首页

> 学术论文知识库

首页 学术论文知识库 问题

什么是基因组编辑技术参考文献

发布时间:

什么是基因组编辑技术参考文献

排放冷却是对流冷却的另一种。与再生冷却不同,用于排放冷却的冷却剂对推力室冷却吸热后不进入燃烧室参与燃烧,而是排放出去。直接排放冷却剂会降低推力室比冲,因此需要尽可能减少用于排放冷却的冷却剂流量,同时只在受热相对不严重的喷管出口段采用排放冷却。还有一种是辐射冷却,其热流由燃烧产物传给推力室,再由推力室室壁想周围空间辐射散热。辐射冷却的特点是简单、结构质量小。主要应用于大喷管的延伸段和采用耐高温材料的小推力发动机推力室。在组织推力室内冷却时,是通过在推力室内壁表面建立温度相对较低的液体或气体保护层,以减少传给推力室室壁的热流,降低壁面温度,实现冷却。内冷却主要分为头部组织的内冷却(屏蔽冷却)、膜冷却和发汗冷却三种方法。推力室采用内冷却措施后,由于需要降低保护层的温度,所以燃烧室壁面附近的混合比不同于中心区域的最佳混合比(多数情况下采用富燃料的近壁层),造成混合比沿燃烧室横截面分布不均匀,使燃烧效率有一定程度的降低。膜冷却与屏蔽冷却类似,是通过在内壁面附近建立均匀、稳定的冷却液膜或气膜保护层,对推力室内壁进行冷却,只是用于建立保护层的冷却剂不是喷注器喷入的,而是通过专门的冷却带供入。冷却带一般布置在燃烧室或喷管收敛段的一个横截面上。沿燃烧室长度方向上可以有若干条冷却带。为提高膜的稳定性,冷却剂常常经各冷却带上的缝隙或小孔流入采用发汗冷却时,推力室内壁或部分内壁由多孔材料制成,其孔径为数十微米。多孔材料通常用金属粉末烧结而成,或用金属网压制而成。此情况下,尽可能使材料中的微孔分布均匀,是单位面积上的孔数增多。液体冷却剂渗入内壁,建立起保护膜,使传给壁的热流密度下降。当用于发汗冷却的液体冷却剂流量高于某一临界值,在推力室内壁附近形成的是液膜。当冷却剂流量低于临界值流量时,内壁温度会高于当前压力下的冷却剂沸点,部分或全部冷却剂蒸发,形成气膜。除了以上热防护外,还有其他热防护方法如:烧蚀冷却、隔热冷却、热熔式冷却以及室壁的复合防护等。3 高焓气体发生器热防护方案综合上述方法结合实际情况,便得到高焓气体发生器的热防护方法。高焓气体发生器的燃烧室与液体火箭发动机的不同,省去前面的推力室部分,使得其结构更简单而有效。那么,所涉及到的热防护即为对燃烧室室壁的热防护部分。由于燃料进入燃烧室内迅速分解并放出大量

基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。

嗨~来看点更专业的回答吧 ♪(・ω・)ノ

CRISPR/Cas基因编辑系统

CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/Cas)系统是目前被广泛运用的基因编辑系统,其原理是由CRISPR转录产生的gRNA介导Cas核酸酶靶向目标序列,对序列进行切割。

CRISPR/Cas9基因编辑示意图

(图源:Wellcome Trust Sanger Institute,Sanger)

CRISPR/Cas基因敲除

CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),机体自身通过非同源重组(non-homologousendjoining,NHEJ)的方式修复DSB,参与修复的蛋白经常会在DNA末端插入或删除几个碱基,修复后的基因由于产生突变而导致功能丧失,从而实现机体内的基因敲除。应用:基因敲除细胞系建立、基因敲除建立动物疾病模型。技术优势:相较于在mRNA水平“敲低”目的基因的RNAi而言,CRISPR/Cas9系统造成基因序列的缺失,从而能完全沉默(即敲除)目的基因。

CRISPR/Cas基因敲入

CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),通过细胞内的同源重组(homologousrecombination,HR)修复方式,将外源供体DNA定点导入至基因组的靶位点中,从而实现基因敲入。应用:基因片段敲入细胞系建立、基因单碱基突变细胞系建立、基因敲入建立动物疾病模型。技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台。

CRISPR/dCas9调控内源基因的转录激活与抑制

CRISPR-dCas9系统即是dCas9与转录激活因子(如VP64)或转录抑制因子(如KRAB)融合后,结合sgRNA能促进或抑制目的基因的表达。应用:目的基因在内源环境中过表达、诱导iPSC、抑制表达等。技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台,同时可与RNAi联合作用。

==========================

如果您正在研究或者学习神经科学,生物病毒,基因治疗等方向,或是正在使用各类工具病毒做科研实验,可以百度搜索 布林凯斯braincase,官网上有更详细的案例分析和专业解读哦~

基因编辑技术不断发展,到现在已发展到第三代基因编辑技术。第三代基因技术CRISPR/Cas克服了传统基因操作的周期长、效率低、应用窄等缺点。作为一种最新涌现的基因组编辑工具,CRISPR/Cas能够完成RNA导向的DNA识别以及编辑。通过一段序列特异性向导RNA分子(sequence- specific guide RNA)引导核酸内切酶到靶序列处,从而完成基因组的精确编辑,因其操作简单、成本低、高效率,近几年成为炙手可热的基因编辑手段,目前已广泛用于模式生物研究,医疗,植物作物,农业畜牧等领域。

