首页

> 学术论文知识库

首页 学术论文知识库 问题

图像识别研究论文选题

发布时间:

图像识别研究论文选题

人脸识别,虹膜识别,指纹识别,图像水印,图像边缘检测,视频处理,3D视频技术等等。我就是学通信的,马上毕业了。

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章通读一些相关资料,对这方面的内容有个大概的了解!参照你们学校的论文的格式,列出提纲,补充内容!实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!最后,到万方等地进行检测,将扫红部分进行再次修改!祝你顺利完成论文!

图像识别的研究和应用论文

医学方面、安全监控方面、原件缺陷检测、人流统计、车牌识别、机器人运行定位等等。图像识别技术的研究目标是根据观测到的图像,对其中的物体分辨其类别,做出有意义的判断。即利用现代信息处理与计算技术来模拟和完成人类的认识,理解过程。一般而言,一个图像识别系统主要由三个部分组成,如图l所示,分别是图像分割,图像特征提取以及分类器的识别分类。目前,在图像识别的发展中,主要有三种识别方法:统计模式识别、结构模式识别、模糊模式识别。江苏视图科技目前能做到相同图,相似图搜索,公司是国内一流图像识别算法提供商。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

确定物体个数和中心的话,利用颜色值进行连通性分析,应该能确定一块相同颜色的区域,找到这块区域就能确定质心点了。要是还要判断形状还得先提取出每个形状的特征。1.识别静态的整个人体较难;即使识别出来结果也不可靠,所以现在主要以手势/人脸识别为主;这是因为手和脸上面有比较独特的特征点。你说的滤波归根结底还是要找出具有灰度跳变的高频部分作为人体;这除非背景中除了人以外没有其他突出的物体;否则光凭滤波二值法检测人体是不太现实。2 两张图片中人要是产生相对运动,检测起来就容易多了;利用帧间差分找到图像中灰度相差大的部分(你用的滤波也是一种手段);然后二值化区域连通;要是图像中没有其他移动物体计算连通区域的变动方向就是人的运动方向。先建立起静态背景的模型(或者直接在没人的时候拍张);然后不断的与这个背景做差,原理和帧间差分一样。建议你先从典型的帧间差分例程开始下手(比如移动车辆的检测,这个比较多)。 在二值化之后加上一个区域连通的步骤;即使用膨胀或者闭运算;这样轮廓就是连续的了;用matlab的话bwlabel可以统计连通区域里面像素的个数也就是人体面积大小。质心就是横竖坐标的平均值;取所有人体点的横竖坐标分别累加;除以坐标总数得到的x和y平均值;这个就是质心了。

遥感应用,矿物勘探,农业普查,火灾监测,智能交通,视频检测跟踪等。具体做到什么程度,就要看大牛们发的国际论文了。

图像识别技术论文

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

主要应用领域图像识别技术可能是以图像的主要特征为基础的,每个图像都有它的特征。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。图像识别技术是立体视觉、运动分析、数据融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域可广泛应用。遥感图像识别航空遥感和卫星遥感图像通常用图像识别技术进行加工以便提取有用的信息。该技术目前主要用于地形地质探查,森林、水利、海洋、农业等资源调查,灾害预测,环境污染监测,气象卫星云图处理以及地面军事目标识别等。军事刑侦图像识别技术在军事、公安刑侦方面的应用很广泛,例如军事目标的侦察、制导和警戒系统;自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等。生物医学图像识别在现代医学中的应用非常广泛,它具有直观、无创伤、安全方便等特点。在临床诊断和病理研究中广泛借助图像识别技术,例如CT(ComputedTomography)技术等。机器视觉作为智能机器人的重要感觉器官,机器视觉主要进行3D图像的理解和识别,该技术也是目前研究的热门课题之一。机器视觉的应用领域也十分广泛,例如用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人。此外机器视觉还可用于工业生产中的工件识别和定位,太空机器人的自动操作等。总结:人工智能前景不可限量,图像识别作为AI技术的支撑,是一种强有力的识别方式,随着AI在场景上的深入,图像识别应用领域会越来越广。

