人类,我们有必要去了解自己,这样才能更加地进步。人性是从根本上决定并解释着人类行为的那些人类天性。本文利用集合论的思想对此进行了一些讨论。 关键词:人性;理性;社会性;自然性;集合论思想 一、引言 在长期以来的生活中,人类的大脑会在无意识的作用下储存某些事物的信息,由于并没有通过大脑严谨的思考,所以这些信息大部分是外在的,只是事物表面的一些形态特征而已。这些信息并非零散的分布,之间没有联系。而是之间存在着一定的关联,虽然结构不严谨,可能其中会有错误。但是有时候却可以起到一定的作用。但是我们不能仅依靠这样的意识形态,因为我们有自我意识,需要不断完善,不断进步。依靠这样的意识是不可能看到事物的本质的。 有时候你问某个人为什么,他可能会答道:“凭直觉”。我并不否认直觉所带来的“便利”,但这种“便利”是给自己不去思考事物本质的借口。直觉也是一种意识形态,但是这种意识是在潜意识之下的,这样意识的形成也是要通过长时间的作用。大脑可以自己不断地调整,不断地完善,但是这个过程相当缓慢。要进步可不能依靠这样的思想。 现在我想说的是,我们必须减少对这些意识的依赖。因为这些意识都不是通过严谨的思考之后得到的产物,所以用这样的意识去做出一些反应是很容易出错的。这也会阻碍我们对真实世界的探索。我们应该挖掘出这样的意识,分析其中的思想结构,将不好的思想去掉,并且把有缺陷的思想不断加强和完善。这样一来,我们就会更加理性。人就具有这样的性质——理性。因此人类才能进步,文明才能发展。 二、理论分析 假设A={a1,a2,…,an},B={b1,b2,…,bm}。若A?奂B,则说明A中的n个元素均可以在B中找到,且m>n。反之,说明中的个元素均可以在A中找到,且n>m。若A=B,则说明中的所有元素与B中的所有元素相同,且n=m。如果某一个元素可以在集合A中找到,那么记作a∈A。 结合以上思想,对人与动物进行分析,动物={青蛙,鱼,狗,猫,人,……},可以看出人是属于动物的,即人动物。并且将这样的集合叫做普通集合,以区分下面所叙述的性质集合。既然青蛙,鱼,狗,猫,人等都属于动物,那么也就是说它们具有共同的性质,比如:没有细胞壁,必须利用现成的有机物获得能量,无叶绿体,能自由移动等。但是人除了这些共同性质之外,还有其他的性质。也就是说,从性质集合上看,动物的性质集合包含于人的性质集合中的。即动物的所有性质,人类均有。我们将性质集合中的元素命名为“属差”,而将普通集合命名为“种”,普通集合中的元素命名为“属”。 如果B的性质集合包含于A的性质集合,那么A和B就具有相同的属差,并且B的所有属差均是A中的属差。属差越多,则性质集合的表述范围就越小,即越受限制。那么B显然比A的表述范围大。说明B可以述说A,即A是B,其中A就是主词,而B就是宾词,则B的所有属差是A的属差。 那么按照上面所说,动物可以表述人,即人是动物。“人”的属差比“动物”的要多,也就是限制的条件要多一些。 有些存在于主体中的事物,其定义是不能用来表述一个主体的。例如:对于白人来说,“白”就依存于身体这个主体,并被用来表述身体这个主体,也就是说身体可以被说成是白的,但是要注意,“白”的定义却不能被用来表述身体。 属和种的属差都可适用于第一实体,种的属差适用于属,所以属和种决定了实体的性质。例如:“人”和“动物”的属差都可适用于个别的人,可以说人是动物,个别的人是人,个别的人是动物。也可以这样想:对“动物”的定义肯定也适用于对“人”的定义,因为“人”是属于“动物”的。所谓的“第一实体”,比如“个别的人”、“个别的老虎”等,是真实存在的个体,并不依存于其他个体。[1] 属差的定义也能适用于属和个体,并且还可以用来表述属和个体。例如:“有脚的”、“有手的”的定义也可以适用于“人”和个别的人。并且还可以说“人”和个别的人是“有手的”。既然属差的定义可以适用于个体,那么属差也就可以决定了个体的性质。而且这些性质都可以用属差表述其个体。 分析到这里,我们应该感觉到有点思路了。也就是我们现在要找到这样的属差,然后根据这些属差的定义来表述个体。 但是还有一个前提,那就是个别的人是不是实体呢?因为刚才我们得到一个结论:属和种决定了实体的性质。也就是这些分析都是以实体作为前提的。