CRISPR/Cas9的出现给了科研人员无限想象的可能,基于CRISPR/Cas9的技术很快就被广泛应用于全世界各个实验室中,这里我们将主要介绍最常用的几种应用。

早期,科研人员通过同源重组(HR)介导的基因打靶技术来实现基因编辑,但因效率太低,极大地限制了其应用。为了克服这一难题,一系列通过核酸内切酶介导的基因编辑技术被开发出来,通过这些核酸内切酶切割特定的基因组序列,借助细胞自身修复体系如非同源末端连接或同源重组修复方式,并由此达到改变基因组序列的目的,锌指核酸内切酶(ZFNs)、类转录激活因子效应物核酸酶(TALENs)以及sgRNA介导的Cas9核酸内切酶正是基于此原理工作的。

锌指核酸内切酶(ZFNs)和类转录激活因子效应物核酸酶(TALENs)均可通过蛋白-DNA相互作用识别基因组上的特定DNA序列并完成特定位点的切割,但是它们因效率低下、可选潜在位点少、成本高等原因极大地限制了它们的应用,直到CRISPR/Cas9系统的出现,科研人员才找到了一种成本低、效率高、简单易用的基因编辑工具。

CRISPR/Cas9出现之后,科研人员最先想到的便是将其运用到基因编辑上了,根据目标基因的外显子序列设计single guide RNA(sgRNA)并与含有Cas9编码序列的质粒一起转入细胞,sgRNA通过碱基互补配对的原则引导Cas9蛋白靶向目标DNA序列,Cas9蛋白会在该位点切割DNA,引发DNA双链断裂(DSB),此时细胞通过非同源末端连接修复(NHEJ)完成DNA的自身修复,

因修复过程中常常发生碱基的添加和丢失,而最终导致基因的移码突变从而达到基因敲除的目的,或者针对目的基因的上下游序列各设计一个sgRNA,从而引发该基因上下游同时发生DSB,再通过DNA损伤修复机制将断裂的上下游两端的DNA连接在一起,引发DNA片段缺失,从而达到基因敲除的目的。如果在此基础上为细胞引入一个修复的模板质粒,细胞就会以此模板进行同源重组修复,如果引入的修复模板是一个想要插入的基因,便可在特定的位置进行基因敲入了。

随着人们对Cas9研究的不断深入,Cas9发挥功能的结构基础也渐渐明确,在Cas9发挥切割DNA的功能时,它的两个结构域发挥着重要作用,分别是RuvC和HNH,其中HNH结构负责sgRNA互补链的切割,切割的位点位于PAM的5'端的第三个碱基外侧,RuvC结构域负责非互补链的切割,切割位点是在PAM上游的3-8碱基之间,当将这二者同时突变失活,便产生了失去DNA切割活性的Cas9蛋白了(dCas9),dCas9虽然失去了对DNA的切割能力,但依旧可以在sgRNA的引导下到达指定的DNA序列处,这是基于sgRNA–dCas9复合体的这一特征,若在dCas9上融合不同功能的结构域,便可在特定的DNA区域完成不同的修饰了,这便形成了基于CRISPR/dCas9的工具包了。

脑洞大开的科学家利用dCas9蛋白,开发出各种用途的工具,可谓是把CRISPR/dCas9利用得淋漓尽致,这里我们举几个简单的例子如研究人员针对目标基因的启动子序列设计sgRNA,使得sgRNA–dCas9复合体靶向结合到目标基因的启动子上,因dCas9蛋白带来的空间位阻可干扰转录因子的结合,从而引发在转录水平上的干扰基因表达的效果,而在此基础上为了达到更佳的干扰效果,一些能够引发基因转录阻遏的结构域也被融合到dCas9蛋白上,如KRAB(Krüppel-associated box)等。

既然可以通过CRISPR/dCas9实现基因表达的干扰,那是不是也可以通过CRISPR/dCas9实现激活基因表达呢?答案是肯定的。科研人员通过向dCas9上融合vp64(四个串联的vp16)、p65AD(p65 activation domain)等促进促进基因转录的结构域,实现基因的内源性激活,在经过各种优化之后,比如由vp64、p65AD和VPR(Epstein-Barr病毒R反式激活因子Rta47)组成的三联结构域(dCas9–VPR)就可以实现很高水平的内源性激活基因表达的效果了。

通过基于CRISPR/dCas9的基因表达干扰和内源性激活工具的建立,使得科研人员在进行诸如基因功能研究的工作时有了更为简单、高效且低成本的研究工具。这很大程度上为科研人员节约了时间和成本。

表观遗传研究是近些年来非常火热的领域,DNA甲基化、组蛋白乙酰化等都在生物体中发挥着重要的生物学功能,而CRISPR/dCas9在表观遗传的研究中也成为了十分强大的工具。比如CRISPR/dCas9介导的靶向DNA甲基化修饰,我们知道在DNA甲基化过程中DNA甲基转移酶(DNA methytransferases,DNMTs)起着关键的催化作用,而且大部分DNA甲基化都发生在CpG岛,

因此研究人员尝试着将DNMTs的催化结构域融合到dCas9上形成dCas9-Dnmt3a3L,并通过sgRNA的引导靶向目标DNA序列的CpG附近催化其甲基化,以实现DNA甲基化的定点编辑。相似地,研究人员将在DNA去甲基化过程中起关键催化作用的TET1蛋白的催化结构域融合到dCas9上形成dCas9-TET1,同样的通过sgRNA的引导靶向目标DNA序列的CpG附近,可以实现去甲基化修饰。