图像识别技术是人工智能研究的一个重要分支,也是人们日常生活中使用最广泛的人工智能技术之一。近年来,随着深度学习技术的发展,图像识别准确率显著提高。本论文研究了图像识别的传统技术和深度学习技术,分析了深度学习技术的几点不足,并给出未来可行的解决方案。【关键词】人工智能 图像识别 深度学习1 概述图像识别技术是人工智能研究的一个重要分支,其是以图像为基础,利用计算机对图像进行处理、分析和理解,以识别不同模式的对象的技术。目前图像识别技术的应用十分广泛,在安全领域,有人脸识别,指纹识别等;在军事领域,有地形勘察,飞行物识别等;在交通领域,有交通标志识别、车牌号识别等。图像识别技术的研究是更高级的图像理解、机器人、无人驾驶等技术的重要基础。传统图像识别技术主要由图像处理、特征提取、分类器设计等步骤构成。通过专家设计、提取出图像特征,对图像进行识别、分类。近年来深度学习的发展,大大提高了图像识别的准确率。深度学习从大量数据中学习知识(特征),自动完成特征提取与分类任务。但是目前的深度学习技术过于依赖大数据,只有在拥有大量标记训练样本的情况下才能够取得较好的识别效果。

图像识别论文答辩

中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章通读一些相关资料,对这方面的内容有个大概的了解!参照你们学校的论文的格式,列出提纲,补充内容!实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!最后,到万方等地进行检测,将扫红部分进行再次修改!祝你顺利完成论文!

