首页

> 学术论文知识库

首页 学术论文知识库 问题

电压控制lc振荡器毕业论文

发布时间:

电压控制lc振荡器毕业论文

打酱油的路过

1.直流稳压电源的设计与制作 要求设计制作一个多路输出直流稳压电源,可将220V/50HZ交流电转换为多路直流稳压输出:+12V/1A,-12V/1A,+5V/1A,-5V/1A,+5V/3A及一组可调正电压。 2.高保真音频功率放大器的设计与制作 要求设计制作一个高保真音频功率放大器,输出功率10W/8Ω,频率响应20~20KHZ,效率>60%,失真小。 3.函数发生器的设计与制作 要求设计制作一个方波-三角波-正选波发生器,频率范围 10~100Hz,100Hz~1KHz,1KHz~10KHz;正弦波Upp≈3v,三角波Upp≈5v,方波Upp≈14v,幅度连续可调,线性失真小。 要求:1)课题名称。 2)设计任务和要求。 3)方案选择与论证。 4)原理框图,总体电路图、布线图以及它们的说明;单元电路设计与计算说明;元器件选择和电路参数计算的说明等。 5)电路调试。对调试中出现的问题进行分析,并说明解决的措施;测试、记录、整理与结果分析。 6)收获体会、存在问题和进一步的改进意见等。是这要求吗?若是就如下电路原理图如图一所示。图中的8038为函数发生器专用IC,它具有3种波形输出,分别正弦波、方波和三角波,8038的第10脚外接定时电容,该电容的容值决定了输出波形的频率,电路中的定时电容从C1至C8决定了信号频率的十个倍频程,从500μF开始,依次减小十倍,直到5500pF,频率范围相应地从~ Hz~5Hz~50Hz~500Hz~5kHz~50kHz~500kHz,如果C8取250pF,频率可达1MHz。图中的V1、R7、R8构成缓冲放大器,R9为电位器,用于改变输出波形的幅值。 整个电路的频率范围为~1MHz,占空比可以从2%至98%调整,失真不大于1%,线性好,误差不大于,因此电路很有实用价值。 参考资料:更多详细资料: 这个我以前学校里有做过。大致设计思想是先用三极管振荡出1个正弦波,再经过一级放大(输出正弦波),后面加一级放大限幅的电路(输出方波),最后一级积分电路(输出3角波)。翻翻书吧,模拟电子书上有的函数信号发生器的设计与制作 系别:电子工程系 专业:应用电子技术 届:07届 姓名:李贤春 摘 要 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。 关键词 ICL8038,波形,原理图,常用接法 一、概述 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 二、方案论证与比较 ·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: ·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率 相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为~300KHz。 三、系统工作原理与分析 、ICL8038的应用 ICL8038是精密波形产生与压控振荡器,其基本特性为:可同时产生和输出正弦波、三角波、锯齿波、方波与脉冲波等波形;改变外接电阻、电容值可改变,输出信号的频率范围可为~300KHz;正弦信号输出失真度为1%;三角波输出的线性度小于;占空比变化范围为2%~98%;外接电压可以调制或控制输出信号的频率和占空比(不对称度);频率的温度稳定度(典型值)为120*10-6(ICL8038ACJD)~250*10-6(ICL8038CCPD);对于电源,单电源(V+):+10~+30V,双电源(+V)(V-):±5V~±15V。图1-2是管脚排列图,图1-2是功能框图。8038采用DIP-14PIN封装,管脚功能如表1-1所示。 、ICL8038内部框图介绍 函数发生器ICL8038的电路结构如图虚线框内所示(图1-1),共有五个组成部分。两个电流源的电流分别为IS1和IS2,且IS1=I,IS2=2I;两个电压比较器Ⅰ和Ⅱ的阈值电压分别为 和 ,它们的输入电压等于电容两端的电压uC,输出电压分别控制RS触发器的S端和 端;RS触发器的状态输出端Q和 用来控制开关S,实现对电容C的充、放电;充点电流Is1、Is2的大小由外接电阻决定。当Is1=Is2时,输出三角波,否则为矩尺波。两个缓冲放大器用于隔离波形发生电路和负载,使三角波和矩形波输出端的输出电阻足够低,以增强带负载能力;三角波变正弦波电路用于获得正弦波电压。 、内部框图工作原理 ★当给函数发生器ICL8038合闸通电时,电容C的电压为0V,根据电压比较器的电压传输特性,电压比较器Ⅰ和Ⅱ的输出电压均为低电平;因而RS触发器的 ,输出Q=0, ; ★使开关S断开,电流源IS1对电容充电,充电电流为 IS1=I 因充电电流是恒流,所以,电容上电压uC随时间的增长而线性上升。 ★当上升为VCC/3时,电压比较器Ⅱ输出为高电平,此时RS触发器的 ,S=0时,Q和 保持原状态不变。 ★一直到上升到2VCC/3时,使电压比较器Ⅰ的输出电压跃变为高电平,此时RS触发器的 时,Q=1时, ,导致开关S闭合,电容C开始放电,放电电流为IS2-IS1=I因放电电流是恒流,所以,电容上电压uC随时间的增长而线性下降。 起初,uC的下降虽然使RS触发的S端从高电平跃变为低电平,但 ,其输出不变。 ★一直到uC下降到VCC/3时,使电压比较器Ⅱ的输出电压跃变为低电平,此时 ,Q=0, ,使得开关S断开,电容C又开始充电,重复上述过程,周而复始,电路产生了自激振荡。 由于充电电流与放电电流数值相等,因而电容上电压为三角波,Q和 为方波,经缓冲放大器输出。三角波电压通过三角波变正弦波电路输出正弦波电压。 结论:改变电容充放电电流,可以输出占空比可调的矩形波和锯齿波。但是,当输出不是方波时,输出也得不到正弦波了。 、方案电路工作原理(见图1-7) 当外接电容C可由两个恒流源充电和放电,电压比较器Ⅰ、Ⅱ的阀值分别为总电源电压(指+Vcc、-VEE)的2/3和1/3。恒流源I2和I1的大小可通过外接电阻调节,但必须I2>I1。当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压UC随时间线性上升,当达到电源电压的确2/3时,电压比较器I的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设 I2=2I1),I2将加到C上进行反充电,相当于C由一个净电流I放电,C两端的电压UC又转为直线下降。当它下降到电源电压的1/3时,电压比较器Ⅱ输出电压便发生跳变,使触发器输出为方波,经反相缓冲器由引脚9输出方波信号。C上的电压UC,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波的两端变为平滑的正弦波,从2脚输出。 其中K1为输出频段选择波段开关,K2为输出信号选择开关,电位器W1为输出频率细调电位器,电位器W2调节方波占空比,电位器W3、W4调节正弦波的非线性失真。 图1-1 、两个电压比较器的电压传输特性如图1-4所示。 图1-4 、常用接法 如图(1-2)所示为ICL8038的引脚图,其中引脚8为频率调节(简称为调频)电压输入端,电路的振荡频率与调频电压成正比。引脚7输出调频偏置电压,数值是引脚7与电源+VCC之差,它可作为引脚8的输入电压。 如图(1-5)所示为ICL8038最常见的两种基本接法,矩形波输出端为集电极开路形式,需外接电阻RL至+VCC。在图(a)所示电路中,RA和RB可分别独立调整。在图(b)所示电路中,通过改变电位器RW滑动的位置来调整RA和RB的数值。 图1-5 当RA=RB时,各输出端的波形如下图(a)所示,矩形波的占空比为50%,因而为方波。当RA≠RB时,矩形波不再是方波,引脚2输出也就不再是正弦波了,图(b)所示为矩形波占空比是15%时各输出端的波形图。根据ICL8038内部电路和外接电阻可以推导出占空比的表达式为 故RA<2RB。 为了进一步减小正弦波的失真度,可采用如图(1-6)所示电路,电阻20K与电位器RW2用来确定8脚的直流电压V8,通常取V8≥2/3Vcc。V8越高,Ia、Ib越小,输出频率越低,反之亦然。RW2可调节的频率范围为20HZ20~KHZ。V8还可以由7脚提供固定电位,此时输出频率f0仅有Ra、Rb及10脚电容决定,Vcc采用双对电源供电时,输出波形的直流电平为零,采用单对电源供电时,输出波形的直流电平为Vcc/2。两个100kΩ的电位器和两个10kΩ电阻所组成的电路,调整它们可使正弦波失真度减小到。在RA和RB不变的情况下,调整RW2可使电路振荡频率最大值与最小值之比达到100:1。在引脚8与引脚6之间直接加输入电压调节振荡频率,最高频率与最低频率之差可达1000:1。 、实际线路分析 可在输出增加一块LF35双运放,作为波形放大与阻抗变换,根据所选择的电路元器件值,本电路的输出频率范围约10HZ~20KHZ;幅度调节范围:正弦波为0~12V,三角波为0~20V,方波为0~24V。若要得到更高的频率,还可改变三档电容的值。 图1-6 表 1-1 ISL8038管脚功能 管 脚 符 号 功 能 1,12 SINADJ1,SINADJ2 正弦波波形调整端。通常SINADJ1开路或接直流电压, SINADJ2接电阻REXT到V-,用以改善正弦波波形和减小失真。 2 SINOUT 正弦波输出 3 TRIOUT 三角波输出 4,5 DFADJ1,DFADJ2 输出信号重复频率和占空比(或波形不对称度)调节端。通常DFADJ1端接电阻RA到V+,DFADJ2端接RB到V+,改变阻值可调节频率和占空比。 6 V+ 正电源 7 FMBIAS 调频工作的直流偏置电压 8 FMIN 调频电压输入端 9 SQOUT 方波输出 10 C 外接电容到V-端,用以调节输出信号的频率与占空比 11 V- 负电源端或地 13,14 NC 空脚 四、制作印刷电路板 首先,按图制作印刷电路板,注意不能有断线和短接,然后,对照原理图和印刷电路板的元件而进行元件的焊接。可根据自己的习惯并遵循合理的原则,将面板上的元器件安排好,尽量使连接线长度减少,变压器远离输出端。再通电源进行调试,调整分立元件振荡电路放大元件的工作点,使之处于放大状态,并满足振幅起振条件。仔细检查反馈条件,使之满足正反馈条件,从而满足相位起振条件。 制作完成后,应对整机进行调试。先测量电源支流电压,确保无误后,插上集成快,装好连接线。可以用示波器观察波形发出的相应变化,幅度的大小和频率可以通过示波器读出 。 五、系统测试及误差分析 、测试仪器 双踪示波器 YB4325(20MHz)、万用表。 、测试数据 基本波形的频率测量结果 频率/KHz 正弦波 预置 2 20 50 100 实测 方波 预置 2 20 50 实测 三角波 预置 1 2 20 100 实测 、误差分析及改善措施 正弦波失真。调节R100K电位器RW4,可以将正弦波的失真减小到1%,若要求获得接近失真度的正弦波时,在6脚和11脚之间接两个100K电位器就可以了。 输出方波不对称,改变RW3阻值来调节频率与占空比,可获得占空比为50%的方波,电位器RW3与外接电容C一起决定了输出波形的频率,调节RW3可使波形对称。 没有振荡。是10脚与11脚短接了,断开就可以了 产生波形失真,有可能是电容管脚太长引起信号干扰,把管脚剪短就可以解决此问题。也有可能是因为2030功率太大发热导致波形失真,加装上散热片就可以了。 、调试结果分析 输出正弦波不失真频率。由于后级运放上升速率的限制,高频正弦波(f>70KHz)产生失真。输出可实现步进,峰-峰值扩展至0~26V。 图1-2 图 1−7 六、结论 通过本篇论文的设计,使我们对ICL8038的工作原理有了本质的理解,掌握了ICL8038的引脚功能、工作波形等内部构造及其工作原理。利用ICL8038制作出来的函数发生器具有线路简单,调试方便,功能完备。可输出正弦波、方波、三角波,输出波形稳定清晰,信号质量好,精度高。系统输出频率范围较宽且经济实用。 七、参考文献 【1】谢自美《电子线路设计.实验.测试(第三版)》武汉:华中科技大学出版社。2000年7月 【2】杨帮文《新型集成器件家用电路》北京:电子工业出版社, 【3】第二届全国大学生电子设计竞赛组委会。全国大学生电子设计竞赛获奖作品选编。北京:北京理工大学出版社,1997. 【4】李炎清《毕业论文写作与范例》厦门:厦门大学出版社。 【5】潭博学、苗江静《集成电路原理及应用》北京:电子工业出版社。 【6】陈梓城《家用电子电路设计与调试》北京:中国电力出版社。2006