再如CRISPR/dCas9介导的靶向组蛋白修饰,与靶向DNA甲基化修饰相似,一些和组蛋白修饰相关的酶包括组蛋白去甲基化酶(LSD1/KDM1A)、组蛋白乙酰转移酶以及组蛋白甲基转移酶等也被融合到dCas9蛋白上,以实现靶向组蛋白修饰。

除以上的应用外,CRISPR/dCas9还被用于其他多个领域,比如将EGFP融合到dCas9上,通过sgRNA靶向特定DNA序列实现基因组成像。此外,还有研究人员开发出基于CRISPR/dCas9的enChIP技术,以来探测特定基因组区域上的DNA-蛋白质相互作用,通过sgRNA靶向特定基因组基因座的标记dCas9的抗体免疫沉淀,之后通过蛋白质谱(enChIP-MS),鉴定与之特异性相互作用的蛋白质。这些工具的开发都极大地帮助了科研人员,使得之前无法实现的操作成为可能,推动了生命科学的快速发展。

以往基于ZFN或TALENs的基因组编辑技术,需要针对DNA靶序列设计蛋白质,而CRISPR技术仅需要根据不同的靶序列合成相应的80nt左右的sgRNA来引导Cas9蛋白对序列进行修饰,这就实现了基因编辑技术的高通量应用。

CRISPR全基因组筛选技术可用于必需基因及药物靶标基因鉴定。多伦多大学Jason Moffa研究组建立了覆盖全基因组gRNA库并在5个细胞系中逐个敲除了万个基因,最后鉴定出在不同细胞系间保守的1580个必需基因构成的“core fitness genes”。

同样,美国达纳-法伯癌症研究所W. Nick Haining研究组通过CRISPR/Cas9系统性地敲除了黑色素瘤细胞的2368个基因,发现ptpn2基因缺失会使这些癌细胞对PD-1阻断更加敏感。华盛顿大学医学院Michael Diamond研究组利用CRISPR/Cas9鉴定在宿主细胞中坚定了黄病毒感染所绝对必需的9个基因,其中spcs1基因缺失时,不仅降低黄病毒感染率,而且对细胞也不产生副作用,这将是一个潜在的黄病毒药物靶标。

CRISPR/Cas9作为新一代基因编辑技术,同样可被应用于建立疾病模型及培育供体器官。基因治疗可实现在患者自身细胞中纠正遗传缺陷,并结合其他生物学技术在体外培育出组织特异性的“类器官”,对于疾病建模、药物筛查及临床治疗等方面研究有极大意义。CRISPR介导的基因组编辑技术可以直接应用于非人类哺乳动物的疾病模型建立,将更有利于疾病致病机理和治愈研究。

此外,CRISPR技术还可应用于大型动物的基因编辑以研究免疫排斥及跨物种的疾病传染,从而解决异种移植器官来源的瓶颈,猪被认为是人体异种器官来源的首选动物,而目前猪器官用于人类的主要障碍为免疫排斥反应,及猪内源性逆转录病毒(Porcine endogenous retroviruses, PERVs)带来的医疗风险问题。eGenesis公司杨璐菡博士与哈佛大学George Church教授利用CRISPR进行基因改造一步让62个PERV pol 基因关闭,因而将来自PERV的传染风险降低了三个数量级,成功培育出不含PERVs的猪品系,作为安全有效的异种移植器官来源,这些研究让猪成为病人的器官来源更有前景。

基因编辑技术可以准确地改造人类基因,达到基因治疗效果。中国科学院生物化学与细胞生物学研究所李劲松研究组通过在小鼠胚胎中注射CRISPR/Cas9纠正白内障小鼠模型中的遗传缺陷,所产生的后代是可育的并能将修正后的等位基因传递给它们的后代。杜氏肌营养不良(DMD)是一种罕见的肌肉萎缩症,也是最常见的致命性遗传病之一,是由肌营养不良蛋白dystrophin基因突变引起。杜克大学Charles Gersbach研究组应用CRISPR/Cas9在DMD小鼠中将dystrophin基因突变的23外显子剪切,而合成了一个截短的但功能很强的抗肌萎缩蛋白,这是生物学家“首次成功地利用CRISPR基因编辑技术治愈了一只成年活体哺乳动物的遗传疾病”。

► CAR-T治疗简图,图片来自

基因编辑技术联合免疫疗法在肿瘤及HIV/AIDS治疗具有广泛的应用前景。嵌合抗原受体T细胞(Chimeric Antigen Receptor T cell,CAR-T)细胞治疗是非常有前景的肿瘤治疗方法。CAR-T细胞疗法在B细胞恶性血液肿瘤治疗中已经取得硕果。中科院动物研究所王皓毅研究组利用CRISPR/Cas9技术在CAR-T细胞中进行双基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美国斯隆凯特林癌症纪念中心Michel Sadelain研究组发现CRISPR/Cas9技术将CAR基因特异性靶向插入到细胞的TRAC基因座位点,极大增强了T细胞效力,编辑的细胞大大优于传统在急性淋巴细胞白血病小鼠模型中产生CAR-T细胞。