答辩时怎样回答有关论文创新点的问题 通过几年来作为答辩委员会成员的实践和观察,我认为进行毕业论文答辩注意以下几个问题,对提高成绩是有益的。一、熟悉内容作为将要参加毕业论文答辩的同学,首先而且必须对自己所著的论文内容有比较深刻的理解和比较全面的熟悉。所谓“深刻的理解”是对论文有横向的把握。这两方面是为回答答辩委员会成员就有关论文的深度及相关知识面而提出的问题所做的准备。例如,题为<创建名牌产品发展民族产业>的论文,答辩委员会成员可能会问“民族品牌”与“名牌”有何关系。尽管论文中未必涉及“民族品牌”,但学生必须对自己的论文有“比较全面的熟悉”和“比较深刻的理解”,否则,就会出现尴尬局面二、图表穿插任何毕业论文,无论是文科还是理科都或多或少地涉及到用图表表达论文观点的可能,故我认为应该有此准备。图表不仅是一种直观的表达观点的方法,更是一种调节答辩会气氛的手段,特别是对私人答辩委员会成员来讲,长时间地听述,听觉难免会有排斥性,不再对你论述的内容接纳吸收,这样,秘然对你的毕业论文答辩成绩有所影响。所以,应该在答辩过程事适当穿插图表或类似图表的其它媒介以提高你的答辩成绩。三、语流适中进行毕业论文答辩的同学一般都是首次。无数事实证明,他们在众多的都是和同学面前答辩时,说话速度往往越来越快,以致答辩委员会听不清楚,影响了答辩成绩。故答辩学生一定要注意在答辩过程中的语流速度,要有急有缓,有轻有重,不能像连珠炮似的轰向听众。四、目光移动毕业生在论文答辩时,一般可脱稿,也可半脱稿,也可完全不脱稿。但不管哪种开工,都应注意自己的目光,使目光时常地瞟向答辩委员会成员及会场上的同学们。这是你用目光与听众进行心灵的接触,使听众对你的论题产生兴趣的一种手段。在毕业论文答辩会上,由于听时间过长,委员们难免会有分神现象,这时,你用目光的投射会很礼貌地将他们的神“拉”回来,使委员们的思路跟你的思路走。五、体态语辅助虽然毕业论文答辩同其它答辩一样以口语为主,但适当的体态语运用会辅助你的答辩,使答辩效果更好。特别是手势语言的恰当运用会显得自信、有力、不容辩驳。相反,如果你在答辩过程中始终如一地直挺挺地站着,或者始终如一地低头俯视,即使你的论文结构再合理,主题再新颖,结论再正确,答辩效果也会大受影响。所以在毕业论文答辩时,一定要注意使用态语。六、时间控制一般在比较正规的答辩会上,都对辩手有时间要求,因此,毕业学生在进行论文答辩时应重视时间的掌握。对时间的控制要有力度,到该截止的时间立即结束,这样,显得有准备,对内容的掌握和控制也轻车熟路,容易给答辩委员会成员一个良好的印象。故在答辩前应该对将要答辩的内容有时 论文创新点怎么写 首先,我们需要知道论文创新点对于一篇论文的重要性。现在网络上的论文越来越多,许多论文都是由其他的论文剪切拼接成的,对于一个搞学术的来说,这种做法不但对于学术研究没有任何帮助,而且也会浪费自己的时间。 我们要写好一篇论文,必须知道论文写作的意义,这篇论文和其他已经出现的论文有什么不同,这篇论文能够有什么贡献。相对于其他论文的不同,相对于其他论文的贡献其实就是我们论文的创新。 其次,我们需要知道论文创新点怎么获得。论文的创新点不是凭空出现的,一篇好的论文,一个好的创新点是需要大量的知识积累的。但是,创新点又不简单的是知识的积累。它是需要我们阅读大量过去学者的文章,积累大量的知识,然后站在巨人的肩膀上看问题,看的更远一点,看的更透彻一点,能够有自己的新想法,这些新的想法就是我们文章的创新点。最后,具体的说一下论文创新点的写法。 我们研究一个主题,先要有这个主题相关的知识积累。这部分知识积累可以来自于我们的专业学习,也可以通过后期自己阅读大量的文献资料获得。积累了一部分知识后,就构成了我们研究的平台,我们下一步就是再这个平台上能够建立一个杆子。这个杆子越高,代表我们研究的越深。那么这个杆子怎么让它高点呢?这就需要我们阅读大量专家学者关于这个主题的研究,在阅读的时候,我们需要不断的思考,思考他们都做了哪些研究,哪些地方值得我们学习,哪些地方我们有不同的看法。对于有不同看法的地方,我们应该怎么去处理。当我们把这些问题想明白的时候,创新点也就出来了。 论文创新点怎么写 你发现的现象的弊端,肯定就有相应的创新点啊。 可以帮助。 毕业论文创新点怎么写范文 指标,但股权激励的对象是公司的管理层,评价激励的有效性时应该衡量管理层的业绩。