我以前设计过 三角波 方波 和正弦波!我同组的毕业设计也是这个 做出实物对于学生比较难 ! 如果是应付老师交个报告的话简单! 在百渡高级搜索里 选DOC 或PDF格式 有不少现成的 !

基本的知识包括直流电路、交流电路特别是谐振电路,放大器和反馈电路等,就是现在的“模电”吧。反正知识有它的连贯性,不学高数,电路也难学好的。自己掌握了。LC振荡器的要点是,用LC谐振回路控制振荡频率,至于如何实现正反馈则有许多方法。用电压改变谐振电路里的L或者C都可以实现电压控制LC振荡器,以前用的方法是“电抗管”,今天用的是变容二极管,它的等效电容会随着所加的电压而改变,从而实现“压控”的功能。

低相位噪声压控振荡器的研究论文

1.中心频率是指频率调节范围的中间值,即振荡器频率的最大值和最小值的中间值,中心频率的大小取决于振荡器的结构和元器件参数,而且还随着工艺和温度相应改变;随着科学技术的不断发展和产品性能的调高,现如今CMOS压控振荡器的中心频率能够达到10GHz。2.调谐范围是指调节输出频率的变化范围,即振荡器的最大调谐频率和最小调谐频率的差值压控振荡器要有足够大的调谐范围才能满足输出频率达到所需要的值。3.调谐增益即压控振荡器的灵敏度,是指单位的输入电压与输出频率的变化,一般用Kv表示,单位是Hz/V,在实际应用上讲,压控器的灵敏度越高,噪声响应在控制线路上越强,结果干扰输出频率就越大,就会使压控振荡器的噪声性能降低。所以需要寻找VCO的增益和噪声性能的平衡。4.输出振幅即VCO输出频谱的峰值。通过优化相位噪声,就要尽可能的加大输出电压时的幅值,从而会使压控增益降低。不断减少,要提高输出的幅值尤其重要伴随着CMOS工艺的不断发展,输入电压不断减少,要提高输出的幅值尤其重要。5.调谐线性度就是指压控增益,理想的压控振荡器其是常数,实际工作中压控振荡器的表现是非线性的,要想在整个调谐范围内使。为常数,尽量使其在调谐范围内变化最小。6.相位噪声振荡器进入稳定状态时,电路中的噪声干扰电路工作,这就是相位噪声。单位是dBc/.功耗在工作中,电路中的噪声、降低功耗是CMOS压控振荡器主要的研究方向,振荡器的功耗与工作的频率、输入的电压及输出的频率大小等有密切联系。目前振荡器功耗能达到一到几十mW。8.其他性能指标输出频率的频谱密度,由于噪声等其他影响,输出的波形并不是理想波形,为了尽量使其达到理想波形,设计电路时要抑制谐波的存在;电源与共模抑制,电源噪声对压控振荡器影响也较大,为了达到较好的共模抑制,在设计时要视情况采取差动线路或其他线路。

振荡器自其诞生以来就一直在通信、电子、航海及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦电压:在热加工、热处理、超声波加工和某些设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(CO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,CO几乎与电流源和运放具有同等重要地位。 对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是成本上无疑都取得了飞跃性的进展,但在很长的一段时期内都是处在用分离元件组装而成的阶段,其性能较差,成本相对较高,体积较大和难以大批量生产。随着通信领域的不断向前推进,终端产品越来越要求轻、薄、短、小,越来越要求低成本、高性能、大批量生产,这对于先前的分离元件组合模式将不再胜任,并提出新的要求和挑战。集成电路各项技术的发展迎合了这些要求,特别是主流CMOS工艺提供以上要求的解决方案,单片集成振荡器的研制取得了极大的进步。 然而,由于工艺条件的限制,RF电路的设计多采用GaAs, Bipolar, BiCMOS工艺实现,难以和现在主流的标准CMOS工艺集成。因此,优性能的标准的CMOS CO设计成为近年来RF电路设计的热门课题。 近年来,随着通信电子领域的迅速发展,对电子设备的要求越来越高,尤其是对像振荡器等这种基础部件的要求更是如此。但多年来我国在这方面的研究投入无论在军用还是民用上均不够重视,仅限于在引进和改进状态,还没有达到质的跨越,没有自主的知识产权(IP),也之所以在电子通信类滞后发达国家的一个重要原因。而且我国多数仍然利用传统的双极工艺,致使产品在体积上、重量上、成本上都较大,各种参数性能不够优越,稳定性差、难以和现代主流CMOS工艺集成等等都是我国相关领域发展的瓶颈。 我国在电子通信领域场潜力非常大,自主研究高性能、高质量、低成本的压控振荡器场前景广阔、意义巨大。 CO的主要性能指标 CO的性能指[4]标主要包括:频率调谐范围,输出功率,(及短期)频率稳定度,相位噪声,频谱纯度,电调速度,推频系数,频率牵引等。 频率调谐范围是CO的主要指标之一,与谐振器及电路的拓扑结构有关。通常,调谐范围越大,谐振器的值越小,谐振器的值与振荡器的相位噪声有关,值越小,相位噪声性能越差。 振荡器的频率稳定度包括稳定度和短期稳定度,它们各自又分别包括幅度稳定度和相位稳定度。相位稳定度和短期幅度稳定度在振荡器中通常不考虑;幅度稳定度主要受环境温度影响,短期相位稳定度主要指相位噪声。在各种高性能、宽动态范围的频率变换中,相位噪声是一个主要限制因素。在数字通信系统中,载波的相位噪声还要影响载波跟踪精度。 其它的指标中,振荡器的频谱纯度表示了输出中对谐波和杂波的抑制能力;推频系数表示了由于电源电压变化而引起的振荡频率的变化;频率牵引则表示了负载的变化对振荡频率的影响;电调速度表示了振荡频率随调谐电压变化快慢的能力。 在压控振荡器的各项指标中,频率调谐范围和输出功率是衡量振荡器的初级指标,其余各项指标依据具体应用背景不向而有所侧重。例如,在作为频率合成器的一部分时,对CO的要求,可概括为一下几方面:应满足较高的相位噪声要求;要有极快的调谐速度,频温特性和频漂性能要好;功率平坦度好;电磁兼容性好。 国内外现状 目前,国内外许多厂家都已生产出针对不同应用的CO。表1-1分别是具有代表性的国内十三所和Agilent生产的部分压控振荡器产品的部分指标: 表1-1 型 频率范围(GHz) 调频电压() 工作电压/电流(/mA) 输出功率(dBm) 相噪(dBc/Hz) HE 0~15 12/30 +12 -90@10KHz HE 0~15 12/30 +10 -87@10KHz TO- 2~24 15/50 +10 -95@50KHz TO- 2~30 15/50 +10 -95@50KHz TO- 8~24 15/50 +10 -@50KHz 上述产品中,封装形式均为TO-8封装。对于封装内的电路中一般使用的是晶体管管芯和变容二极管管芯,这样可减少管脚分布电感、电容的影响,减少对分布参数的考虑。但是,此类封装需专门设备,工艺复杂,进入门槛高,产品价格较高。频率较高时,这些参数对电路性能的影响非常显著。需要在设计时仔细考虑,选择合适的电路形式,尽量降低电路对器件参数的敏感度。 另外,自前还用一种称为YIG(钇铁右榴石)的铁氧体器件作为谐振器的压控振荡器,谐振频率用外磁场调谐,调谐带宽可以很宽,因为YIG谐振器可以有很高的值,YIG振荡器的相位噪声性能很好。但由于成本较高,且较难设计,所需电流大,调谐速度较变容二极管调谐的CO慢。本设计只设计了采用变容二极管调谐的压控振荡器。实在不行换一个 或者在硬之城上面找找这个型号的资料