所以我们要知道个别的人是不是实体。其实我们从实体最原始,最根本的定义出发,个别的人的确属于实体,因为是真实存在的,并且不依存于其他主体。 三、结果分析 1.人具有理性:有一篇关于鱼“自杀”的报道。我就在想鱼如何“自杀”的呢?自杀就说明鱼有自我意识,能够自己选择死亡。但科学上表明自然界(这里并不指整个宇宙)中除人类外,其他动物都只有直接意识,而没有自我意识。难道科学不客观?其实并非这样,只不过是媒体的故意渲染而已。鱼只是因为环境的改变而做出本能的反应,这样的本能就是直接意识,鱼并没有思考这样做会不会导致死亡,只是出于本能。那么人与其他动物相比,不同之处就在于人有理性。 比如一只老虎饿了,看到食物就会扑上去吃。但是人饿了却不会看到食物就扑上去,而要想想这能不能吃。这就是与其他动物的不同之处。也就是说“理性”是“人”的一个属差。 2.人具有社会性:人处在社会之中,与其他个体之间进行沟通,交流信息。进行物质的分享、分割和交换。社会是互动的,不可能是个别的个体所支撑。也就说明我们身处社会,只有聚集起来才能共同完成分享、分割和交换。有人说自己很孤独,其实这并不是真正的孤独,也不可能存在真正的孤独。因为人不可能摆脱社会性而存在。可能有人会对刚才我说的“不会有真正的孤独”有意见,他们会说:“既然没有孤独,那么创造这个词不就没意义吗?”孤独只不过是人们的感受,感受并不能反应事物的真实规律。所以我在之前也说过,我们必须放弃一些错误的思想。这样才不会被感觉和表面现象所蒙蔽。 在人类社会这个庞大的群体性活动中,无论是什么简单的活动,都不可避免要与其他个体进行信息传达。这样人类才能发展和繁衍下去。这样说来,动物也应当存在社会性。这显然是肯定的。一些动物也是具有这样的性质的,例如:蚂蚁,蜜蜂等。可见“社会性”也是“人”的一个属差。 3.人具有自然性:人类是自然界中的一员,就不可能不具有自然性。人类的组织结构、生理结构和自然界交往过程所产生的一些基本特征都表现出人的自然性。人类不可能脱离自然性而独立存在。而其他生物也一样具有这样的性质。所以“自然性”也是“人”的一个属差。 四、结束语 我们作为人类,有必要去了解自己,这样才能更加地进步。通过集合论的思想来分析人性,是本文的亮点。除了三个性质外,还存在着其他的性质。在这里由于自己的智慧有限,没有给出更多的性质,但是本文重点是在于提供一个可行的分析 方法 。通过数学的逻辑,会使得分析变得更加严谨和系统化。这是本文做出的大胆尝试。 参考文献: [1]亚里士多德.亚里士多德全集(第一卷)[M].苗力田,译.北京:中国人民大学出版社,1990. 康托尔的集合论论文篇2:《集合论与第三次数学危机》 数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的 教育 价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。 一、集合论的诞生 一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇 文章 标志着集合论的诞生。 二、集合论成为现代数学大厦的基础 康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。 集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊! 三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机 1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。 罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。 罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。 四、消除悖论,化解危机 罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。 