目前国内大部分的研究都不区分公司业绩与管理层业绩,考虑到国有企业的特殊性,本文选取管理层业绩作为股权激励有效性的衡量指标,剔除市场环境、市场结构与企业资源对企业经济业绩的影响后,观察国有企业股权激励的真实效果。为我国国有企业建立长期有效的激励制度提供实证依据。 3、引入相对业绩评价理论。系统阐述了相对业绩评价理论,并基于相对业绩评价理论结合我国国有企业的特点从会计回报、公司发展、股票回报三个不同的角度确定国有上市公司的相对业绩。 4、运用新的模型。在对我国国有上市公司股权激励有效性实证分析时,本文并没有直接运用前人已有的模型,而是将各种模型进行回归比较,探寻最佳模型,以使回归结果更真实准确的反应股权激励比例与管理层业绩之间的关系,对我国国有上市公司具有直接的借鉴意义。 在对国有上市公司股权激励的研究中,笔者深深的感受到了这一研究课题的奥秒无穷。虽然笔者己经做了大量的研究与努力,但由于个人对股权激励的认识还不够深入,加之个人的精力能力有限,本文还是存在着以下不足: 1、研究对象的局限性。本文的管理层股权激励只是针对国有上市公司做了相关的研究,但是管理层激励问题并非只存在国有上市公司,国有非上市公司中也大量存在。由于国有非上市公司的相关数据难以收集整理,因此本文的研究结论可能只适用于国有上市公司,对国有非上市公司的适用性有待于研究,这导致研究成果的推广缺乏应用基础。 2、数据选取的局限性。由于本文选取股权分置改革后的数据为研究样本,我国分置改革时间很短,相关的法律法规也并不完善,所以实施股权激励的国有上市公司并不是很多,从而导致了研究样本容量相对较少。 3、指标选择的局限性。本文选择相对业绩作为被解释变量,由于非财务指标难以量化以及我国国有企业业绩评价的特殊性,本文在衡量相对业绩时只选择了单一的财务指标,并没有构建全面的相对业绩评价体系。其次,影响股权激励有效性的因素十分广泛,由于笔者知识储备的局限,本文研究只选取了部分控制变量,可能考虑不尽详全,这些都将影响研究结果的准确性。 4、研究方法的局限性。本文选择相对业绩作为股权激励有限性的替代变量,但相对业绩评价理论的发展时间尚短。国外有关于相对业绩评价理论的研究很多,但我国的研究还处于初始阶段。而且大多用于研究管理层薪酬问题,几乎没有涉足过股权激励。那么相对业绩评价理论对股权激励的适用性有待于进一步检验。 5、缺少验证。由于数据收集的局限性以及时间关系,在进行描述性分析时,国有上市股权激励前后公司绩效是否有所变化本文没有实施验证,这是本文的又一不足之处。 如何找到论文的创新点,求教 创新难,难创新,首先就是要找到创新的点,才能想实现创新的途径和方法。我觉得可以从如何几个方面: 1。科研扫盲,这是创新的第一步也是必要的一步。 首先是把导师,师兄,师姐的文章和学术论文,科学基金的申请成功报告,没中的申请报告,结题报告,横向课题的报告,咨询报告等全部浏览一遍,知道自己在什么领域,这个领域你的导师和前几届做什么,这个对于硕士来说,我觉得很有必要。这相当于给你科研扫盲,对于那些博士跨学科的来说,也是很有必要的。 2。寻找问题和分解问题,创新的源头。 如连问题都找不到或不知道如何分解问题,科研的基本功需要加强和科研思考的方式需要转换。 多参加知名专家或者基金委或者部委的讲座。这个可以听到很多现实问题的描述,不一定是怎么解决,可能是抛出了问题。问题导向,往往就是我们研究的出发点。还有有的虫子可以走捷径,就是关注当年国家基金(自然、社科、863,973等)申请指南和已经中标的基金项目,这些都有网站,上面都有每年中标项目和项目列表统计,多去看看。如果2007年,有个基金项目你正好赶兴趣,这时你正好处于选题时候,就可以选他,等那个基金结题了,你的博士论文也差不多了。尽管处于两个地方,但是肯定结果不一样。还有就是多观察和对经常见的问题问个为什么?不要相信任何权威,敢于对一切质疑。导师不一定是对的。许多重大创新都是建立对权威的挑战,这样的例子数不胜数。这个问题如果延伸到医学,你看那些得胃病的人,往往是饱一顿饿一顿,或者经常吃的很饱(据说经常吃的很饱容易变傻),其实如果我们让得胃病的人吃饭的时候“适度亏缺”不就容易了吗?接下来的问题就是:那么为什么适度亏缺就可以了?我们可以发明什么药物让这个人吃了这个药胃还没吃饱情况下就产生饱意或者适度亏缺呢?所以,问题就是要平时多观察一些细致的问题或者已经发生的问题,我们往往对我们习以为常的问题,不问为什么,建议大家看看每年搞笑诺贝尔奖的情况。 3。看文献——获取创新灵感或者解决问题方法的路径依赖。 