在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。
数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。
四则运算
四则运算的意义和计数方法。
加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。
运算定律与简便方法、四则混合运算。
减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。
运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。
复合应用题
长度、面积和体积以及其同类量之间的进率。
质量单位和他们之间的进率。
1吨=1000千克 一千克=1000克。
时间单位进率、人民币进率。
1小时=60分钟 1分钟=60秒。
1块=10角。
比与比例。
正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。
图形与空间
图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。
以上内容参考:百度百科-小学数学
二年级数学小论文怎么写如下:
小学数学自学习惯培养的重要意义
有利于学生数学学习能力的提高:自学习惯的培养能够充分调动学生在数学学习过程中的非智力因素,增加学生对数学学习的兴趣。良好的自学习惯能够促使学生自觉做好课前预习、课上认真听讲以及课后自觉复习等学习环节;能够促使学生在日常生活中注重数学知识与实际生活应用之间的联系,有助于学生数学应用能力的提升。
有利于学生学习能力的提升:自学习惯的形成能够有效提升学生的全面学习能力,这种学习能力不仅能够在数学学习过程中发挥重要作用,而且还能够在其他科目学习和相关技能学习方面发挥重要作用。自学习惯对学生产生最深刻的影响是能够促使学生自主开展探究学习,能够自觉的根据自身的知识需要和技能提升对需求的相关知识展开探究。
有利于学生的全面发展:自学习惯的培养不仅能够促使学生在日常生活、学习过程中养成良好的学习习惯,而且还能够为学生未来发展奠定良好的基础。良好的自学习惯不仅能够促使学生在学习上能够取得良好成绩,而且还能够为学生未来的工作产生重大影响。
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。一、 数学课堂上我们想操做、爱操做数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。二、数学课堂上我们想发言、爱发言 那是一节活动公开课,哇!后面的听课老师一大片,我们真有点紧张呢!上课前我就想即使我有了自己的想法,也不一定能表达出来。老师好像看透了我们的心思,老师幽默地说:“我们现在玩一个“过期”的游戏”,我们正纳闷呢,老师又说“过期”的游戏就是“过7”的游戏,遇到含有7的或者7的倍数都要说“过”。哦,逗得我们哈哈直笑,在非常轻松的氛围中完成了游戏,这时候我发现同学们不愿说话的也开始活跃了,原来不敢说话的也打消了顾虑。我还记得那节课老师讲的是 “时、分的认识”,学生对“时针指在2、3之间,分针指在11”时,是2时55分还是3时55分出现了不同意见,展开了被一场别开生面的争执。这时老师让我们结合自己手中钟表模型分组讨论、探索,最终得出了统一答案。
无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供参考,大家一起来看看吧。
星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”
我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。
我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。
我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”
在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。
既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。
长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米
宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不
高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。
长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米
宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体
高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。
长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米
宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。
高:0。3厘米
最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米
经过这次,我终于享受到写数学小论文的快乐。
今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。
我打开页面,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和个位数相加,再把原数减去相加的数,最后记住得出数字的图案,点一下水晶球,就会出现那个你记住的图案了(水晶球旁边有10——99的数字,数字旁有一种图案)。如:23 2+3=5 23——5=18。
我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点水晶球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以准确的出现我记下的图案。好神奇啊!
我心想:水晶球为什么知道我记下的图案啊?
于是,我做了一个很笨的小实验:从10——99的数字都算一遍。结果发现得出来的数都是9的倍数:9。18。27。36。45。54。63。72。我又看了看这些数字边的图案,都是一样的。我说:”哦,所以水晶球会知道我记下的图案啊!哈哈哈!“
我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将任我们翱翔!
西瓜是夏天中最爱欢迎的水果。今天,妈妈买回了一个又大又圆的`西瓜。于是,我们准备吃西瓜了!
小妹妹问我:”嘉嘉姐姐,你要吃多少呀!“我想了想说,”我吃这个西瓜的1/2吧。“”1/2是什么?“她问。”1/2是分数,是把一个东西平均分成2份,取其中的1份。“我说。”哦。“小妹妹似懂非懂地说。”我吃这个西瓜剩下的1/2。“妈妈插话道。小妹妹问:”剩下的1/2是不是嘉嘉姐姐留下的全部吃掉啊?那我没得吃了?“”哈哈!“我和妈妈哈哈大笑。”不是这样的。“妈妈笑着说。我接话道:”剩下的1/2就是把我吃剩的那部分看作一个整体,再把这部分平均分成2份,取其中的1份。“”是这样啊!那我还是有西瓜吃的了!“小妹妹恍然大悟。小妹妹调皮地说:”以后我要先吃1/2,这样我的1/2比你的多,这次不划算!“”你的,我哪吃得了这么多?你想吃多少就吃多少!“我们都笑了!