随着ADS-B航空器运行监视技术的快速发展,ADS-B接收系统国产化的需求也在逐渐的提高。本文主要围绕ADS-B接收组件射频前端接收技术进行研究,提出射频接收组件的总体设计方案和关键技术的实现方法,并与信号处理单元和显控单元进行联合调试。给出了前端接收组件的实验室测试结果和测试方案以及联调数据。论文关键词:ADS-B,灵敏度,检波器本文从自动相关监视系统(ADS-B)的工作原理出发,设计了射频接收组件的技术指标和系统架构,并对射频接收组件的设计中的关键技术进行了分析,搭载测试系统对射频接收组件进行闭环测试并与数字处理单元和显示控制单元进行实测验证系统的性能。1ADS-B射频接收组件架构设计ADS-B射频接收组件应用于ADS-B天线接收到的(-90dBm,-10dBm)信号强度的1090MHz的射频信号,通过限幅、滤波、混频、中频放大、检波等过程生成数字信号处理单元中A/D采样模块能够识别和处理的检波信号。根据ADS-B接收系统实际工作的环境,分析出射频组件的具体性能指标,如表1所示。2ADS-B射频组件关键技术研究本振单元设计锁相环芯片频率合成技术目前有三种主要方法:一是,由混频器、分频器、倍频器、滤波器分离元器件构成。二是,直接数字频率合成器(DDS),即通过查表的方式将对应点数通过AD转换输出。三是,锁相环路(PLL)方法产生。三种方法中锁相环路的方法在信号输出稳定度和噪声系数上有较大优势,所以采用锁相环路的方法实现本振的输出。一个典型的PLL系统,由鉴相器(PD),压控振荡器(VCO),低通滤波器(LPF)三个基本电路构成。PLL电路在一个反馈电路的作用下,压控振荡器跟踪一个相位稳定的基准参考信号源,直到两个信号的相位信息一致,压控振荡器输出一个稳定的频率。ADS-B射频模块主要将接收到的1090MHz的射频信号进行下变频,输出110MHz的中频信号,本振单元则输出1200MHz的本振信号与输入信号进行混频。随着集成电路技术的快速发展,锁相环单元可以将分频器、相位检测器、电荷泵、压控振荡器集成在一个芯片上,不仅减小了射频组件的体积,在可测试性设计上也有较大的改进。在这里我们采用ADI公司的一款成熟锁相环芯片ADF4350频率合成器主要用于提供本地振荡信号和用于无线信道下变频使用。包含一个低相位噪声的相位检测PFD),一个高精度的电荷泵(CP),可编程的输入参考分频器,可编程的A/B计数器,以及一双模前置分频器用来实现整数和小数分频。通过外置低通滤波器使电荷泵电流转化为压控电压用来控制内部一个低相位噪声的VCO,在环路锁定的前提下输出稳定的电压信号。配置芯片采用一款8位的C8051单片机,8个I/O端口和内部可编程高精度振荡器,I/O端口模拟ADF4351配置端口的时序对PLL芯片进行配置。CLK为配置时钟,DATA为输入数据,LE为使能管脚。本振需要输出的频点,参考输入时钟为10MHz,D=2,R=1,FRAC=0,可以得出INT=40,所以DATA数据线需要输入的二进制代码为101000。检波器单元设计普通的线性检波器的动态范围达到60dB已经比较困难,ADS-B接收机的动态范围在70dB左右,而对数检波的动态范围已经达到90dB,满足设计要求。

英语翻译:很高兴收到你写的信。I’m very glad to receive your letter.

高频振荡器毕业论文

本实用新型是一种大功率自动高频高压恒流直流电源,它主要由整流滤波,高频逆变,高压输出及控制部分组成,特别是:a.所述高频逆变部分是采用多个最新的大功率电力电子器件IMOSFEET分布在散热器中并配以高频逆变电路组成;b.所述高压输出部分是由若干层线包叠加而成,外接高压输出棒,每层线包接装有两组整流桥;本实用新型解决了现有逆变式高压恒流电源功率小,适应范围规格偏低的问题,其动态特性好,适应电场范围宽,系统功率大大提高,主要应用于高压静电除尘器配套的高压发生源,广泛应用于冶金、化工发电、建材部门。