在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。 解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。 五、危机的启示 从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。 矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。” 参考文献: 1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社 2.胡作玄,《第三次数学危机》 康托尔的集合论论文篇3:《模糊集合论视角下的隐喻》 【摘 要】本文从模糊集合论的角度出发,研究隐喻解读过程中的逻辑真值问题,揭示出隐喻的模糊性是固有的,客观的,对人类认识世界以及进行文学创作具有重要作用。 【关键词】模糊集合论;隐喻;文学创作 模糊性是自然语言的本质特征之一,客观事物自身范畴的模糊性、人类认知的局限性以及不同的话语语境均会导致模糊语言的形成。模糊集合论从诞生伊始,便开始了与诸多学科的交叉研究,与语言学的结合使得我们在语义研究方面有了新的视角。隐喻作为一种特殊的语义现象,其解读过程显现出模糊语言的特点。隐喻的模糊性反映出人类的潜逻辑规律,是客观的,隐性的,它不仅是人类心理范畴化的结果,也是人类模糊思维的产物,所以模糊集合论为我们研究解析隐喻开辟了新的窗口[1]。 1965年,美国控制论专家札德受语言模糊性的启发在《信息与控制》杂志上发表了论文《模糊集合》,最早提出了“模糊集合论”的概念。传统的集合论强调,任何一个集合的成员要么属于它(隶属度为1),要么不属于它(隶属度为0),只有两种真值情况[2]。但是如果对自然界中的诸多对象进行分类,我们经常会找不到能够精确判定其身份的依据。所以, 札德在论文《模糊集合》中对模糊集的定义为: 设X是由点构成的一个区间, 区间内的类属性元素用x表示, 即X ={x}。在区间X中,模糊集A由具有构成该集合元素属性的隶属函数fA(x)表示。该函数与区间[ 0, 1 ]内的任一实数相关联,此对应值表示x所具有的构成A的资格程度。如果区间内设置两个临界点, 即0 <β <α < 1, 那么我们就会获得一种三值逻辑: 如果fA(x) ≥α, 则x属于A;如果fA(x) ≤β, 则x不属于A; 如果隶属函数fA(x) 所表示的值位于α和β之间,则x具有一种相对于A的中间状态。模糊集合论之所以适用于语言研究,是因为语言范畴实际上就是某一个论域中的模糊集合。某一范畴中所有成员共有的典型属性构成此范畴的核心部分,它相当于集合的定义,这部分是明确的,清晰的;相比较而言,范畴的边缘却是模糊的,很难对其进行明确地界定,此部分相当于集合的外延,也就是构成该集合的所有元素。传统集合论实际上是二值逻辑,一个命题,即一个表达明确意义的陈述句,其真值只能是真(记作“1”),或者是假(记作“0”),没有第三种可能性。例如“汤姆是名学生”这个命题,只允许取值“1”或“0”。但是,如果我们将这个 句子 中的“学生”加个修饰词,变成“好学生”,问题就出现了。因为“好”是个模糊概念,其内涵容易辨认,外延却不明确。对于这样的命题,如果用传统的集合论就很难判断其真值。基于二值逻辑的缺陷,札德提出了“隶属度”的概念。即对于像“好”、“坏”这样的模糊概念的集合,规定其成员对该集合的隶属程度,可以取闭区间[0,1]内的任何实数值。模糊逻辑本质上是一种多值逻辑,这使得模糊集合论在研究隐喻时具有特别重要的价值。 模糊集合论为隐喻真值的合法性提供了依据。隐喻的理解有赖于对两组不同范畴的特征的识别,如果我们要把“A is B”视为隐喻,而非字面意思,那我们就需要确定A和B的所指。句法,语义以及语境都可以帮助我们确定其含义,但是最终还是意义的解读决定对相似属性和不同属性筛选的结果 [3]。要想理解隐喻所指双方语义属性的比较过程,我们可以求助于模糊集合论的概念。通过模糊不同集合的界限,隐喻所指某一集合的属性可以部分的与其他集合的属性相结合,进而克服精确定义所带来的阻碍。从语言的表层结构来看, 隐喻的本体集合与喻体集合是不相容的。