看文献,不是看书。这个很多虫子也贡献了很多经验。但是我周围的人也知道小木虫,但是很多人看了那么多经验,可是看完了还是很困惑?原因何在呢?我观察了很周边的同学和同事,我发觉一个重要的就是动手太少,看纸质期刊太少。这个我想小木虫很多发SCI的,一般看国外期刊,但是现在很多图书馆的国外学术期刊也有纸质版本,看纸质版本,你可以浏览到你的这个领域顶级期刊相关的研究,一些人为什么没有找不到创新,有可能就是根本不知道自己研究的领域到底有那些方向。随便浏览纸质版本,或许一个并不相关的问题,你无意中看到了,给了你启发,电脑搜索的电子文献往往我们是按主题或者关键词搜索的,请问,你能保证你提前设置的关键词是最新的吗?创新要看不同主题的文章,很多来源于交叉和其他学科。当然有的学科即使要创新也要需要实验设备支撑,这个也是不断磨合的过程。要想找到自己创新点,我觉得看文献很重要。如何看呢?首先,准备好一个不大不小的笔记本(可以命名为科研灵感本),最好有个厚重封皮,准备一支笔。去图书馆期刊阅览室,带着前面1,2想到的问题和听到的问题(也要记在你那个专门的科研灵感本上),静下心来,加起来的时间至少2个月,边看期刊的时候,如果闪现什么灵感,马上记下来,切记,一定要记下来,好记忆不如烂笔头,注明出处,你的灵感是解决什么问题的,这个文献给你的启示到底是什么,如果你当时沿着这个灵感还有其他想法,就沿着这个思路下去,直到你不知道写什么,那么就停止,看第二篇。看期刊,最好是从目录看起,稍微沾边的都要浏览一下。对于做实验的科研来说,一般中文期刊比较少......>> 研究生毕业论文的选题意义和创新点怎么写 提供一个开题报告范文范例,仅供参考,有什么不懂的地方可以问我,希望对你开题报告写作能有帮助。你可以按下面几部分开始写: 理论意义是指对于学科理论体系的构建和研究的意义,这主要要联系个人专业背景来谈; 现实意义是指运用方面的意义,比如说可以供心理辅导、学校心理健康课参考,引起全社会对家庭教育的重视等等。 本毕业论文研究的现实意义 本研究拟解决的问题是如何鼓励员表现出抑制性进谏行为,研究结论可以为组织管理实践提供以下三个方面的建议:第一,员工与直接上级的高质量关系能促进员工的抑制性进谏行为,那么组织管理实践中实施措施来培养员工形成与直接上级的高质量关系非常重要。从更为广泛的角度来讲,则说明工作团队的直接上级对员工抑制性进谏行为的表现有重大影响。因此,从直接上级的角度来看,本研究结论对组织管理实践的启示有三点: 首先,直接上级可以培养与员工的高质量关系(例如Burrisetal.,2008),这能减少员工进谏前的顾虑,激发其表现出更多的抑制性进谏行为.其次,直接上级对进谏者的反馈也值得考量,合适的行为反馈反过来会鼓励员工的抑制性进谏行为,例如领导者即使不采纳意见也要对员工表现出进谏行为给予肯定,反之则会挫伤员工进谏的积极性。最后,组织开展面向领导者的培训课程,让领导者明白团队成员的多样性看法和观点对于团队运作的价值,使领导者养成对员工进谏的接纳态度。 第二,建立高水平的团队认同意义重大。建立员工对团队的认同感是一个长期的不能间断的任务,从员工新加入团队开始到长期在团队工作的整个过程,都要不断强调员工的认同感。尤其是当新员工加入团队时,他们经历的组织社会化(organizational socialization)过程对于团队认同的塑造是至关重要的(Hogg,2001)。成功的组织社会化过程会让员工第一时间把团队身份纳入到自我概念中,为员工更深入的认同团队起了锅定作用。在随后长期的团队互动过程中,管理者也不要忘记加强个体对团队的认同感。这时,开展团队集体活动、设置共同的团队目标等可以强化个体的团队认同(Mael & Ashforth, 1992)。 第三,自我审查会妨碍员工抑制性进谏行为的产生,现实组织中管理者应采取措施创造积极开放的氛围来提升员工的心理安全感(Kahn, 1990),减少员工的自我审查。只有当个体感知到所处的工作环境中有着积极的进谏氛围时,才可能经历少的自我审查过程,从而利于进谏行为的发生。为了激发团队内的抑制性进谏行为,工作团队要努力建立支持员工“与众不同”行为的团队氛围。 本毕业论文研究的理论意义 本研究为抑制性进谏研究的发展提供重要的实证素材,其理论意义体现在以下四个方面: 首先,组织内的员工往往对周边工作环境、工作流程或者是团队内的任务分配等方面存在的问题心知肚明,虽然私底下他们总是对这种种的问题议论纷纷,但是不论是在公开场合还是在领导者面前,我们都鲜少看到员工进谏的身影(Milliken et al., 2003)。