毕业论文格式 (1)论文要求一律用A4白纸打印; (2)封面:论文一律用统一封面 (3)任务书:毕业论文任务书内容包括论文要求、主要内容、进度安排等(格式见清华网格学堂/学生手册附件),其中,第二、三项由指导教师填写,其余内容由学生填写; (4)摘要:论文要有150-200字的摘要,并列出论文的关键词(中、英文对照); (5)正文:论文正文打印格式及尺寸要求,版面尺寸为15CM×23CM,统一用小四号字体、倍行间距打印; (7)参考文献:论文正文后须附参考文献,著明论文所依据的文献资料情况,文献著录格式主要有下列几种: 连续出版物:作者.文题.刊名,年,卷号(期号):起~止页码 专(译)著:作者.书名(,译者).出版地:出版者,出版年. 起~止页码 论 文 集:作者.文章标题:编者,文集名.出版地:出版者,出版年. 起~止页码 互联网资料:作者. 文章标题,完整网址,年代 (8)鸣谢:本页内,学生可以表达对论文指导教师和在论文写在过程中给予帮助和支持的其他人的感谢。正弦振荡电路 在电子工程中,常常用到正弦信号,作为信号的源的振荡电路,主要的要求是频率准确度高、频率稳定性好、波形失真小和振幅稳定度高等,但对高频能源的振荡电路有以下几种: (1)LC振荡电路:它适用于几十千赫至几百兆赫的频率范围(高频率和超高频) (2)RC振荡电路:适用于声频和超声频范围(从几赫至1赫) (3)晶体振荡电路:用于生产频率稳定度较高的振荡电路,频率低于3千赫时常用音叉振荡电路代替,而频率高于几十兆赫时常用泛音晶体振荡电路,随着集成化技术的发展,已有多种晶体振荡器的集成电路,如国产的ZWB-1和ZWB-2型等。 相位和振幅平衡条件: 反馈式的振荡电路主要是由基本放大器和反馈网络组成,如图91所示,因此,振荡电路实际上是一个闭环的正反馈电路,其闭环增益为: Kf=Uf/Ui=KF= 要使电路产生振荡,则必须反馈电压Uf和输入电压Ui同相,所以本位平衡条件为 Φk+Φf=2nπ------------------------------------式一 (n=0,1,2,........ 而且,要求|Uf|≥|Ui|,所以振幅平衡条件为: KF≥1-----------------------------------------式二 如果满足了这两个平衡条件,则电路产生振荡,由于振荡器的晶体管工作在非线性区域,所以包含了丰富的谐波成分,而只有某一频率才能满足上述的两个平衡条件,从而产生了单一频率的正弦振荡。 图1 图2 一、变压器反馈式振荡电路 图2(a)为变压器反馈振荡电路,其正反馈过程是:若输入Ui为上正下负,对于振荡频率,回路谐振的并联阻抗为电阻性,所以输出电压Uo与Ui反相,即Uo为上负下正,由于同名端决定了Uf为上正下负,Uf正好与Ui同相,只要晶体管的β足够大和变压器的匝数比合适,电路一定能够振荡,还可以证明电路的起振条件和振荡频率分别为: β≥rbeRC/M------------------------式3 f≈1/2π-----------------------式4 式中:rbe为基极与射极度之间的交流等效电阻,R为次级折算到初级的等效电阻,M为互感系数。 二、三点式振荡电路 1、三点式电路相位条件的判别法 图3(a)为三点式振荡器的交流等效电路,从相平衡条件可以推论出:凡与晶体管发射极相接的电抗Xbe、Xce应性质相同,而不与发射极连接的另一电抗元件,Xcb的性质应与前两者相反。 可以从相量图来检查上述结论的正确性,设Xbe、Xce为容性,Xcb为感性;因振荡时回路谐振于振荡频率,回路呈电阻性:所以Uo、Ui反相及Ic、IL反相;又因Xbe、Xce为容性,故IC比UO超前90度。因Xcb为感性,所以Uf比IL滞后90度,其相量图如图3(b)示,从图可见,Uf与Ui同相,上述结果得到证明。图3 图4 2、电容三点振荡电路(考毕兹电路) 图4(a)为三点振荡电路及其交流等效电路,从图4(b)看出,与发射极相接为电容,集电极与基极之间接电感,服从于共射三点振荡电路对电抗性的要求,故能振荡,该电路的起振条件和振荡频率为: β≥C2/C1----------------------------------式5 f≈-(1)/ --------------------------式6 一般反馈系数F=C1/C2取之间,由于该电路的输入端接电容,而容抗又随频率增加而减小,所以输入电压中的高次谐波分量将明显地受到抑制,使输出波形良好,该电路的缺点是:用调节电容来改变频率时,会使反馈系数改变,所以通常用改进型的电容三点振荡电路。

工作原理 它主要由高频振荡电路、三倍压整流电路和高压电击网DW三部分组成。 当按下电源开关SB时,由三极管VT和变压器T构成的高频振荡器通电工作,把3V直流电变成18kHz左右的高频交流电,经T升压到约500V(L3两端实测),再经二极管VD2~VD4、电容器C1~C3三倍压整流升高到1500V左右,加到蚊拍的金属网DW上。当蚊蝇触及金属网丝时,虫体造成电网短路,即会被电流、电弧杀灼或击晕、击毙。 使用时,手握网拍把柄,按下按钮开关,像使用普通蚊蝇拍一样挥拍,让网面触及飞动的蚊子(或苍蝇、飞蛾),即可迅速将其击毙。该电蚊拍耗电省,工作电流实测约120mA左右,(瞬间短路电流实测≤),故对人及宠物绝对安全。当人体不慎触及网面时,仅会发生局部短暂麻刺。但注意不要在严禁烟火的场所或水中使用。当网面上粘有残余虫骸时,可用毛刷清除或直接抖落,勿用湿布或水擦洗,必要时可用棉花浸酒精清擦。 朋友,正好我有一把电蚊拍,今天做了实验,自己分析认为: 蚊虫被电,不需要有肢体接触在电网的两极!!! 我今天捉了几只小蚂蚁(蚂蚁身长只有约外层与中层电网距离的一半,肢体根本无法搭在两极上)。但是我一按充电钮,蚂蚁还是被电。我仔细观察了一下,发现两网间的电流是从蚂蚁身上流过,然后击穿空气。 物理常识:利用已知一般空气在电场强度超过3 ×106V/m 的条件之下会被游离而开始导电的物理特性 以下完全本人推理(非粘贴): 当一个蚊虫(假设它肢体伸开比外层与中层电网距离短,即不能同时接触外内层电网)进入到外内层电网之间,强大的电场会使蚊虫带电(或部分带电,类似用磁体磁化铁棒)。与正极靠近的带负电,与负极靠近的带正电。正负相吸,于是被极化蚊虫就被强大的电场伸展开了。但蚊虫总不能在中间悬空啊?,其肢体上有一点一定是和某边电网接触的。于是,这个蚊虫就成了这个网上最突出的一点,也就是最接近另一极的一点(两个电网之间有几乎处处相等的安全距离)。联想一下,雷雨天雷为什么回打在尖耸的物体上。同理,蚊虫所接触的网上的电荷就会在它身上聚集最多。此时,一是因为此点电荷密度大,二是因为此点距另一极电网已小于了安全距离。 接下来就电流就会在此点击穿空气,向另一极电网放电。同时在空气中产生电火花,震动空气发出“啪”的声音。你想想,这高压瞬时电流就通过了蚊虫的身体,于是它就屁颠屁颠的升天了~~~ 就算有些比较大的蚊虫,电到他们的时候也不需要他们同时接触两极,也许就在他们快要接触两极的一瞬间,就击穿空气放电了。。你们想想问什么会有“啪”的声音出现,那就说明一定是要击穿空气的。若蚊虫肢体死死的搭在两极上,是不会出现“啪”声,直接就短路发热了。

自藕变压器启动控制毕业论文

1、 高压软开关充电电源硬件设计2、 自动售货机控制系统的设计3、 PLC控制电磁阀耐久试验系统设计4、 永磁同步电动机矢量控制系统的仿真研究5、 PLC在热交换控制系统设计中的应用6、 颗粒包装机的PLC控制设计7、 输油泵站机泵控制系统设计8、 基于单片机的万年历硬件设计 9、 550KV GIS中隔离开关操作产生的过电压计算10、 时滞网络化控制系统鲁棒控制器设计11、 多路压力变送器采集系统设计12、 直流电机双闭环系统硬件设计 13、 漏磁无损检测磁路优化设计14、 光伏逆变电源设计15、 胶布烘干温度控制系统的设计16、 基于MATLAB的数字滤波器设计与仿真17、 电镀生产线中PLC的应用18、 万年历的程序设计19、 变压器设计20、 步进电机运动控制系统的硬件设计21、 比例电磁阀驱动性能比较