如果我们运用模糊逻辑的开放性原理, 就可以对这两个不同集合中的属性进行对比区分, 找到相互类似的属性以及不具有可比性的属性。 以莎士比亚名句“Juliet is the sun.”(朱丽叶是太阳)为例: “太阳”是无生命语义标记的子集, “朱丽叶”是有生命语义标记的子集。由于这个隐喻指出了太阳对于人类的重要性与朱丽叶对于罗密欧的重要性之间的相似性,相关元素属性的隶属函数是一个小于1的值,使得此隐喻带有较强的启示力和暗示性。一般来讲,根据逻辑真值,可以把隐喻分为epiphor(表征性隐喻)与diaphor(暗示性隐喻)。威尔赖特( P. Wheelwright)在1962年出版的《隐喻和现实》(Metaphor and reality)中指出epiphor 的基本功能在于表达(express), 而diaphor的主要作用是暗示(suggest) [4]。隐喻所指的并置会引起语义集合的矛盾,所以有些学者把隐喻视为不合语法逻辑的实体。但是如果我们通过模糊集合论中三值逻辑来解读隐喻,我们就可以证明它的用法是正当的,合法的。根据扎德的标准, 0 <β <α < 1, 一种三值逻辑的可能性是成立的。如果我们再加入一个中间值γ,区间将变为0 <β <γ<α < 1, 这样三值逻辑就可以扩充为四值逻辑, 其真值分别为: Truth( fA (x) ≥α) 、Falsity( fA (x) ≤β) 、Diaphor (β < fA (x) <γ) 以及Epiphor (γ≤fA (x) <α) 。如果α的值趋近于1而β的值趋近于0, 并且中间区间的集合不包含任何 其它 元素, 那么这就是一个传统的二值逻辑。如果隶属函数值介于β到γ的区间,就会产生暗示性隐喻;如果隶属函数值介于γ到α的区间,就会产生表征性隐喻。隶属函数会发生变化,因为很多隐喻由于不断的重复使用,固定了所指之间的关系,暗示性隐喻也就会变成表征性隐喻,如果太过普遍,则会变成死隐喻。由此可见,模糊集合论很好的解释了隐喻解读过程中本体集合与喻体集合的冲突,使得双方在合理的范围内找到交集,而这个交集内的元素属性很可能不是唯一的,这就造成了隐喻解读的多样性与模糊性[5]。 隐喻的本质是模糊了本体集合和喻体集合之间的界限,从而来寻找两个集合的契合点。由于模糊集合论设定了三个区间边界α、β和γ, 并且0 <β <γ <α < 1,这种四值逻辑不仅有助于消除隐喻所指不同集合之间所存在的矛盾,而且揭示出隐喻的模糊性实际是固有的,客观存在的。隐喻的模糊性主要是指其解读对语境的依赖性。无论从隐喻的编码,还是解码过程来看,不同的人,不同的时期,不同的场合,同一隐喻可以被赋予不同的含义。正是隐喻的这种模糊性开启了人类的想象空间,文学作品中好的隐喻总是余音绕梁,让人回味无穷。我们的生活离不开隐喻,而在隐喻所创造的模糊世界里,我们非但没有因为模糊而影响生活,反而借用隐喻的模糊性我们能够更好地认识世界,改造世界。 【参考文献】 [1]Earl R. MacCORMAC, METAPHORS AND FUZZY SET[J].Fuzzy sets and systems. 1982(7). [2] Set. Information and (8). [3]安军.隐喻的逻辑特征[J].哲学研究,2007(2). [4]苏联波.隐喻的模糊化认知机制研究[J].成都大学学报(社科版),2011(5). [5]束定芳.论隐喻的基本类型及句法和语义特征[J].外国语,2000(1). 猜你喜欢: 1. 高中数学论文题目大全 2. 关于数学文化的论文范文 3. 数学与哲学的论文 4. 人工智能逻辑推理论文 5. 数学学术论文范文大全 6. 数学论文离散数学
点我用户名,空间博文有介绍详细各种论文检测系统软件介绍见我空间各种有效论文修改秘籍 111
有很多呀,我就分享几个教育进展这本期刊上的论题给你看看吧1、面向物理核心素养下《加速度》教学设计2、基于结构方程模型的大学生抑郁影响因素研究3、新时代持续加强高校思想政治教育的思考4、大数据背景下的民办高校教育信息化建设发展规划研究5、“双减”政策下,家校如何为学生“减负”“增识”6、从“国际化”到“本土化”:中外合作办学的发展历程研究