你现在认识分数了吗?分数还有很多哦!等着你去发现。让我们一起踏上寻找数学的旅程吧!
一年一度的双11“剁手节”来了。
今天下午,妈妈坐在沙发上,翻看着天猫里面的商品准备在明天双十一抢购。我一直想买一个做奶茶的工具,妈妈是一个实用主意者,没有用的东西一般都不会买回来。我很担心提出需求后妈妈不给买,又说我乱花钱。忍不住内心的想要还是说了出来。
“妈妈可以给我买个玩具吗”?我轻声细语的问。妈妈说,只要我能回答她一个数学问题可以买,我爽快的答应了。我们搜了做奶茶的工具,出现了许多的旗舰店,其中有两家销量最好的都各有各的优惠。它们一套都是68。5元,但是甲店是买两套送一套,乙店是打七折。我要买三套,妈妈问我哪一家便宜,我说甲店是68。5×2=137元(3套),乙店是68。5×3=205。5元,205。5×0。7=143。85元(3套)。143。85大于137,所以甲店划算。当我准确算出答案时,妈妈很爽快的我买了做奶茶的工具。
数学知识在生活中无处不在,我要找到数学的乐趣,遨游在数字的海洋里。
关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。
解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
3。设吉普车用的时间为x小时。
根据题意得:x+15=1。5x
一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。
算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000
答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.
简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5/1=5
30*5=150(小时)200小时>150小时
还可以这样算:
5/1=5
200/5=40(小时)30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:
5/200*100=*100=
1/30*100≈*100=
>
或者这样算:
200/5*100=40*100=4000
30/1*100=30*100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
今天,老师给我们讲了一道三级训练上的重点难题:一个长100米,宽80米的广场中间留了宽4米的人行道,把广场平均分成4块,求每块的面积是多少?
看到题目后,有的人开动脑筋,寻找方法;有的人望着天花板干瞪眼;我绞尽脑汁使劲地想,终于思考出一种方法,于是赶紧举起小手,老师便叫我起来回答,我大声地说:“100-4=96米;96÷2=48米;80-4=76米;76÷2=38米;38×48=1824平方米”。
“你能说说你的思考方法吗?”沈老师问。“先把长减去4,算出两块的长,再除以2就得出一块小广场的长;宽也用同样的方法,最后长和宽相乘便得出一块的面积了。”
沈老师又问“还有其他的方法吗?”
夏雨航站起来回答,他连说了好几个算式,可我们却不懂。
老师又让大家想其他方法,大家看起来信心十足,但又害怕不对又都低下了头。
于是沈老师就带着我们一起理解了各个算式,这困难就迎刃而解了.
通过这节课我明白了一个道理:世上无难事,只怕有心人,只要你肯想,就一定能想出解决问题的办法来!
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”
这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。
但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。
那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。
今天早上一起来,妈妈就宣布:由于家里停水,今天全家到欧尚那边去吃早餐,顺便到超市买东西。
到了那边,我们准备先去吃早餐,先来到了珅府捞面。可是,这里一碗面就要3、40块钱,好贵,而且更加“惊悚”的是,这里的一个鸡爪要5块钱。我们觉得太贵不合算,就来到了“丸来丸趣”,没想到,仅仅一墙之隔,价钱差距就这么大:这里一碗面只要9块钱。吃完早餐,我们就开始逛超市啦!我们先买了一袋我和爸爸最喜欢吃的青桔子,总共数量是11个,价钱是元,差不多一个5毛钱左右。我们又去买了5个鸡爪,一共元。这个鸡爪的价格简直与珅府捞面的价格有着“天壤之别”,一边是不到1元/个,一边是5元/个。来到水果区,我们买了一袋青蛇果,3个共元,这么小的一个青蛇果差不多一个要6元,好贵!接下来,我们又去买了一个哈密瓜,元,没想到,3个小小的青蛇果比一个大大的哈密瓜整整还贵出了元。由于我在邻居桃桃家里尝过黄桃很好吃,我们又去买了3个大大的黄桃,一共元,平均下来每个黄桃是元。我们买完所有需要的东西去结帐,算上这里没有提到的东西,一共是500元。
这次,我从买东西里面学到了很多数学知识,今天真是太开心了!
