首页

> 学术论文知识库

首页 学术论文知识库 问题

运筹学决策论文方向文献

发布时间:

运筹学决策论文方向文献

给你个网站,希望能帮到你

各自学校的要求不同,查看你们学校的毕业论文参考文献格式要求,或者询问你的指导老师一般书籍使用[M],系列丛书某卷用[Z]

10是卷,就是创刊以来的总刊数(或者是创刊第几年,很多时候一年是一卷,或者半年,每个杂志社都不同)。3是指在某一年的第几期,是年度内的 对于《计算机辅助设计与图形学学报》来说,它是创刊于1989年,是以年度为一卷。在1998年是双月刊,说明该杂志是6月份出版。(现在是月刊)如满意回答,还望采纳

现在和将来的角度,结合你所学 我可以写,比较多

运筹学多阶段决策毕业论文

论文摘要:文章针对侦察无人机航路规划这一问题,分析了影响航路规划的因素,构建了航路规划的模型。结合侦察无人机航路规划的特点与模型,论证了基于蚁群算法求解的理由与优点,并对蚁群算法的初始信息素强度与启发因子进行了改进。最后以岛屿进攻战役这一特定作战任务为例。利用MATLAB实现了侦察多目标时的航路规划问题。 引言 航路规划是指在目标点与起始点之间,为运动物体寻找满足某种性能指标和某些约束的线路、路径。目前对于航路规划的研究主要用于导弹、鱼雷、飞机等飞行器的飞行线路选择上,对于无人机的侦察航路的系统研究还不多见。在文献[3]中虽然也应用蚁群算法进行了航路规划,但没有充分考虑到威胁点存在和目标点价值对航路的影响,且对蚁群算法没有进行启发因子和信息素初始强度方面的创新。在相关外文文献中,由于美军无人机航程较大,其航路规划的约束条件就相对较少,可供借鉴的内容也很有限。而针对岛屿进攻战役这一特殊作战样式的研究更是尚属空白。本文正是基于这一背景下对该问题进行研究,以实现在充分发挥无人机最大作战效能的同时,又尽可能地降低无人机被毁伤概率。 1、影响航路规划的因素分析 影响侦察无人机航路规划的主要因素有如下四个方面。 目标价值 目标价值是衡量某一时刻对某一目标实施火力突击必要程度的综合指标(用Vm表示)。可采用层次分析法获得各个目标的价值Vm,也可以再进行归一化处理,得到各目标的相对价值系数Ku,以此来衡量目标的重要程度。 对不同的目标实施侦察时,对于价值较高的目标可安排更长的有效侦察时间,而对于价值相对较低的目标,则应适当压缩有效侦察时间。 有效飞行时间(距离) 侦察的主要目的是发现对己方有价值目标并及时描述目标的状态,因此发现目标的概率是航路是否合理的一个重要指标。距离目标越近,飞机上侦察设备能够搜索目标区的时间也就越长,发现目标的概率也就越大。 在执行侦察任务时,为了获得某一目标的有效信息,无人机必需接近目标并使目标处于其机载电子、光学侦察设备的作用距离内。如果为了实时监控某一目标,侦察无人机还必需在此目标的上空盘旋、停留,以使目标长时间地处于机载设备的监控之下。因此对目标的发现概率可以用有效飞行时间来表征。它表示侦察无人机对目标总的侦察、监控时间,为处理方便,若侦察无人机以等速率飞行,则其有效侦察飞行时间也可转变为有效飞行距离表征。 生存能力 侦察无人机要完成侦察任务就必须具备一定的生存能力。而其生存能力主要与侦察无人机的隐形规避性能、敌方雷达、防空武器的性能等相关。即侦察无人机的生存能力既受本身的易感性、易损性、可靠性影响,也受敌方的侦察探测和打击能力影响。 从侦察无人机完成飞行任务过程来看,包括发射、正常飞行和突破拦截三个过程,若用概率Pf、Pl、Ps表示三个过程的完成情况。 航程(油量)限制 航程是指侦察无人机起飞后,中途不经加油所能飞越的最大水平距离,即飞行距离。是表征侦察无人机远航和持久飞行能力的指标。由于其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由于无线电的作用距离受限,飞机执行任务的位置不能超过其作战半径。 2、航路规划构模 侦察无人机多数情况下执行特定的侦察监视飞行任务,指挥员期望的目标是在有限的飞行时间与航程内发现尽可能多的目标,同时付出的代价最小。 