继诺华的Kymriah以及Gilead (kite Pharma)的Yescarta接连上市,CRISPR Therapeutics公司也在应用CRISPR/Cas9基因编辑技术开发同种异体CAR-T候选产品。2016年10月,四川大学华西医院的肿瘤医生卢铀领导的一个团队首次在人体中开展CRISPR试验,从晚期非小细胞肺癌患者体内提取出免疫细胞,再利用CRISPR/Cas9技术剔除细胞中的PD-1基因更有助于激活T细胞去攻击肿瘤细胞,最后将基因编辑过的细胞重新注入患者体内。

微生物种群与人体医学,自然环境息息相关。北卡罗来纳大学Rodolphe Barrangou与Chase L. Beisel合作通过使用基因组靶向CRISPR/Cas9系统可靶向并区分高度密切相关的微生物,并程序性去除细菌菌株,意味着CRISPR/Cas9系统可开发成精细微生物治疗体系来剔除有害致病菌,人类将有可能精确控制微生物群体的组成。以色列特拉维夫大学Udi Qimron将CRISPR系统导入温和噬菌体中在侵染具有抗生素抗性的细菌以消灭此类细菌,CRISPR系统已具有成为新一类抗生素的潜力。Locus BioSciences公司也在开发在噬菌体中开发CRISPR系统以达消灭难辨梭菌的目的。

弗吉尼亚理工大学Zhijian Tu研究组在雄蚊子中进行M因子基因编辑,可以导致雌雄蚊之间的转化或雌蚊的杀戮,从而实现有效的性别分离和有效减少蚊子的数量,也将减少寨卡病毒及疟疾等传播。

基于CRISPR治疗不仅可以应用于根除共生菌或有益菌群的病原体,也可应用于靶向人类病毒,包括HIV-1,疱疹病毒,乳头瘤病毒及乙型肝炎病毒等。具有纯合的32-bp缺失(Δ32)的CC趋化因子受体5型(CCR5)基因的患者对HIV感染具有抗性。因此加利福尼亚大学Yuet Wai Kan在诱导多能干细胞iPSC中利用CRISPR系统引入纯合CCR5Δ32突变后,诱导分化后的单核细胞和巨噬细胞对HIV感染具有抗性。天普大学Kamel Khalili 课题组应用CRISPR/Cas9系统在宿主细胞基因组中精确编辑HIV-1 LTR U3区,从而在将艾滋病病毒从基因组中剔除。

Cas12a (Cpf1)属于CRISPR家族另一核酸内切酶,它也可被gRNA引导并剪切DNA。但是,它不仅可以切割相结合的单链或双链DNA,也剪切其他的DNA。近日,加州大学伯克利分校Jennifer Doudna研究组开发了基于CRISPR的一项新技能——基因侦探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用单链DNA将荧光分子和淬灭分子连接构建成一个报告系统,当CRISPR-Cas12a在gRNA引导下结合到目标DNA并发挥剪切作用时,报告系统中的DNA也被剪切,荧光分子将被解除抑制。此系统在致癌性HPV的人的DNA样品检测HPV16和HPV18变现极佳。

布罗德研究所Feng Zhang研究组开发的基于CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活后,可以切割除靶序列外其他的RNA的特征,引入了解除荧光分子的抑制。此工具可实现一次性多重核酸检测,可同时检测4种靶标分子,额外添加的Csm6使得这种工具比它的前身具有更高的灵敏度,并将它开发成微型试纸条检测方法,简单明了易操作,已被研究人员成功应用于RNA病毒,如登革热病毒和寨卡病毒,及人体液样本检测。

Broad研究所David R. Liu研究组利用CRISPR/Cas9开发了一种被称为CAMERA(CRISPR-mediated analog multi-event recording apparatus)的记录细胞事件的“黑匣子”他们利用这个系统开发出两种细胞记录系统,在第一种被称为“CAMERA 1”的细胞记录系统中,研究人员利用细菌中质粒的自我复制但又严格控制其自身数量的特征,

将两种彼此之间略有不同的质粒以稳定的比例转化到细菌中,随后在接触到外来药物刺激时,利用CRISPR/Cas9对这两种质粒中的一种进行切割,通过对质粒进行测序并记录两种质粒比例的变化来记录细菌接触外来刺激的时间。另一种细胞记录系统被称为“CAMERA 2”,它利用基于CRISPR/Cas9的碱基编辑系统实现在细胞内特定信号发生时改变遗传序列中的单个碱基,以此实现对诸如感染病毒、接触营养物等刺激的记录。这套技术的出现将很大程度的帮助人们进一步了解细胞的各类生命活动的发生发展规律。

2015 年 4 月,中山大学的黄军利用CRISPR/Cas9介导的基因编辑技术,同源重组修复了胚胎中一个引发地中海贫血β-globin gene (HBB)的突变。

► 图片来自

2016年,广州医科大学的范勇团队在三原核受精卵中,应用基因编辑技术CRISPR受精卵中的基因CCR5进行编辑引入CCR5Δ32纯合突变由于当时脱靶效率问题突出,产生了镶嵌式的受精卵。

2017年8月2日,俄勒冈健康与科学大学胚胎细胞和基因治疗中心Shoukhrat Mitalipov研究组公布了其应用CRISPR在人类胚胎中进行DNA编辑的结果,纠正了突变的MYBPC3基因,其突变会引起心肌肥厚并将年轻运动员猝死。

编辑的参考文献是什么

"参考文献"是指在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。

参考文献的作用:

1、便于及时查阅校正

有人也把参考文献称为是参考书,因为一篇论文的字数5000字以上,内容比较多,论文里面用到的论证,论据,分析问题时想要到的点是在参考文献里看到的,当写论文的引言出现了错误,还可以根据参考文献来查看错误的地方在哪里,便于修改,这是参考文献存在的一个原因。

2、让导师了解学生论文的深度

论文里面的参考文献数量多少,学校是有规定的,比如中文文献要达到10条以上,英文文献在5条以上,并且做好文献格式。

在论文里面选择用的引言越多,文献越多,其实也就表明论文写作时在查阅资料方面就多,一篇论文的质量好坏虽然和参考文献的使用多少没有直接的关系,但是也有间接关系。

论文的引文用得好,论据十足,写的论文有理有据,清晰明白,这样的论文才有广度和深度,也更能得到老师的认可。

3、便于读者的阅读和理解

在论文里面写了一些引文,但是读者可能不太懂得这个论点哪里来的,这个说法是不是正确的,读者在参考文献上就可以看出来是从哪里出来的观点,材料,也是便于读者能查阅到。一篇论文里面使用参考文献是很正常的。

在写作中查阅用到的著作,报刊杂志论文的要点,就要标注出来,要写清楚书名,篇名,作者,出版者,年份,有明确的格式要求,在写完论文后要写好文献并且调整好格式,基本上就没问题了。

参考文献是文章或著作等写作过程中参考过的文献。

因参考文献的著录格式各刊不尽相同,投稿前作者应注意杂志稿约的有关规定,至少得先看看有关期刊发表的论文的参考文献是如何标注的,以了解有关期刊的参考文献的著录格式,以免出错。许多作者投递的稿件书写格式包括参考文献的著录格式与杂志所要求的不同。

坦率地讲,编辑和审稿专家也是人,工作中多少也有感情因素。如果拿到手中的是一篇书写格式不合要求的文章,别的暂且不论,就书写格式不规范这一条,就足以给编辑留下不好的印象,甚至让编辑做出退稿的决定。

就算最后没有被退稿,此类稿件较书写格式规范的稿件被录用的可能性大大降低。其实作者犯的是一个很低级的错误,让编辑很自然地联想到,该作者不太尊重期刊,还有期刊的编辑以及审稿专家。

因此,作者在投稿前一定要注意期刊参考文献的著录方式,以免产生不必要的负面影响。其实,并不复杂,只要稍稍留意即可。

参考文献是指作者在写作过程中借鉴过的、对本文有启发的文献,一般标注在文章末尾。有的会在文章具体位置中标明具体的参考页码,有的不会。受文献启发的地方不一定要和原文完全一致,有时可同义转述或同义概述。

需要注意的是,各种杂志社的参考文献格式会各不相同,因此没有绝对统一的标准,一切以杂志社的要求为准。

参考文献格式注意事项:参考文献虽然没有绝对统一的标准,但是有基本标准。

参考文献基本格式:

主要责任者. 题名:其他题名信息[文献类型标识/文献载体标识]. 其他责任者. 版本项. 出版地:出版者,出版年:引用页码.

一、参考文献怎么引用才合理

(1)参考文献的类型

参考文献类型较多,主要有专著[M], 论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集析出文献[A]等等,其中最常见的是期刊文章。

(2)引用参考文献的数量

一般学术文章的参考文献数量以20-40篇为宜,综述类文章的参考文献一般会比研究类参考文献数量多。除综述外,其他文章的参考文献超过40则说明相对于你的研究结果而言,讨论和前言部分所涉及的内容有可能过多,需要删减。

(3)参考文献正文中的引用格式

正文中参考文献的引用格式以不同的学校要求为准,但不外乎数字编号和人名。

数字编号比较简单,仅仅按照从前到后的顺序给所出现的文献一一编号即可。万一中间需要添加或删除参考文献,后面的所有数字就会改变。如果我们手动录入参考文献,那是十分麻烦的。这时候就需要用到endnote软件或者其他相关参考文献引用的软件帮助。

还有一种正文引用是人名的引用。一般而言,文献是一位作者的,直接写这位作者的名字即可;如果是两位作者,则这两位作者中间用and连接;若是三位或三位以上作者,则输入第一作者的名字后面加et al.表示。由于et al.是拉丁文的“等”的意思,需要斜体,又是缩写,所以后面要加点号。

有时候正文中我们会提及作者的名字,此时参考文献的引用位置往往紧跟名字的后面。如It is reported by Li et al.[Li et al., 2010] that …….

(4)参考文献的内容与引文一致

引用之处的内容必须是出自所引参考文献的内容。我们可以通过参考文献的题目来大致判断是否正确引用。那种驴唇不对马嘴的引用肯定是错误的,遇到这样的引用必须做出修改。

(5)尽量引用原始文献

好多学生为了省事,拿来一篇文献引用里面的句子的同时,再次引用这篇文章所引用的其他参考文献,这就是二次引用。二次引用的危害在于在引用过程中,肯定会有人曲解了原文的意思,一错再错,这跟以讹传讹的道理是相似的。

那么如何避免这种情况的发生?我们可以查阅二次引用的原始文献,看原始文献是如何描述的,看引用的这句话是否符合原始文献的内容。确保无误的情况下再引用,才能避免错误引用。