今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。
”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。
爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“
爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“
我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。
我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。
”哦,儿子你知道一公里等于多少米么?“妈妈问
”100米?“我试着回答
”错了,一公里等于1000米!“妈妈说
”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道
”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。
”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈
”儿子,你真棒!“妈妈赞许的说道。
哈哈,原来计算公里数是有窍门的呀!
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。一、 数学课堂上我们想操做、爱操做数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。二、数学课堂上我们想发言、爱发言 那是一节活动公开课,哇!后面的听课老师一大片,我们真有点紧张呢!上课前我就想即使我有了自己的想法,也不一定能表达出来。老师好像看透了我们的心思,老师幽默地说:“我们现在玩一个“过期”的游戏”,我们正纳闷呢,老师又说“过期”的游戏就是“过7”的游戏,遇到含有7的或者7的倍数都要说“过”。哦,逗得我们哈哈直笑,在非常轻松的氛围中完成了游戏,这时候我发现同学们不愿说话的也开始活跃了,原来不敢说话的也打消了顾虑。我还记得那节课老师讲的是 “时、分的认识”,学生对“时针指在2、3之间,分针指在11”时,是2时55分还是3时55分出现了不同意见,展开了被一场别开生面的争执。这时老师让我们结合自己手中钟表模型分组讨论、探索,最终得出了统一答案。
节日爸爸妈妈陪我去超市,爸爸给我50元让我自己买学习用品和玩具,我买了3张动画碟片,每张6元,我又买了一个1元的玩具,又买了5本本子,每本1元,爸爸让我算算一共多少元。我刚学会了乘法,这还不容易,3×6=18(元),1×5=5(元),18+5+1=24(元),一共用了24元。我算的快吧! 东方明珠塔里的数学
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。
数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。
四则运算
四则运算的意义和计数方法。
加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。
运算定律与简便方法、四则混合运算。
减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。
运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。
复合应用题
长度、面积和体积以及其同类量之间的进率。
质量单位和他们之间的进率。
1吨=1000千克 一千克=1000克。
时间单位进率、人民币进率。
1小时=60分钟 1分钟=60秒。
1块=10角。
比与比例。
正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。
图形与空间
图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。
以上内容参考:百度百科-小学数学
学习兴趣对于学生掌握知识起着非常重要的作用。要我学与我要学,效果截然不同。数学是一门抽象性很 强的学科,如何激起学生学习的乐趣,是数学教师在教学过程中应十分重视的问题。尽管帮助学生逐步明确学 习数学的目的和提高学习数学知识意义的认识,是极其重要的一个方面。但是,对小学生来说,更重要的要靠 教师的课堂教学艺术,即如何结合小学数学这门学科的特点,根据儿童的年龄特征,采取有效的教学方法,去 激发和培养学生学习数学的乐趣。因此在小学数学教学中教师应在“引趣”的问题上多下些功夫。 一、运用谜语、故事组织教学 小学生,特别是低年级儿童,乐于猜谜语,听故事,教学中如能紧密结合教材,运用谜语故事的形式组织 教学,对于激发学生学习兴趣,能起到良好的作用。例如,教师在讲第四册“小时、分、秒、的认识”时,首 先让学生猜这样一个谜语:“会走没有腿,会说没有嘴,却能告诉我们,什么时候起床,什么时候睡。”然后 又根据书本四幅插图,编出一个小朋友是如何爱惜时间、养成良好的生活学习习惯的故事。这样很自然地使学 生认识了钟表,小时、分、秒,同时又及时地向学生进行了珍惜时间的思想教育,学生学习情绪也自然高涨。 二、发挥图示、教具作用,重视直观教学 小学生的思维特点是以形象思维为主要形式,对于具体形象的实物比较感兴趣。因为具体形象的东西直观 、生动、给人印象深刻。所以,现行通用教材结合教学内容,设计有大量的直观图,通过具体形象的实物来说 明概念、性质、法则、公式等数学知识。这样做不仅使学生比较容易理解和接受,逐步培养他们的抽象概括能 力,而且能激起他们学习的兴趣。例如,教师在讲“同样多”的概念时,先将两队小朋友进行拔河比赛的情景 图展现在学生面前,然后引导学生观察图画,从画面的观察分析中建立起“同样多”的概念。