一说到自耦变压器,可能大多数人是闻所未闻的,其实,这也不难怪,因为毕竟在我们的日常生活中能亲自接触到它的机会非常的少。而且,它的体积很大,价格又比较昂贵,能够选择使用它的人也是比较少的。但是,在这里呢,我将要给大家详细地介绍介绍自耦变压器降压启动的一些基本信息,比如它的优点、缺点、功用、安装和调试等。

自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。这种降压启动分为手动控制和自动控制两种。

特点:设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小。又因为变压器原副边的电流关系I1=I2/K,可见原边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源供给电动机的启动电流为直接启动时1/K2 倍。由于电压降低为1/K 倍,所以电动机的转矩也降为1/K2 倍。 自耦变压器副边有2~3 组抽头,如二次电压分别为原边电压的80%、60%、40%。

优点:可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用。

缺点:设备体积大,投资较贵。

控制过程:1、合上空气开关QF接通三相电源。

2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。

4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常开触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。

5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。

6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。

7、Satons电动机的过载保护由热继电器FR完成。

安装与调试:1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。

2、自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。

3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。

4、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。

5、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM2和动作吸合,KM3与KA不动作。时间继电器的整定时间到,KM1和KM2释放,KA和KM3动作吸合切换正常,反复试验几次检查线路的可靠性。

6、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。

7、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。

常见故障:1、带负荷起动时,电动机声音异常,转速低不能接近额定转速,接换到运行时有很大的冲击电流,这是为什么?

分析现象:电动机声音异常,转速低不能接近额定转速,说明电动机起动困难,怀疑是自耦变压器的抽头选择不合理,电动机绕组电压低,起动力矩小脱动的负载大所造成的。

处理:将自耦变压器的抽头改接在80%位置后,在试车故障排除。

2、电动机由启动转换到运行时,仍有很大的冲击电流,甚至掉闸。

分析现象:这是电动机起动和运行的接换时间太短所造成的,时间太短电动机的起动电流还未下降转速为接近额定转速就切换到全压运行状态所至。

处理:调整时间继电器的整定时间,延长起动时间现象排除。

以上便是我要向大家介绍的有关自耦变压器降压启动的所有与之相关的基本信息了,是否促进了您对自耦变压器降压启动的了解了呢?虽然可能因为某些客观原因,自耦变压器还未能普及到我们的日常生活中来,但是它的实用性以及它的功用却是无可厚非的。希望在以后的发展中,自耦变压器能尽量克服掉它的不足之处,从而真正走进我们日常生活。