就航路规划的约束条件而言,首先是威胁量不能超过指挥员的许可范围,其二,是侦察无人机总的飞行距离不能超过侦察无人机的航程。一旦两者之一不能成立,表明要求的任务是无法完成的,即 3、蚁群算法及其改进 蚁群算法作为一种新的计算模式引入人工智能领域,被称为蚂蚁系统,该系统基于以下假设: (1)蚂蚁之间通过环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也仅对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择。在群体水平上,单只蚂蚁的行为是随机的,但蚁群通过自组织过程形成高度有序的群体行为。 基于蚁群算法进行航路规划的特点 基于蚁群算法的侦察无人机航路规划方法,能够保证在航路制订时得到一条具有较小可被探测概率及可接受航程的飞行航路,这种航路规划方法还具有以下特点:(1)在蚂蚁不断散布生物信息激素的加强作用下,新的信息会很快被加入到环境中,而由于生物信息激素的蒸发更新,旧的信息会不断被丢失,体现出一种动态特性; (2)最优路线是通过众多蚂蚁的合作被搜索得到的,并成为大多数蚂蚁所选择的路线,这一过程具有协同性; (3)由于许多蚂蚁在环境中感受散布的生物信息激素同时自身也散发生物信息激素,这使得不同的蚂蚁会有不同的选择策略,具有分布性。这些特点与未来战场的许多要求是相符的,因而采用蚁群算法对侦察无人机的航路进行规划具有可行性与前瞻性。 蚁群算法的改进 (1)ij(t)的初值 为了更好的考虑威胁,在定义在初始条件下定义轨迹强度不同,根据蚂蚁选择路线最优选择轨迹强度高的路线,而无人机的航路规划中则应该更优的选择距离威胁点较远的航路。那么可以定义轨迹的初始强度与距离成反比。即与威胁点越近的路线,信息素强度越小。对于两目标点间的每条路径,其信息素轨迹初始强度。 4、基于改进蚁群算法的侦察无人机航路规划的实现 航路规划的初始条件 蚁群算法用于航路规划主要运用在对多目标实施搜索侦察的航路规划问题,即航路规划需要得出的是飞行经过各个目标的数量和次序,以使侦察无人机经过尽可能多的目标点。 在进行初始规划的过程中,为更方便蚁群算法的实现,首先确定坐标系,将上述各目标点及威胁点用坐标系来表示,这样可以便于实际的运算。 假设在岛屿进攻战役中以某市为坐标点(100,100)的位置,以3公里为1个坐标系单位长度建立平面直角坐标系(这是在充分考虑了将主要有价值点都包括在一个(120×120)的范围内而合理构建的)。则可以确定上述各点的坐标系位置,得到各点坐标。同时各个目标点的价值系数通过层次分析法可求得到结果(具体过程略)。 蚁群算法模型的实现 蚁周系统的各初始参量的确定 为计算和表示方便,将目标点定义为向量Mi(其中i=1,2,3,…,12),威胁点定义为向量Ti(其中i=1,2,3)。采用蚁群算法实现目标点的类旅行商(TSP,Traveling Salesman Problem)问题,目前已经开发的蚁群算法包括蚁密系统、蚁量系统和蚁周系统,而实际应用多数应用后者。为模拟系统中蚂蚁行为的方便,定义标记。 蚁群算法模型分析 通过比较的方法,定性分析各个情况下的目标函数值和航路规划图。不难发现在考虑了目标点价值和威胁点威胁的情况下,航路尽可能地避开了威胁并优先选择通过目标价值较大的点。这样无人机的被毁伤概率较低,且如果发生被毁伤事件时,已经发现的总体目标价值最大。 针对四种情况进行定量分析,假设指挥员的倾向性为,即略侧重于考虑威胁代价。2000表示对每个目标的有效侦察距离均为2000m,计算目标函数的值,可见考虑完备时虽然航路总长最大但总体的目标函数值也最大,航程最优,即侦察无人机应按照依次通过这些目标点。 5、结束语 通过上述分析,在给定侦察无人机的侦察任务情况下经运算可求得最优的初始航路,它可以有效地提高无人机的侦察效能,降低无人机的被毁伤概率,它对于目前军事斗争准备中如何使用侦察无人机具有一定的指导意义。随着我军侦察无人机性能的提高及型号的不断丰富,在对未来岛屿进攻战役中如何对这些机型进行航路规划尚有待于进一步探讨。