由于学生喜欢拔 河比赛之类的游戏竞赛活动,所以学习就感兴趣。在讲比多(少)应用题时,事先用白、黑纸版各剪兔子纸型 12个和7个。教学中运用教学绒板,进行贴示,从贴示中说明“白兔比黑兔多、“黑兔比白兔少”、“白兔比黑 兔多多少”、“黑兔比白兔少多少”等概念,之后又要学生依据“同样多”“多多少”“少多少”来说明图示 或自己动手摆图形,这样,学生学习积极性很高,不仅较好地理解和掌握了这一类应用题的有关概念和解法, 而且提高了学习应用题的兴趣和爱好。 三、通过实践操作,调动学习积极性 教学单凭老师讲,学生只通过一种感官来进行学习,就容易感到疲劳、厌倦,听不进、记不住,效果就差 。而通过多种感官,发挥学生好动的特点和长处,让他们亲自动手做一做、画一画、比一比、量一量、拼一拼 、剪一剪、学生积极性就高,教学效果就好,特别是几何初步知识的教学,这样作更能收到良好的效果。 例如,在讲长方形和正方形的面积时,教师为了让学生区分面积和周长,可以要学生先剪一个长方形和正 方形,然后让学生说一说它们的面积和周长各指的是什么。为得出长方形、正方形的面积计算公式,先让学生 用纸剪一个边长是1厘米的正方形,用它量一量长方形、正方形图形的面积有多大,量一量数学书的书面有多大 。由于学生亲自动手操作,参加实践,所以,学习兴趣很浓,对长方形、正方形的面积计算公式就理解深刻, 记忆牢固。 四、进行尝试练习,满足好奇心 小学生的好奇心、好胜心是很强的。教师就要根据儿童的这一特点,采取尝试性练习的方法,激发学生学 习兴趣,激起学生的求知欲望。例如,在讲第九册“分数化成小数”时,先让学生用除法把4/3、7/25、1/3、 7/22化成小数,然后教师指出问题,什么样的最简分数能够化成有限小数,什么样的最简分数不能化成有限小 数?我们能不能进行除法计算,从中找出规律来呢?由于学生通过练习,急于寻找规律,学习积极性就高涨, 兴趣就大增,教师可就势引导学生观察分数化成小数的几道算式,进行分析比较,从而得出分数化成有限小数 的规律。 五、巧妙设问,激发学习兴趣 教学是艺术性的劳动,教师形象生动的语言、恰当的姿势和手势、巧妙地设计各种启发式的问题,对于激 发学生学习兴趣都起着重要的作用。因此,在教学中教师应十分注意自己的数学语言,无论在复习旧知导入新 知时,还是进行新课时,或是巩固新知时,都应注意巧妙地设计一些思考性较强的问题,激发学生学习兴趣使 学生产生强烈的学习欲望。例如,在讲乘法的初步认识时,教师可先让学生进行求相同加数的和的加法计算, 或师生进行计算比赛,从而提出教师为什么一下子能算出结果?或提出这样连加多麻烦,还有没有比较简便的 计算方法?求几个相同加数的和,用什么方法计算要简便?当学生认识到用乘法计算简便后,老师又提出2×3 读作什么?它表示什么?3×4读作什么?表示什么,乘号前面的数是什么数?乘号后面的数是什么数?结果叫 什么?通过层层设问,就能有助于学生学习兴趣的持续发展。 六、采取多种练习手段,适应学生心理特点 注意力不稳定、不持久,对某一事物集中一段时间就开始分散、就不感兴趣、喜欢多变,这是小学生的又 一心理特点。因此,教学中应运用各种变换的教学手段促使学生兴趣发展,特别是一堂课的练习,切忌单调的 形式和简单机械的重复,否则不利于激发学生学习兴趣。例如,在低中年级教学中,教师可利用游戏进行教学 ,把学生对游戏的兴趣转移到学习上来,如口算、笔算接力、组数对口令、找朋友、开火车、夺红旗等;在高 年级教学中,教师可采取看谁解得快,看谁解法多,看谁编得又对又快(自编应用题)等办法,不仅能提起学 生学习精神,保持活跃的课堂气氛,消除学习疲劳,而且有利于学生对所学知识的巩固。
《2021小学数学报刊》百度网盘pdf最新全集下载:链接:
拉玛奴江 1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而发行的。 拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。 在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是肺病却蚕食了他的生命,他在三十三岁时悄然逝去。 他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几何的兴趣。 有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差不多在这个时候他对等差,等比级数的性质自己作了研究。 在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,偷偷地放到裏的屋梁上。 他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。 在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并参加1907年的「文科第一考试」,。是又失败了。 在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他生活困难,几次在中餐时邀他在家裏吃些东西。 根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。 拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学才能。 接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心里是很惭愧,已经有一个月不去拿钱了。 很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学家哈地球()教授,在这信裏列下了他以前研究得到的一百二十个定理和公式。 哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论的知识。比他教给拉玛奴江的还多。 从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身上有无名的疼痛。 后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地教授讲他在病中的一个故事: 有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:「这是最小的整数能用二种方法来表示二个整数的立方的和。」(1729=13+123=93+103) 拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一些预测的结果,还是目前数学家正想法证明的。 他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他矗立一个大理半身像。 如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿死的小孩,他们有许多会是未来的拉玛奴江!」高斯-被誉为「数学王子」的德国大数学家,物理学家和天文 学家。 德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。贫寒家庭出身 高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受过什麼教育。 母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。 高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。 他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。 父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!算错了,钱应该是这样.....。」 父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。 另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式: 1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。 原来 1 +100= 101 2 + 99 = 101 3 + 98 = 101 . . . 50 + 51 = 101 前后两项两两相加,就成了50对和都是 101的配对了即 101 × 50 = 5050。 按:今用公式 表示 1 + 2 + ... + n 高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。 高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。 他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。 高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。 有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。 公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。 费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢?高斯的学校生涯 在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当於高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。 他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。 1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。 高斯这时候不知道要读什麼系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。 可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。 我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,内角也一样的 n 边多边形。 希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。 还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和圆规画出当且仅当 n 是底下两种形式之一: k= 0,1,2, ... 十七世纪时法国数学家费马 ( Fermat ) 以为公式在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4是质数,F5不是)。 高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。 1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为”代数基本定理”。 事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。 