员工内心的想法为什么不能驱动他们形成进谏的意愿和行为?本研究基于计划行为理论的框架,对上述问题进行了探讨。 计划行为理论(Ajzen,1991)自从提出以来,对于个体“计利”行为发生的机理表现出了强大的解释力和预测力。作为一个理性人,个体是否会做出某种行为,不仅取决于个体对于这种行为的态度,同时,个体感知到的主观规范和行为控制也会同时影响个体的行为意向和最终行为表现。具体到抑制性进谏行为本身,虽然员工清楚的知道进谏是一种对于组织可能有利的积极行为,表达出自己内心的担忧和顾虑很可能帮助组织改正问......>> 毕业论文查重里面有个创新点怎么填 论文查重用paperrater论文检测系统去查重检测论文 查重精准度的经猪肚比知网的还要高的 毕业论文创新点怎么写 咦,你们那里的人素质不都是挺高地吗, 那里走出的院士不是挺多地吗, 那里的博导不是世界上最好的吗, 下面的工程技术应用, 对于他们来说, 都是小菜一碟, 信手拈来, 举手之劳罢了, 不足一提, 太小小意思了。 如何将电动车寄回家? 生产通用装置, 可以套在绝大多数国产电动两轮车上, 完成以下的使命, 开展如下的崭新业务: 安装自动驾驶装置, 安装自动全球导航系统, 安装全球定位系统, 安装通过隧道时候的惯性制导系统和立体图像识别处理系统, 使他, 自动开回去啊。 快递公司、物流公司、铁路运输、汽车运输、船舶航运, 都规定严格禁止在被运输的电动车内部保存电池!!! 只有这种工程技术手段, 才能够连同电池一起, 将电动车以最高的速度送往目的地。 你再在车里安装全球传输的视频监控装置, 远程人工辅助驾驶, 全球网络刷卡付费充电, 在当地寻找充电资源, 通过卫星网络联络。 在车辆上面安装太阳能发电板, 安装风力发电设备, 安装车辆制动过程再生能源发电后对车辆上化学电源、超级电容器充电的装置, 远途对车辆中的电池进行充电。 安装高压放电装置, 安装激光武器, 安装机械臂膀, 拥有自卫防护能力, 防盗和防抢劫车辆。 风雨兼程、日夜兼程、马不停蹄、长途跋涉、勇往直前、直奔目标而去! 老外都被你惊叹, 这是中国国防军事综合实力的体现, 你的壮举, 必将被全球各个主要的新闻机构重点报道!!! 中国人, 真牛!!!!!!!!!!!!!!!!!!!!!!! 引领世界前进的步伐!!!! 以后, 国际航空界要强迫、硬性规定、法案、提案、法令, 乘客要有权使用专用的紧急广播通信设备, 能够在最后的时候, 乘客各自呼唤亲人, 机组人员无权干预。 通过贯穿机身外壁的线路, 发送信号到外界的卫星、地面接收设备、附近空中飞行的民航飞机、附近水面航行的商船, 用于应急发送机上紧急情况, 客机的空间位置、空间姿态, 播报各位乘客的遗嘱, 传输飞机坠落和迫降的过程。 对于部分乘客,有语音、动作、有呼吸、心电等遥测功能。 要强制卫星、地面接收设备、空中飞行的民航飞机、水面航行的商船, 强制要求安装对应频道的接收和记录设备, 保障全球无盲区。 在飞机的客舱内, 在乘客区域, 要分散固定几个发送装置, 几个发送装置, 同时提出人工启动的请求, 才开通发送装置, 并且对于启动装置的乘客, 自动开始录像、录音, 便于事后追溯来源, 处置恶意操作。 发送装置自带备用电源, 发送装置外部, 有可以方便启封的装置, 防止恶意启动骚扰。 通过国际相关的法律和法规, 将这种通信装备, 列为客机的法定标准配置。 这是客机的适航规章标准。 也就是实现, 立即指导救援和和搜救工作, 不要等待打捞和分析黑盒子的漫长时间。 至于现在争论的实时发送客机飞行数据容量大、 占据带宽、客户拥挤等困难, 只是在起飞、降落过程中全程发送, 在巡航过程之中, 主要是在空中姿态和速度矢量、高度、环境、发动机工况等等异常的时候, 才自动发送,以此来减少发送的重复周期和信息量。 你自己亲自去做最好的拖把。 那就要用 俺亲自制造的拖把, 用浸过水的拖把, 自动巡航室内全部的地面, 无遗漏地, 在住宅内拖地, 自动间隔, 将拖把送去水桶中清洗, 然后自动甩干。 再继续自动去拖地。 你若需要, 请向裘5援5平提出申请, 只有她批准了, 你就能够获得 欧洲、美国、日本都没有生产过的自动装置, 即使是中国煤老板、中国首富、沙特 *** 的富豪, 都望尘莫及!!!! 网上和......>>