给你个网站,希望能帮到你

所以他的念头觉得他的案例他的安琪还是可以完成的,毕竟这样的论文形式也是能够给大家带来更好的方便和实用的啦。

可以通过管理运筹学的案例分析,对整个事件的影响,通过管理学和运筹学去影响和提前制定相应的运筹帷幄的方法,这样就可以提前预知结果。

运筹学方向毕业论文

给你个网站,希望能帮到你

我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

运筹学方向的毕业论文

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

运用运筹学解决实际问题论文

因为,蚂蚁沿途中会留下一种气味,其它蚂蚁用触角来闻对方的气味,所以就不会迷路了。

运筹学是运用知识数据调配各种事物关系达到平衡利用又不会产生浪费的一种理论。

比方通过了解当前具有家庭电视机使用机顶盒开机时间延长的数据。下班进入房间后先打开电视机,然后更衣洗手之后,正好可以进入播出。

有学习过程中,充分利用各种计算工具,多做出一些题目来,这样会让我们更有兴趣去学习更多的东西。

常用的工具有EXCEL和Mathematica。

扩展资料:

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。

随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。

比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

可以在大学组建社团或团队,进行统一的管理,锻炼自己的管理能力以及管理管理人员的能力。大学嘛,尽情的嗨吧。 谢谢

课程教学改革研究论文

一、运筹学学科特点

运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理其核心是研究优化的理论与方法。运筹学内容丰富、分支众多,已经形成了三个不同的发展领域:运筹学应用、运筹学科学和运筹学数学教育部1998年颁布的“本科专业目录和专业介绍”中,将运筹学课程列为经济、管理专业的主干课程。运筹学课程已逐渐成为应用数学、管理科学、工程管理、系统科学、信息管理、计算机、机械制造、交通运输等专业的基础课程之一。因此运筹学课程必须既能满足理工类专业的教学需要,又能兼顾经管类等专业的要求。

运筹学具有以下几个特点:

(1)定量分析。 运筹学使用各种数学工具和逻辑判断方法,对实际问题中提炼出来的模型进行定量分析, 为管理和决策提供定量化的决策支持。

(2)最优性。 所谓最优,包含两方面的含义:一是从空间上来讲,寻求整体最优;二是从时间上来讲,寻求全过程最优。

(3)实用性。 运筹学是一门实践性很强的学科。运筹学广泛应用于经济、管理、工程优化设计、工程优化控制、计算机和信息系统、城市规划和管理、资源综合利用, 环境治理等。

(4) 多分支性。 由于运筹学是面向实际问题的,因此运筹学形成了很多分支,而且还在不断的向前发展。运筹学的分支包括线性规划、整数规划、非线性规划、目标规划、图与网络模型、存储论、排队论、对策论、排序与统筹方法、决策分析、动态规划、预测、搜索论、随机服务理论和可靠性理论等。

(5)以计算机为工具求解问题。 由于实际问题通常变量较多,运用运筹学理论手工解决实际问题时,计算工作量非常大,且常常容易出现错误, 因此应该借助于计算机工具求解。实际上,计算机技术的快速发展,为运筹学的进一步发展以及在实践中的应用都起到了促进作用。

二、教学现状分析

目前,本校的运筹学课程授课对象为理科专业(包括数学与应用数学、统计学专业)、管理学科专业(包括管理科学、工程管理、房地产经营管理、市场营销、物流管理、工商管理、金融管理专业)以及工科专业(信息管理与信息系统、金融工程专业)的本科大学生。理工科专业学生是理科生源,管理类专业中除部分专业为文科生源,其余专业又为文理生源兼有。相比而言,理科生源学生数学基础较好,文科生源的数学基础相对较差,如何做到在同一时空内,让学生们都能认识、理解、领会和掌握该门课程,并能实现理论和实践的结合,从而解决实际问题,真正达到这门课程的学习目的,需要在教学过程中做一些尝试与改革。目前,我校在运筹学课程教学过程中往往容易出现以下一些普遍存在的问题和不足:

1、学生学习的积极性不高,厌学现象较普遍。随着年龄的增长,大学生学习动机的功利性日益增强,只对他们认为有用的课程感兴趣,而对其它课程则仅仅追求达到学分要求。学习的主动参与性不够,课堂气氛不够活跃,很难主动和教师形成互动,整体学习效果一般。他们将学习重点放在对课本知识的死记硬背上,甚至连计算方法和步骤也采用死记的方法。

2、教学方法的科学性有待加强。运筹学是一门实用性课程,很多老师在授课时,采用传统的板书讲授法,教学手段不够灵活,信息量少,如讲解线性规划中的单纯形方法时,一节课画一张单纯形表,解一道迭代三次的题目时间可能就不够用了,教师只在黑板上孤立的画表格,学生在课堂上被动接受,师生互动性差,教与学信息反馈不及时,很难提高学生的兴趣和调动学生学习的积极性。

3、实验教学和案例分析重视不够。由于大部分教师是重点高校数学专业出身,在给本科生上运筹学课程时,过多注重定义的解释,定理的推导,手工演算的培训上,对应用运筹学的理论、方法分析问题、解决问题讲授不多,从而造成学生对运筹学的基本理论、模型求解方法多有较好的掌握,但当运用所学知识去分析和解决实际问题时,却都显得茫然无措。很少有运用运筹学解决实际问题的案例,不会用运筹学优化软件(如lingo、lindo、mathematic、matlab等)求解最基本的运筹优化问题,更难去解决实际问题。

4、课程考核方法比较单一。通常是以学生平时作业加期末考试成绩作为考核学生学习运筹学课程效果的考核方式,导致学生只会套用书上算法,机械的进行手工计算,忽视了运筹学课程培养学生解决实际问题的能力的目的,偏离了运筹学的本质。

三、教学改革建议

1、分专业教学,体现专业特色。

不同的专业,需要不同的运筹学知识,应根据专业培养目标和专业特点明确教学目的,分类设置教学内容,科学设计教学方法,并有所侧重,如应用数学专业更应强调运筹学数学和运筹学科学,在教学过程中应侧重算法的证明和原理推导,还应具有一定的编写计算机程序解决问题的能力,使他们掌握运筹学的基本优化理论和优化方法,掌握课程各主要分支的模型、基本概念与理论、主要算法及其应用;经管类专业运筹学更应强调运筹学应用和运筹学科学,教学目的重点应放在学生对基本概念的理解、基本原理的掌握以及基本方法的应用上,使学生通过运筹学课程的学习,能够运用运筹学的思想、原理、方法分析和解决问题同时加强实践教学,采取多种灵活多变的实践方式,解决实际应用领域中的某些实际问题,为学生进一步从事该方向的学习与研究工作打下坚实的基础。

2、对教学手段、方式进行改革。

(1)采用启发式教学。

学生的学习态度直接影响教学质量,因此在教学过程应积极发挥学生的主体作用,如采用启发式教学,充分发挥学生的聪明才智,激发他们的学习热情。例如在讲解整数规划的分支定界法时,对于举例求解约束条件只有两个的例子时,可以选两个层次不同的同学当堂练习,启发学生用图解法求解,从而鼓励学生举一反三,畅所欲言,充分发表自己的观点与想法。

(2)改革教学手段,运用最新科技成果,突出应用性。

传统教学模式的板书时间,对学生来说也是一段休息、思考准备的时间,但有时显得单调和低效、课堂信息量少,而且可观性差。对于运筹学这类内容丰富、信息量大、推理和运算复杂的综合性学科的教学活动,还应该充分应用现代化教学手段,通过与现代化教育技术的组合应用,实现运筹学课程教学的优化须借助多媒体、互联网等最新现代教育技术手段,并充分利用网络教学资源加强对学生进行交互式教育,使学生及时了解运筹学发展动态,领悟新思路、掌握新方法,增强运筹学课程的前瞻性和应用性。应用这些最新科技成果辅助教学可以大大提高教学效率,增加学生接触实际问题的机会,提高解决实际问题的能力,使教学更好地为实际应用服务。