(6)尽量选择较新的文献

这一点不是绝对的,倘若我们写的这篇论文确实是早些年有研究,中断了一段时间之后,重新研究。这时难免会引用早些年的文献。再者,有的文献确实是经典的,提出的理念至今都是说得通的,此时引用这些文献也是无可厚非的。但毕竟这两种情况是少数,大部分的研究还是基于最新研究的基础上进行的。因此引用参考文献也必须有几篇较新的参考文献,才能显示我们的研究的意义及重要性,特别是引言部分的描述。

(7)参考文献的档次

参考文献的档次在某种程度上决定了咱们所写文章的档次。我们的引文大部分都是2-5分左右的文章,那么我们的文章差不多也可以发2-5分左右,当然审稿老师并不会注意这个问题,因为没人会一一核实你所引用的文献的影响因子。

二、如何正确选用参考文献

(1)避免选用脱离论文主题的参考文献

选择参考文献必须紧紧围绕主题,为表现和论证主题服务。凡是能有力地说明、突出、烘托主题的就选用,否则就舍弃,这是选择参考文献的一个基本原则。有些论文在运用参考文献时常常犯不忍割爱的毛病,将一些与主题无关的参考文献,写进文章里,参考文献与主题脱节,影响了主题的表达。

甚至于有些论文只是为了体现论文的参考文献的新颖,直接使用了与论文主题无关的最新参考文献,这不但没能体现论文的参考文献新颖,反而是内容累赘、多余。

(2)选择参考文献不够典型

所谓典型参考文献,是指那些最有特征、最有代表性,能有力地揭示事物的本质,能集中地表现论文主题的参考文献。围绕主题选材,但没有必要,事实上也不可能把与主题有关的参考文献都写进去,必须精选典型参考文献。

对于十分经典的参考文献,要考虑是否过旧,过旧的参考文献或者广为人知的参考文献,我们应该简要概述。即便是十分典型的参考文献,太旧或者已广为人知的参考文献虽然能论证我们的主题但是却让文章的内容显得不够新颖。

(3)选择的参考文献不够真实

论文中用的参考文献只有真实,才有力量。所谓真实,是指参考文献确是客观存在的,能反映客观事物的本来面貌。论文中所运用的参考文献真实,论点才站得住,才有说服力。而有些论文选材不准,没有鉴别真伪,引用的历史人物、事件、时间、地点、数字、引文等等没有认真地核对,出现误差。

在引用参考文献的时候,对于参考文献的详细内容,我们要细心做到每个细节都不能出错,对于数字的摘写要绝对的准确,不能因为自己的疏忽导致原本准确无误的真实参考文献变成了错误参考文献或者非真实参考文献。

参考文献是指文章或著作等写作过程中参考过的文献,即为撰写或编辑论文和著作而引用的有关文献信息资源或对正文中某一内容作进一步解释或补充说明的文字。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。引用一次的文献的页码(或页码范围)在文后参考文献中列出。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。

编辑基因婴儿论文参考文献

基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。

基因研究

引起人们大惊小怪的,就是让父母能够有意识选择孩子遗传特性的技术。在可预见的未来,除了用基因方式医治少数遗传疾病,如囊肿性纤维化外,改变基因的成人还不可能出现。改变成人的基因还不是人们敢于轻易尝试的技术,要恢复或加强成人的功能,还有许多更简单、更安全、也更有效的 方法 。

胚胎选择技术是指父母在怀孕时影响孩子基因组合的一系列技术的总称。最简单的干预方法就是修改基因。这不是一种大刀阔斧的变更,因为它要获得的效果就像筛选各种胚胎、选择具有所需基因的胚胎的效果一样。事实上,这种胚胎筛选程序已经在胚胎植入前的基因诊断中 应用了。这种技术已经用了十几年,但还在试验,在未来5到10年将臻于成熟。随着这些技术的成熟,可供父母选择的方案会大大增多。

再进一步将出现对生殖系统的干预――即选择卵子、精子、或更可能的是选择胚胎的第一细胞。这些程序已经在动物身上应用,不过使用的方式对于人类还缺乏安全性和可靠性。

对人类比较可靠的一种方法也许是使用人造染色体。这项技术听起来像是不可置信的科幻电影,但已经用在动物身上了。人造染色体植入老鼠身上,连续几代被传了下去。人造染色体也用在人体细胞培养中,在数百次细胞分裂中都能保持稳定。因此,它们可以充当插入基因模块的稳定“平台”。这些被插入的基因模块包括在适当时候让基因兴奋或休息的必要控制机制,就像在我们46个染色体中的正常基因的激活或休息,取决于它们所处的生理 组织类型,或取决于它们遇到的 环境状况一样。

当然,为安全起见,需要早期介入才能使焦点集中。你不能去修改一个在胎儿发育过程中生理组织不断变化时被激活的基因,因为我们对这一过程所知甚少,有可能发生不想要的或灾难性的副作用。所以,在人体内使用人造染色体的首次尝试,多半要让被植入的基因处在“休息”状态,到成人阶段才在适当的生理组织中被“激活”。

执行这种控制的机制已经用在动物实验中,实验的目的是观察特定基因在发育成熟的有机体中的作用。当然,在体内存在着始终控制基因的机制。不同类的基因在不同的生理组织内的不同地点和时间被激活或休息,这对未来的基因工程师来说是幸运的,因为与我们现有的基因相 联系的已证实的调节结构可以复制下来,用以执行对植入基因的控制。胚胎选择的目标