图像识别技术的研究现状论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

基于MATLAB的数字识别计算机与信息工程学院 本科生毕业论文 基于BP神经网络的手写数字识别算法的设计与实现 班 级: 13汉班 学 号: 姓 名: 江晓雪 指导教师: 李艳玲 2017 年 3 月 31 日 毕 业 论 文 目 录 1 绪论1 图像识别的提出1 图像识别的现状与发展趋势1 2 BP神经网络的概述2 3 手写体数字识别的实现过程4 整体线路图4 算法流程5 图像预处理10 结果分析10 4 结论11 参考文献12 全文共 13 页 4834 字 基于BP神经网络的手写数字识别算法的设计与实现 计算机与信息工程学院 2013级汉班 江晓雪 指导教师 李艳玲 副教授 摘要 本文实现了基于MATLAB关于神经网络的手写数字识别算法的设计过程,采用神经网络中反向传播神经网络(即BP神经网络)对手写数字的识别,由MATLAB对图片进行读入、灰度化以及二值化等处理,通过神经网络进行训练和测试。实验证明:该神经网络对手写数字的识别可以达到。 关键词 手写数字识别;BP神经网络;MATLAB语言 1 绪论 图像识别的提出 图像识别在信息技术发达的今天已经占据了很重要的地位,在我们实际生活中也有很多应用。所谓的图像识别,就是指通过计算机对图像进行相应的处理、分析,来达到识别不同模型的目标和任务的一种技术。对于它的提出,简单的来说,它的发展经历了三个阶段:第一个是文字识别 、第二个是数字图像处理与识别、第三个是物体识别。第一种相对来说比较简单,它的研究是从1950年开始的,一般情况是识别字母、符号和数字,无论是印刷体识别还是手写体识别,它的应用都非常广泛,但是也伴随着,这个识别的过程会更加的耗时、费力,无论是人力还是物力,都会有很大的损失;第二种就是我们所说的数字图像处理与识别,在图片的识别过程中,图片识别会有一定的误差,也会带来小小的麻烦;第三就是物体识别,而物体的识别主要指的是:在三维世界中,对于个体、环境的感知和认识进行识别,这不同于二维世界的认知,相对来说是更高级的计算机图像识别,它是以二维世界中对数字图像和模拟图像处理的办法为依据,进行更高一级的,并且结合了现代人工智能技术等学科的研究目标,研究成果已经被广泛的应用在各种工业探测机器人上,为人们的安全提供了很大的帮助。 图像识别的现状与发展趋势 随着网络的发达、电子的信息化,图像识别的应用已经非常广泛,而主要的研究工作也包括各行各业,整理以下几点对其应用的广泛度进行说明: ⒈在生物学中,对生物的原型进行研究。从生物的脑细胞结构、物体解剖等其他科学研究的方向对生物的体系结构、神经结构、神经细胞组织等生物的原型结构及其功能机理进行研究,增强对生物学更加全面的理解。 ⒉在实际应用中,建立我们需要的理论模型。根据需要应用的信息在生物学中的应用,建立需要的生物原型,也可以建立类似神经元、神经网络这样不可见的理论模型,以便可以让其更加有效的应用在生活中。建立我们生活中不能直观表现的事物模型,以便我们可以更方便的、更直观的理解事物的本质。 ⒊在信息时代中,建立网络模型以及算法研究。就是通过上面所说的,建立相应的理论模型,在这个基础上加以理解,建立我们所需要的网络模型,实现计算机应用,主要应用在网络学习算法的研究,这方面的研究工作也被人们称为技术模型研究。 ⒋信息时代的发展,让我们在生活中有很多的应用,例如:完成某种函数图像的绘制以及对其变化的形式进行分析、对图片信号的处理、模式识别等功能,建立需要的应用系统、制造机器人等等。 通过上面的说明,也就是说从开始根据生物学原理的应用,直到建立需要的神经网络模型,最后应用到图像识别当中,可以看出其模型的建立是在生活中实例的基础上,其可靠性和准确性是显而易见的,这样就大大的增加了可信度,与此同时,也减少了工作中不必要的麻烦与困扰。而在网络信息发达的今天,人类在基本粒子、宇宙空间、生命起源等科学领域方面都已经显现出很高的兴趣度,而这其中难免会有图像提取后的处理工作,所以图像识别的应用就会越来越广泛。 2 BP神经网络的概述 反向传播(Back-Propagation,BP)学习算法简称BP算法,采用BP算法的前馈型神经网络简称BP网络。BP网络是多层感知器的一种,它具备多层感知器的特点,同时也有自己的特点。多层感知器包括输入层、隐藏层、输出层,其中隐藏层可以有多个,而我们BP网络中隐藏层只有一个,其简单构造如图所示: 图1 多层感知器结构图 而我们用到的BP网络中的具体信号流如图所示,它有一个反向传播的过程,这也是对传播进行调整,使精确度更高的一种办法。如图所示,其中有两种信号流通: 图2 多层感知器的信号流 第一:函数信号 简单来说就是信号进入输入层,然后通过隐藏层到达输入层,通过输出层输出所得值,就可以完成一个函数信号。 第二:误差信号 误差信号就是在逆向的传播的过程中传输的信号。其中,有两个重要参数。一个是函数信号即sigmoid函数,还有一个就是权值的梯度运算即梯度向量。(注:sigmoid函数、权重的修正函数,如图所示。) (1) (2) 通过对两个参数的调整,完成整个算法的应用。 3 手写体数字识别的实现过程 整体线路图 整体流程图如图3所示: 图像测试 损失函数的设计与应用 可视化测试数据 神经网络的设计与训练 sigmoid函数 图3 整体流程图 部分文件调用流程图如图4所示: sigmoid checkNNGradients nnCostFunction 第八部分:实现正规化 第八部分:训练NN fmincg nnCostFunction sigmoidGradient sigmoid nnCostFunction sigmoidGradient randInitializeWeights checkNNGradients debugInitializeWeights nnCostFunction computeNumericalGradient 第五部分:sigmoid函数 第六部分:初始化参数 第七部分:实现反向传播 第三部分:前馈网络 第四部分:前馈正规化 图4 整体流程图 算法流程