二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研究的成果写成一本叫<算学研究>,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍”同余”这个概念。灿烂的古巴比仑文化 发源於现在土耳其境内的底格里斯河(Tigris)和幼发拉底河 (Euphrates) ,向东南方流入波斯湾。河流经过现在的叙利亚和伊拉克。 现在我们生活的「星期制度」是源於古代巴比仑。巴比仑人把一年分为十二个月,七天组成一个星期,一个星期的最后一天减少工作,用来举行宗教礼拜,称为安息日-这就是我们现在的礼拜日。 我们现在一天二十四小时,一小时有六十分,一分有六十秒这种时间分法就是巴比仑人创立的。在数学上把圆分三百六十度,一度有六十分这类六十进位制的角度衡量也是巴比仑人的贡献。 古代巴比仑人的书写工具是很奇特的,他们利用到处可见的粘泥,制成一块块长方薄饼,这就是他们的纸。然后用一端磨尖的金属棒当笔写成了「楔形文字」 (cuneiform) ,形成泥板书。 希腊的旅行家曾记载巴比仑人为农业的需要而兴建的运河,工程的宏大令人惊叹。而城市建筑的豪美,商业贸易的频繁,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械工程的研究,这是当时其他国家少有的。 可是巴比仑盛极一时,以后就衰亡了,许多城市埋葬在黄土沙里,巴比仑成为传说神话般的国土,人们在地面上找不到这国家的痕迹,曾是闻名各地的「空中花园」埋在几十米的黄土下,上面只有野羊奔跑的荒原。 到了十九世纪四十年代,法国和英国考古学家发掘了古城及获得很多文物,世人才能重新目睹这个地面上失踪的古国,了解其文化兴盛的情况。特别是英国人拉雅( Loyard)在尼尼微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥板书,包含历史、文学、外交、商业、科学、医药的记录。巴比仑人知道五百种药,懂得医治像耳痛及眼炎,而生物学家记载几百种植物的名字及其性质。化学家懂得一些矿物的性质,除了药用外,而且还利用提炼金属,制陶器及制玻璃的水平很高。 有这样高文化水平的民族,他们的数学也该是不错吧?这里就谈谈他们这方面的贡献。巴比仑人的记数法 巴比仑人用两种进位法:一种是十进位,另外一种是六十进位。 十进位是我们现在普通日常生活中所用的方法,打算盘的「逢十进一」就是基於这种原理。 巴比仑人没有算盘,但他们发明了这样的「计算工具」协助计算(图一)。在地上挖三个长条小槽,或者特制有三个小糟的泥块,用一些金属小球代表数字。比方说:巴比仑城南的农民交来了 429 袋的麦作为国王的税金,而城东的农民交来了 253 袋的麦。因此国王的仓库增加了 429 + 253 = 682 袋粮食。我们用笔算一下子就得到答案,可是巴比仑人却是先在泥板上的小槽上分别放上:4 个, 2 个,9 个的金属球,这代表了 429。然后在置放 4 个金属球的小槽上添加 2 个小球,中间槽上添加 5 个小球,最后的小槽上添加3 个小球。 现在最后一列的小槽上有 12 个小球,巴比仑人就取掉十个,在中间那个槽里添上 1 个小球-这也就是「逢十进一」。 最后泥板上的数字 682 就是加的结果。这不是很好玩吗?(图二)我们可以利用这方法以实物教儿童认识一些大数的加法。六十进位制目前是较少用到,除了在时间上我们说:一小时 = 60 分,1 分 = 60 秒外,在其他场合我们都是用十进位制。 可是你知道吗?就是古代的巴比仑人定下一年有三百六十五天, 十二个月,一个月有二十九天或三十天,每七天为一个星期,一个圆有三百六十度,一小时有六十分,一分有六十秒等等,我们现代还是继续采用。 考古学家在一块长三又八分之一吋,宽二吋,厚四分之三吋的泥板书上发现了巴比仑人的记数法。这泥板的中间从上到下有像(图四)的符号:读者可以看出这是代表:1,2,3,4,5,6,7,8,9,10,11,12,13。这泥板书受到盐和灰尘的侵蚀,但可以看到泥板书的右边前五行是形如:很明显的这应该代表 10,20,30,40,50。 可是接下来的却是这样的符号:如果我们前面知道的符号是写成: 1 1,10 1,20 (缺三个) 2 2,10 这是什麼意思呢?考古学家猜测那几个符号照上面10,20,30, 40,50的次序应该是代表60,70,80,(缺掉的90,100,110),120,130。 是否那个 1 的符号也可以代表 60 呢?如果是的话那麼 1,10 就是代表 60 + 10 = 70。而 1,20 是代表 60 + 20 = 80。而那个将代表 2 × 60 = 120了。很明显 2,10是代表 120 + 10 = 130。 这样的猜测是合理的,由於巴比仑人没有符号表示零,而他们采用的是 60 进位制,因此同样一个符号可以代表 1 或 60。 没有零符号在记数上是很容易产生误会,比方说:可以看成 1,20 = 1 × 60 + 20 = 80 或 1,0,20 = 1 × 602 + 0 × 60 + 20 = 3620。 到了两千年前巴比仑人才采用表示零。 因此像代表 2,3,0,41 即 2 × 603 + 3 × 602 + 41 = 442841 从此巴比仑人小於 60 的数字的记数可以看出他们懂得「位值原理」。巴比仑人怎样进行除法运算? 从一些泥板书里可以看出底下的对应。2 30 16 3,45 45 1 ,20 3 20 18 3,20 48 1 ,15 4 15 20 3 50 1 ,12 5 12 24 2,30 54 1 , 6 ,40 6 10 25 2,24 8 7,30 27 2,13,20 9 6,40 30 2 10 6 32 1,52,30 12 5 36 1,40 15 4 40 1,30 如果你在现在的伊拉克的土地上发掘这样的泥板书,你能了解这是什麼意思吗?四十多年前考古学家发现这事实上就是巴比仑人的「倒数表」。