预防疾病可能是胚胎选择的最初目标。这类可能性也许不久就会远远超出纠正异常基因的范围。例如,最近的研究显示,患有唐氏综合症的孩子,癌症的发病率降低了近90%。很可能是三体性21(即染色体21的第三个复制品,具有增强基因表达水平的作用,导致智力迟钝和其他唐氏综合症的症状)对癌症有预防作用。假如我们能鉴别出染色体上的哪些基因对癌症有预防作用,会怎么样呢?基因学家也许会把这类基因放在人造染色体上,然后植入胚胎,使癌症发病率降低到唐氏综合症患者的水平,又可以避免复制染色体21上其他基因所引起的所有问题。许多其他类似的可能性无疑都会出现,有些可能性几乎肯定是有好处的。

人造染色体的使用可能会进行得很顺利,尤其因为染色体本身在用于人体前可在实验室环境中进行试验。它们可以在动物身上试验,成功后在基本相同的条件下用于人体。如今,每一种基因疗法都是重新开始的,所以不可能获得绝对的可靠性。

如果有明确的基因修改案例显示这样做是有意义的,似乎是安全的,不可能更简便更安全了,那么人们就会对它们表示欢迎。尽管如此,目前还没有足够的证据说明值得这样做。未来基因治疗专家会产生各种各样的想法,他们会进行试验,观察这种疗法是否可行。如果可行的话,我们就不应该拒绝。例如,降低癌症和心脏病的发病率,延缓衰老,是每个人都非常需要的增进健康的手段。

用基因延长寿命

防止衰老是个非常有意义的科研领域,因为这件事似乎很有可能做到,而且是绝大多数人所强烈需要的。如果能通过揭开衰老过程的基本程序,发现某种手段能使我们开发药物或其他对成人有效的干预手段,那么人人都会需要。

胚胎工程可能比对成人的基因疗法更简单,更有成效。因为胚胎中的基因会被复制进身体的每一个细胞,能获得具体组织的控制机制。所以很可能对胚胎的干预 措施 对成人是行不通的。这样一来,父母很可能把怀孕看作赋予孩子健康条件的机会――一次不可错失的机会。

如对衰老生物学的研究投入资金,会极大地加速“衰老治疗”。如今,这个领域资金非常缺乏。许多资金都用于研究治疗老年病的方法上,没有用来搞清楚衰老的基本过程,而许多老年性疾病(如癌症、心脏病、早老性痴呆症、关节炎和糖尿病)都是由这一过程引起的。能加速衰老防止研究进程的另一件事,就是提高这个领域的形象。这个 工作已经开始了,但非常缓慢。吸引年轻的科研人员和严肃的科学家进入这个领域是至关重要的。抗衰老(即延长孩子的寿命)可能将是生殖干预的重要目标,但不是唯一的目标。为孩子谋最大福利是人类的天职。事实上,全球民意测验已经显示,在被测的每一个

国家都有可观的人数对增强孩子的身体和脑力健康感兴趣。他们考虑的不是如何避免某些疾病,而是用干预手段改善孩子的容貌、智力、力量、助人为乐精神和其他品质的状况。一旦技术达到可靠程度,许多人都需要这类干预手段。甚至那些没有这方面压力的人也会这么做,目的是不让孩子处于劣势。当然,人们会很小心,因为他们并不想伤害孩子。总之,如果干预手段失败,他们就得忍受其结果,承受犯罪的感觉。是一个不受欢迎的选择吗?

社会也许并不欢迎某些父母的选择。在美国性别选择是合法的,但在英国和其他许多国家就是非法的。不少人认为,尽管西方国家并没有出现严重的性别失衡,很难说父母的选择伤害了谁,但这个程序在美国也应该是非法的。另一个即将来临的决定是父母是否因为大量基因疾病而进行筛选。父母们不久就能够选择孩子的身高和智商,或选择性情气质的其他特点――容易患病的机制也许不久就会在基因解读中表现得清清楚楚。

胚胎选择技术的第一批希望所在是基因测试和筛选,即选择某种胚胎而不是另一种。一开始,让许多人接受这个技术是困难的,但要控制它几乎是不可能的,因为这种胚胎本来就可能是完全自然形成的。这样选择也许是令人苦恼的,但不会发生危险,我猜想它们给我们带来的好处比问题多。有些人担心这样一来会失去多样性,但我认为更大的问题在于父母所选择的胚胎可能会产生一个有严重健康问题的婴儿。那么是否应该允许父母做这样的选择呢?例如,失聪群体掀起了一个极力反对耳蜗移植的运动,因为耳蜗移植伤害了聋哑 文化 ,把聋哑视作残疾。大多数非聋哑人正是这样看待他们的。有的聋哑父母表示,他们要使用胚胎选择技术来确保他们的孩子继续聋哑。这并不是说他们拿出一个胚胎来毁坏它,而是选择一个能造成一个聋哑婴儿的胚胎。

这造成了真正的社会问题,因为社会必须承担这类健康问题所需的医疗费用。如果认为父母的确有权作这样的选择,我们根本没有理由去重视健康儿的出生而轻视有严重疾患的婴儿,那么我们将无法控制这类选择。但如果我们认为存在问题,并极力想与之进行斗争的话,我们会发现这种斗争是很有前途的。