图像识别技术是人工智能研究的一个重要分支,也是人们日常生活中使用最广泛的人工智能技术之一。近年来,随着深度学习技术的发展,图像识别准确率显著提高。本论文研究了图像识别的传统技术和深度学习技术,分析了深度学习技术的几点不足,并给出未来可行的解决方案。【关键词】人工智能 图像识别 深度学习1 概述图像识别技术是人工智能研究的一个重要分支,其是以图像为基础,利用计算机对图像进行处理、分析和理解,以识别不同模式的对象的技术。目前图像识别技术的应用十分广泛,在安全领域,有人脸识别,指纹识别等;在军事领域,有地形勘察,飞行物识别等;在交通领域,有交通标志识别、车牌号识别等。图像识别技术的研究是更高级的图像理解、机器人、无人驾驶等技术的重要基础。传统图像识别技术主要由图像处理、特征提取、分类器设计等步骤构成。通过专家设计、提取出图像特征,对图像进行识别、分类。近年来深度学习的发展,大大提高了图像识别的准确率。深度学习从大量数据中学习知识(特征),自动完成特征提取与分类任务。但是目前的深度学习技术过于依赖大数据,只有在拥有大量标记训练样本的情况下才能够取得较好的识别效果。

图像识别是立体视觉、运动分析、数据融合等实用技术的基础,可应用于导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域1.遥感图像识别2.通讯领域的应用3.指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等。4.生物医学图像识别 例如CT(Computed Tomography)技术等。图像的识别江苏视图科技,专业图像识别,主要应用方向是手机拍照购物,互动营销,美术馆和博物馆的手机导览增值服务,目录销售,网站商品相似搜索等等。

相关百科

热门百科

首页
发表服务