电工知识:自耦变压器降压启动电路,工作原理,接线步骤一一讲解

自己多找些文献啊 资料啊 还是自己写比较好

电机控制器论文

你丫的傻了吧 ,看看 个个都是要钱的,自己不会查点资料啊,让这些煞笔回家喝奶去吧。

步进电机作为执行元件, 是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。我为大家整理的电机控制技术论文,希望你们喜欢。 电机控制技术论文篇一 步进电机控制系统 摘要:步进电机作为执行元件, 是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展, 步进电机的需求量与日俱增, 在各个国民经济领域都有应用。 关键词:步进电机;执行元件;计算机;发展 1步进电机原理及特征 步进电机的目前发展情况 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。当步进驱动器接收到一个脉冲信号, 它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”), 它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量, 从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度, 从而达到调速的目的。在非超载的情况下, 电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数, 而不受负载变化的影响, 即给电机加一个脉冲信号, 电机则转过一个步距角。这一线性关系的存在, 加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域使用步进电机进行控制变得非常简单。步进电机可以作为一种控制用的特种电机, 利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机的特点 1.步进电动机工作时每相绕组不是恒定地通电, 而是按一定的规律轮流通电。 2.每输入一个脉冲电信号转子转过的角度称为步距角。 3.步进电机可以按特定指令进行角度控制, 也可以进行速度控制。角度控制时, 每输入一个脉冲, 定子绕组就换接一次, 输出轴就转过一个角度, 其步数与脉冲数一致, 输出轴转动的角位移量与输入脉冲成正比。速度控制时, 步进电机绕组中送入的是连续脉冲, 各相绕组不断地轮流通电, 步进电机连续动转, 它的转速与脉冲频率成正比。改变通电顺序, 即改变定子磁场旋转方向, 就可以控制电机正转或是反转。 步进电机的一些典型运用场合 ①步进电机主要用于一些有定位要求的场合。例如:线切割的工作台拖动,植毛机工作台(毛孔定位),包装机(定长度)。基本上涉及到定位的场合都用得到。 ②广泛应用于ATM机、喷绘机、刻字机、写真机、喷涂设备、医疗仪器及设备、计算机外设及海量存储设备、精密仪器、工业控制系统、办公自动化、机器人等领域。特别适合要求运行平稳、低噪音、响应快、使用寿命长、高输出扭矩的应用场合。 ③步进电机在电脑绣花机等纺织机械设备中有着广泛的应用,这类步进电机的特点是保持转矩不高,频繁启动反应速度快、运转噪音低、运行平稳、控制性能好、整机成本低。 目前用于电脑绣花机的步进电机多数为三相混合式步进电机,并采用细分驱动技术可以大大改善步进电机的运行品质,减少转矩波动,抑制振荡,降低噪音,提高步矩分辨率。 步进电机的运转原理及结构 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。 旋转 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 2电路设计分析 8253及8255驱动步进电机电路 ①按图连接线路,利用8255 输出脉冲序列,开关K0~K6 控制步进电机转速,K7控制步进电机转向。8255 CS 接288H~28FH。PA0~PA3 接BA~BD;PC0~PC7 接K0~K7。 ②编程:当K0~K6 中某一开关为“1”(向上拨)时步进电机启动,并且电机转动速度大小不同。K7 向上打电机正转,向下打电机反转。 实验重要参数计算 由实际测试得,stepcount步数设定为约59步时。步进电机转动一圈。 由实验要求:先顺时针,每分钟6圈,转十分钟。约得stepcount=59*6*10=3540。 停止三秒:8086机器周期为1/*15*exp6即15M个机器周期的指令。 后逆时针,每分钟30圈,转十分钟。约得stepcount=59*30*10=17700。 实际问题及解决方法 ①硬件连接及软件程序不够熟练,经多方面查资料,翻阅书籍,确定设计方案及硬件软件的具体设计内容。 ②键盘及LED显示的控制不够理想,经程序的细心解读,最终达到了设计的目的。按10号键显示0。。。0030,按12号键显示1。。。0006,按14号键启动运行,按15号键停止运行。 ③转速控制,开始不够精确。经反复测试,最终确定为59步每圈。并计算出6R/MIN,30R/MIN的设定步数。 3总结体会 首先,利用星研集成环境软件编辑并运行程序,在STAR ES598PCI实验仪上调试实验结果,分析实验程序及硬件电路;然后,在利用原有源程序进行实验时,电机的转速控制不是很明显,这就要求修改控制步速Takesetpcount的数值,及8253的分频数,以使电机转速达到6r/min和30r/min。其次,调节8259控制键盘及显示,最终达到实时显示转速及转动方向,并用键盘控制其启动与停止。由于步进电动机的运转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步,所以希望清晰的看到电机的此特性。我们通过设定步速及转速,此时可以观测到电机的步进及转动一圈的步数。 参考文献 【1】王忠民,等。微型计算机原理(第二版)。西安:西安电子科技大学出版社,2007 【2】江晓安,董秀峰。模拟电子技术(第三版)。西安:西安电子科技大学出版社,2009 【3】李全利。单片机原理及接口技术。北京:高等教育出版社,2010 步进电机控制系统 韩 浩 (西安文理学院物理与机械电子工程系 陕西西安 710000) 摘要:步进电机作为执行元件, 是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展, 步进电机的需求量与日俱增, 在各个国民经济领域都有应用。 关键词:步进电机;执行元件;计算机;发展 1步进电机原理及特征 步进电机的目前发展情况 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。当步进驱动器接收到一个脉冲信号, 它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”), 它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量, 从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度, 从而达到调速的目的。在非超载的情况下, 电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数, 而不受负载变化的影响, 即给电机加一个脉冲信号, 电机则转过一个步距角。这一线性关系的存在, 加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域使用步进电机进行控制变得非常简单。步进电机可以作为一种控制用的特种电机, 利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机的特点 1.步进电动机工作时每相绕组不是恒定地通电, 而是按一定的规律轮流通电。 2.每输入一个脉冲电信号转子转过的角度称为步距角。 3.步进电机可以按特定指令进行角度控制, 也可以进行速度控制。角度控制时, 每输入一个脉冲, 定子绕组就换接一次, 输出轴就转过一个角度, 其步数与脉冲数一致, 输出轴转动的角位移量与输入脉冲成正比。速度控制时, 步进电机绕组中送入的是连续脉冲, 各相绕组不断地轮流通电, 步进电机连续动转, 它的转速与脉冲频率成正比。改变通电顺序, 即改变定子磁场旋转方向, 就可以控制电机正转或是反转。 步进电机的一些典型运用场合 ①步进电机主要用于一些有定位要求的场合。例如:线切割的工作台拖动,植毛机工作台(毛孔定位),包装机(定长度)。基本上涉及到定位的场合都用得到。 ②广泛应用于ATM机、喷绘机、刻字机、写真机、喷涂设备、医疗仪器及设备、计算机外设及海量存储设备、精密仪器、工业控制系统、办公自动化、机器人等领域。特别适合要求运行平稳、低噪音、响应快、使用寿命长、高输出扭矩的应用场合。 ③步进电机在电脑绣花机等纺织机械设备中有着广泛的应用,这类步进电机的特点是保持转矩不高,频繁启动反应速度快、运转噪音低、运行平稳、控制性能好、整机成本低。 目前用于电脑绣花机的步进电机多数为三相混合式步进电机,并采用细分驱动技术可以大大改善步进电机的运行品质,减少转矩波动,抑制振荡,降低噪音,提高步矩分辨率。 步进电机的运转原理及结构 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。 旋转 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 2电路设计分析 8253及8255驱动步进电机电路 ①按图连接线路,利用8255 输出脉冲序列,开关K0~K6 控制步进电机转速,K7控制步进电机转向。8255 CS 接288H~28FH。PA0~PA3 接BA~BD;PC0~PC7 接K0~K7。 ②编程:当K0~K6 中某一开关为“1”(向上拨)时步进电机启动,并且电机转动速度大小不同。K7 向上打电机正转,向下打电机反转。 实验重要参数计算 由实际测试得,stepcount步数设定为约59步时。步进电机转动一圈。 由实验要求:先顺时针,每分钟6圈,转十分钟。约得stepcount=59*6*10=3540。 停止三秒:8086机器周期为1/*15*exp6即15M个机器周期的指令。 后逆时针,每分钟30圈,转十分钟。约得stepcount=59*30*10=17700。 实际问题及解决方法 ①硬件连接及软件程序不够熟练,经多方面查资料,翻阅书籍,确定设计方案及硬件软件的具体设计内容。 ②键盘及LED显示的控制不够理想,经程序的细心解读,最终达到了设计的目的。按10号键显示0。。。0030,按12号键显示1。。。0006,按14号键启动运行,按15号键停止运行。 ③转速控制,开始不够精确。经反复测试,最终确定为59步每圈。并计算出6R/MIN,30R/MIN的设定步数。 3总结体会 首先,利用星研集成环境软件编辑并运行程序,在STAR ES598PCI实验仪上调试实验结果,分析实验程序及硬件电路;然后,在利用原有源程序进行实验时,电机的转速控制不是很明显,这就要求修改控制步速Takesetpcount的数值,及8253的分频数,以使电机转速达到6r/min和30r/min。其次,调节8259控制键盘及显示,最终达到实时显示转速及转动方向,并用键盘控制其启动与停止。由于步进电动机的运转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步,所以希望清晰的看到电机的此特性。我们通过设定步速及转速,此时可以观测到电机的步进及转动一圈的步数。 参考文献 【1】王忠民,等。微型计算机原理(第二版)。西安:西安电子科技大学出版社,2007 【2】江晓安,董秀峰。模拟电子技术(第三版)。西安:西安电子科技大学出版社,2009 【3】李全利。单片机原理及接口技术。北京:高等教育出版社,2010 电机控制技术论文篇二 步进电机的加减速控制 [摘 要]本文详细分析了步进电机及其工作原理,并基于MCS-51系列单片机设计步进电机的数字控制系统。在设计中加入了步进电机的细分技术和恒频脉宽调制技术。结合脉冲分配器的使用,开发了简单的细分驱动控制电路。 [关键词]步进电机;单片机;细分控制 中图分类号:F140 文献标识码:A 文章编号:1009-914X(2015)40-0038-01 一、引言 随着科学技术的发展和微电子控制技术的应用,步进电机作为一种可以精确控制的电机,广泛应用在高精密加工机床,微型机器人控制,航天卫星等高科技领域。 二、 步进电机的原理 步进电机是一种控制用的特种电机,它无法像传统电机那样直接通过输入交流或直流电流使其运行,而是需要输入脉冲电流来控制电机的转动,所以步进电机又称为脉冲电机。其功能是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电机就转动一个角度或前进一步。按励磁方式可以分为反应式、永磁式和混合式三种类型,本设计中选用的是反应式步进电机,其结构如图1所示。 这是一台四相反应式步进电机的典型结构。共有4套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相,也就是说定子上两个相对的大齿就是一个相,电机按照A―B―C―D―A……的顺序不断接通和断开控制绕组,转子就会一步一步的连续转动。其转速取决与各控制绕组通电和断电的频率,即输入的脉冲频率。旋转的方向则取决与各控制绕组轮流通电的顺序。 三、步进电机的驱动控制 步进电机不能直接接到直流或交流电源上工作,必须使用专门的步进电机驱动控制器。步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不仅取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。 步进电机的驱动方式有很多种,包括单电压驱动、双电压驱动、斩波驱动、细分驱动、集成电路驱动和双极性驱动。本设计选用的是恒频脉宽调制细分驱动控制方式,这是在斩波恒流驱动的基础上的进一步改进,既可以使细分后的步距角均匀一致,又可以避免复杂的计算。 四、恒频脉宽调制细分电路的设计 1、脉冲分配的实现 在步进电机的单片机控制中,控制信号由单片机产生。它的通电换相顺序严格按照步进电机的工作方式进行。通常我们把通电换相这一过程称为脉冲分配。本设计中选用8713脉冲分配器芯片来进行通电换相控制。 2、系统控制电路设计 步进电机控制系统主电路设计如图2所示。 从上图可以看出,8713脉冲分配器的5、6、7引脚均接高电平,所以这是一个控制四相步进电机按四相八拍运行的控制电路。8751单片机的和端口分别与8713脉冲分配器的3引脚和4引脚相连。由8751单片机的端提供步进脉冲,端则控制步进电机的转向,输出高电平,步进电机正传;输出低电平,步进电机反转。单片机依然是控制的主体,它通过定时器T0输出20kHz的方波,送D触发器,作为恒频信号。同时,由8713脉冲分配器的脉冲输出端输出的方波脉冲信号作为控制信号,它的方波电压的每一次变化,都使转子转动一步。 当8713脉冲分配器的脉冲输出端输出的方波脉冲信号Ua不变时,恒频信号CLK的上升沿使D触发器输出Ub高电平,使开关管T1、T2导通,绕组中的电流上升,采样电阻上R2上压降增加。当这个压降大于Ua时,比较器输出低电平,使D触发器输出Ub低电平,T1、T2截止,绕组的电流下降。这使得R2上的压降小于Ua,比较器输出高电平,使D触发器输出高电平,T1、T2导通,绕组中的电流重新上升。这样的过程反复进行,使绕组电流的波顶呈锯齿形。因为CLK的频率较高,锯齿形波纹会很小。 当Ua上升突变时,采样电阻上的压降小于Ua,电流有较长的上升时间,电流幅值大幅增长,上升了一个阶段,但由于这里输出的是方波信号而不是阶梯信号,所以只有一个上升阶段,也就是说这个“阶梯信号”只包含了一个阶,并没有把每一步细分成许多步,而是令输出脉冲信号上升和下降的坡度变大,使原本的方波输出变的圆滑,实现了控制信号类似梯形的平滑处理,如图3所示。 同样,当Ua下降突变时,采样电阻上的压降有较长时间大于Ua,比较器输出低电平,CLK的上升沿即使会让D触发器输出1也马上清零。电源始终被切断,使电流幅值大幅下降,降到新的阶段为止。 以上过程重复进行。Ua每一次变化,就会使转子转过一个细分步。 在这个电路中有一个最突出的特点,那就是用8713脉冲分配器所输出的脉冲信号取代了典型恒频脉宽细分电路中D/A转换器所提供的阶梯控制信号。这样的设计极大的简化了电路,并且降低了脉冲分配的控制难度。虽然用方波信号取代了阶梯波信号,使得单一相运行时的细分程度有所降低,但是由于步进电机的四相绕组是同进进行工作的,所以也可以达到了步进电机细分驱动控制的目的。 六、结束语 当前,步进电机的应用正不断深入到日常生活和工业制造的各个方面,并且国内外对步进电机及其控制技术的研究也在不断的进步。这些知识的掌握在今后的工作和生活之中将会起到非常积极的影响。 参考文献 [1] 吴守箴,臧英杰等.电气传动的脉宽调制控制技术[M].北京: 机械工业出版社,2002. [2] 王晓明.电机的单片机控制[M].北京航空航天大学出版社,2002. [3] 李建忠主编.单片机原理及应用[M].西安:西安电子科技大学出版社,2008. [4] 李仁定主编.电机的微机控制[M].北京:机械工业出版社,2004. [5] 黄勇,廖宇,高林.基于单片机的步进电机运动控制系统设计[J].电子测量技术,2008,31(5):150-154.看了“电机控制技术论文”的人还看: 1. 计算机控制系统论文 2. 有关计算机控制技术论文 3. plc应用技术论文 4. 计算机控制系统论文 5. 浅谈电机与电力拖动论文