(3)改进教学方式。

变传统单一的课堂讲授为课堂讲授、专题讲座、计算机实验、参与社会实践等多种形式相结合。举办专题讲座能较好地开阔学生的视野,使学生了解运筹学的发展方向与前沿动态,为培养具有全球化视野的国际性人才打下基础;开展计算机实验可培养学生创新能力,这主要是通过创建计算机能识别的运筹学模型、编写运筹学算法程序和运用计算软件去求解模型这三个环节去实现;参与社会实践则能增强学生的实践能力,让学生运用所学运筹学知识去解决实际问题,在社会生产实践的活动中接受检验,使学生亲身感受学习本课程的实践需要和社会价值,在实践中增长见识和才干、获得成就感。

(4)建立多种联系方式和学习的平台。

建立基于校园网的交互式网络平台以学校的校园网络为基础,建立起师生交互式的网络交流平台,教师将电子教案和其他教学资源放在网络系统里,供学生查阅、复习或下载。充分利用现代科技技术,给学生任课教师的联系方式,通过qq,e—mail等现代科技技术加强联系,及时解答学生在学习中遇到的问题,激发学生的兴趣。

3、加大案例分析和建模培训力度。

单纯的讲解教材中的基本理论和例题,会给学生造成一种错觉:运筹学在理论上很完美,但不能解决实际问题。因此, 在教学的过程中需加强案例教学。案例教学具有以下鲜明特点:第一,目的性。第二,真实性。第三,结果的优化性。加强案例教学,可以加深学生对运筹学概念的理解与应用;加强案例教学有利于学生创造性能力的培养;通过案例教学,可以提高学生们动用所学知识和方法分析问题的能力、合作共事的能力和沟通交流的能力。

一年一度的全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一,而数学建模的主要方法都来自于运筹学的内容。目前来说,建模竞赛几乎受到了所有高校的高度重视,我校从组队参加全国大学生数学建模竞赛以来,虽然取得了不错的`成绩,但是和兄弟院校相比还有一定的差距。因此教师可以结合本校实际,将数学建模带入课堂,适当介绍建模竞赛的历年考题,鼓励学生积极参加各级竞赛,通过竞赛来带动运筹学的教学。

4、改变考核方式。

考试是检测教学效果和促进教学的一种有力手段,但是传统考试方式考核的只是理论知识与解题技巧,而运筹学的考核重点应该是学生的优化意识和解决实际问题的能力。所以,与其他课程相比,运筹学的考核方式应该是开放的、多样化的。课程的考核方式应当既要体现学生对基本知识的掌握能力,还要突出学生的实践能力与创新意识,因此在成绩考核方面应当包括基础知识考核、实践能力考核、创新能力考核等方面。基础知识考核用来加强学生对基本理论、算法的理解及应用,主要是通过学生对每堂课的课后习题作业的完成情况来考察;实践能力考核主要考核学生初步的数学建模、应用运筹学理论解决简单实际问题的能力,要求学生做几道应用型的题目,并且只建模不必非求出解;创新能力考核主要是通过布置几道优化方面的数学建模案例,引导学生用学过的优化方法求解,不仅要建立数学模型,还要能运用相关优化软件求解出精确的结果。

5、适当介绍分支由来和现今理论前沿。

不同的运筹学分支有各自的特点和经典方法,如线性规划的单纯形法、非线性规划的kuhn—tucker条件,对策论的划线法,这些经典方法都有着各自的创始人和来龙去脉,通过对各分支名人和历史的介绍有助于学生把握运筹学的发展史,从宏观上对运筹学各个分支有整体的认识。同时,通过名人的介绍还有助于开阔学生视野,提高学习兴趣,活跃课堂气氛,提高教学效果。

四、结束语

运筹学的主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。随着我国高等教育改革的不断深化,要求在教学中提高学生运用运筹学解决具体问题的实践能力。我们相信通过对运筹学课程教学做一系列的改革,针对不同专业的学生,设置不同的教学目的和教学内容,采用不同的教学方法和教学手段,将教师的主导作用、学生的主体作用以及现代教学技术的辅助作用紧密结合起来,使学生能既掌握基本的理论与方法, 又具有较强的实际应用能力,取得令人较满意的教学效果。

相关百科

热门百科

首页
发表服务