我现在把以上的表改写:你可以看出这就是把整数 n 的倒数1/n用六十进的分数来表示。比方说 27对应 2,13,20意思就是:你会注意到以上的表缺少了:7,11,13,14,17,19,21,23,26,28,31,33,34,35等等,这是什麼原因呢? 原来是这样:巴比仑人只列下以六十进位制的分数表示式是有限长的那些整数,而这些整数只能是 2a3b5c(这里a,b,c是大於或等於零的整数)的样子。 对於 7 来说,它的倒数如果是以六十进位数表示将得到循环分数,即 8,34,17,8,34,17,....直到无穷。对於 11 也是如此,我们得到 5,27,16,21,49 然后重覆以上的样式以至无穷。 为什麼要构造这样的「倒数表」呢? 我们在小学学计算:先学加,然后学减。先学乘,然后学除。如果现在要算a ÷ b ,我们可以把这问题转化成为 a × (),这样只要知道 b 的倒数,我们就「化除为乘」,计算有时是会快捷一些。 古代的巴比仑人也懂得这个道理,因此在实际生活上,如在灌溉、计算工资、利息、税项、天文等问题上遇到除的问题,就尽可能将它转变为乘的问题来解决,这时候「倒数表」就很有用了。关于无理数的发现 古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死.希伯斯连忙外逃,然而还是被抓住了,被扔入了大海,为科学的发展献出了宝贵的生命.希伯斯发现的这类数,被称为无理数.无理数的发现,导致了第一次数学危机,为数学的发展做出了重大贡献.欧几里得,(约公元前330-275年),古希腊数学家。其著作《几何原本》闻名于世。欧几里得将公元前七世纪以来希腊几何积累起来的既丰富又纷纭的庞杂结果整理在一个严密统一的体系中,从原始定义开始,列出5条公设,通过逻辑推理,演绎出一系列定理和推论,从而建立了被称为欧几里得几何学的第一个公理化数学体系。 据资料记载,有统治者问他学几何有无简捷的方法,他回答:“在几何里,没有来为国王铺设的大道”。这句话后来成了传诵于古的学习箴言。他的著作除《几何原本》外,还有不少,可惜大都失传,《已知数》、《圆形的分割》是保存下来的著作。
奥林匹克应用题 某工人一年的报酬是8400元和一台电冰箱,他干了7个月就不干了,他得到3900元和一台电冰箱,这台冰箱是多少元?
钟上没有数字的话就是7,有数字的话就是5
钟上没有数字的话就是7,有数字的话就是5
大雁多少只,一般是加减发,让孩子认真审题,首先弄清楚是加还是减,然后进行运算就可以
7时吧,应该是没有数字的钟面。。
专家被砖头砸到头了
网上搜的,希望对你有帮助。“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在! 巧赢硬币 记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。数的由来和发展 人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C(代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:"XV"表示 "15,000","CLXV"表示"165,000"。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。
古希腊哲学家亚里士多德提出“思维自惊奇和疑问开始”,学生的思维活跃于疑问的交叉点。为此教师应依据教材内容,抓住儿童好奇心强的心理特点,精心设疑,制造悬念,着意把一些数学知识蒙上一层神秘的色彩,使学生处于一种“心求通而未达,口欲言而未能”的不平衡状态,引起学生的探索欲望,促使其积极主动地参与学习。下面结合教学实践谈谈在小学数学课堂教学中设置悬念的几种方法。 一、激“疑” “学起于思,思源于疑”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。适时激疑,可以使学生因疑生趣,由疑诱思,以疑获知。 如在教学“体积的意义”时,教师巧妙地利用“乌鸦喝水”的故事向学生激疑:“为什么瓶子里的水没有增加,丢进石子后水面却上升了?”一“石”激“浪”,课堂上顿时活跃起来,学生原有的认知结构中有关长度、面积等的知识块被激活。他们各抒己见,有的说因为石子有长度,有的说因为有宽度,还有的说因为有厚度、有面积等。正当学生为到底跟什么有关系而苦苦思索时,教师看准火候儿,及时导入新课,并鼓励学生比一比,看谁学习了新课后能够正确解释这个现象。这样通过“激疑”,打破了学生原有认知结构的平衡状态,使学生充满热情地投入思考,一下子把学生推到了主动探索的位置上。 二、巧“问” 一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中要结合教学内容精心设计问题来吸引学生的注意力,唤起求知兴趣。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的。”“如果是长方形或三角形行不行?”学生笑着连连摇头。我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑。”我紧接着追问:“为什么圆的就行呢?”学生一听,马上活跃起来,纷纷议论。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C(代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:"XV"表示 "15,000","CLXV"表示"165,000"。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。
数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。