关注该论文进度

基于PLC的三相步进电动机控制系统字数:8923,页数:29 论文编号:ZD096 [摘要] 本文阐述了三菱公司生产的具有高性能价格比的微型可编程控制器三菱FX2N系列PLC,设计实现三相步进电动机正反转、加速、减速以及步数的控制系统。该系统充分利用了培训中讲述的可编程控制器(PLC)的多方面设计知识和方法,使得该系统可靠稳定,使其应用范围得到扩展。[关键词] 可编程控制器 PLC 三相步进电机系统[abstract] This article elaborated the Mitsubishi Corporation produces has the high performance price compared to miniature programmable controller Mitsubishi FX2N series PLC, the design realizes three-phase step-by-steps the electric motor to reverse, the acceleration, the deceleration as well as the step control system. This system has used the programmable controller which fully in training narrated (PLC) various design knowledge and the method, cause this system reliably stable, enables its application scope to obtain the expansion. [key word] programmable controller PLC three-phase step-by-steps the electrical machinery system 目 录摘要 1第一章 PLC 简介 PLC的发展历程 5第二章 三相步进电动机的基础知识 选题背景 三相步进电机简介 三相异步电动机的机械特性 三相异步电动机的正反转控制 三相异步电机的调速 18第三章 三相步进电机的控制 控制要求 怎样实现控制要求 PLC硬件的实现 I/O的分配 I/O的外部接线 20 PLC软件的实现 20第四章 系统整体调试 硬件安装 软件调试 27第五章 结束语 28第六章 参考文献 29以上回答来自:

相关百科

热门百科

首页
发表服务