放开手脚,取消禁令

关于由人体克隆产生的第一例怀孕事件见报后不久,美国总统乔治?W?布什就表示支持参议院的一份提案,该提案宣布所有形式的人体克隆皆为非法,包括旨在创造移植时不会被排斥的胚胎干细胞,即治疗性克隆。我认为这种禁令下得为时过早,也不会有效果,而且会产生严重的误导。就是说,这个禁令无疑是错误的。它根本无法实质性推延再生性克隆的问世,我认为这种类型的克隆将在10年内出现。这个禁令把 政治、宗教和 哲学因素注入了基础研究,这将是个危险的案例。这个禁令的立法理念把更多的关注赋予了微乎其微的小小细胞,而对那些身患疾病、惨遭折磨的人却视而不顾。这个禁令用严厉的刑事惩罚(10年监禁)来威胁胚胎科研人员,这在一个妇女在妊娠头三个月不管什么理由都有权堕胎的国家里,简直是不可思议的。

美国对胚胎研究的限制,已经对旨在创建再生 医学的生物技术的 发展产生了影响。这些限制延缓了美国在这个领域的前进步伐,而美国在生物医学的科研力量是全球首屈一指的。如今这类科研已转移到英国和其他国家去了,例如新加坡,正在为一项研究胚胎干细胞的庞大 计划提供资金。这种延误之所以非常不幸,是因为本应发生的好事如今却没有发生。对多数人来说,10年或20年的延误不是个大问题,但对于演员迈克尔?J?福克斯(Michael )以及其他帕金森氏病和早老性痴呆症患者来说,却是生与死的问题。

对各种再生可能性的无知,往往会引起人们的恐惧。但这种无知却不能成为公众政策的基础,因为公众的态度会迅速改变。25年前,体外受精着实让人们猛吃一惊,体外受精的孩子被称作试管婴儿。现在我们看到这些孩子与他小孩没什么区别,这个方法也已成为许多没有孩子的父母的明确选择。

不管是出于意识形态还是宗教原因,把新技术加以神秘化,把它当作某种象征来加以反对,都不会有效推迟即使是最有争议的 应用。这种反对态度只会扼杀本可以转化为人人支持的生物医学新成果的主流科研。

人类克隆会在某个国家实现:很可能是以暧昧隐秘的方式实现,而且甚至在确认安全之前就实现。抗议和禁止也许会稍稍推迟第一个克隆人的诞生,但这是否值得花费严肃的人类立法成本呢?

不管我们多么为之担心,人类胚胎选择是无法避免的。胚胎选择已经存在,克隆也正在进行,甚至直接的人类生殖工程也将出现。这样的技术是阻挡不了的,因为许多人认为它能造福于人类,因为它将在全球数以千计的实验室里切实进行,最重要的是,因为它只是解除生物学的主流生物医学科研的一个副产品。

对于迅速发展的技术,我们要做的重要的事,不是预先为它设立条条框框。务必要牢记,同原子武器相比,这样的技术是没有危险性的。在原子武器中,稍有不慎,众多的无辜旁观者即刻就会灰心烟灭。这些技术仅对那些决定挺身而出使用

他们的人才具有危险性。如果我们把关于这些技术的现在的希望和恐惧带进将来,并以此为基础进行预先控制,从而扼杀它们的潜力的话,我们就只能制定出非常拙劣的法律。今天,我们并没有足够的知识来预测这些技术未来会出现什么问题。

比较明智的方法是让这项技术进入早期 应用,并从中学些东西。性别选择就是现实世界的 经验 能告诉我们一些事情的极好例子。许多人想要控制性别选择,但与不发达国家不同,在发达国家,自由选择性别并没有导致性别的巨大不平衡。在美国,父母的选择基本上男女平衡的,女孩占微弱优势。以前有人认为,如果给了父母这种选择权,会出现严重问题,因为男孩会过剩。但事实并非如此。这种危险是我们想象出来的。有些人认为,父母不应该对孩子拥有这种权力,但他们究竟担心什么,往往非常模糊。在我看来,如果父母由于某种原因的的确确需要一个女孩或男孩,让他们了却心愿怎么会伤害孩子呢?相反的情况倒的确值得担心的:如果父母极想要一个男孩,结果却生了个女孩,这个“性别错误”的孩子可能就不会过上好日子。我相信,让父母拥有这种选择权,只有好处没有坏处。

我们还可以想象出有关性别选择的各种麻烦事件,编出一系列可能发生的危险 故事 。但如果将来事情发生了变化,性别不平衡现象真的出现了,我们再制定政策处理这类特殊问题也不迟。这要比现在就对模糊的恐惧感和认为是在戏弄上帝的思想观念作出反应,无疑要明智得多。这是民主化的技术吗?

阻止再生技术的行为使这些技术造成 社会的极端分裂,因为阻止行为仅仅使这些技术为那些富裕的人所用,他们可以非常容易地绕过种种限制,或者到国外去,或者花大钱寻求黑市服务。

其核心是胚胎选择技术,如果处理恰当,它可以成为非常民主化的技术,因为早期采取的各项治疗措施可以面向各种残缺者。把智商在70到100(群体平均数值)的人向上提高,要比把智商从150(群体百分比最高值)提高到160容易得多。要让本已才智卓绝的人再上一层楼,那非常困难,因为这必须改善无数微小因素的复杂的混合配备状况,正是这些因素合在一起,才能创造出一个超人来。而改善退化的功能则要容易得多。我们并无超人的案例,但我们却有无数普通人为佐证,他们可以充当范例,引导我们如何去修改一个系统,使之至少达到正常的功能。

我觉得,人们以为我们是平等的创造物,在法律面前人人平等,于是就认为我们大家都是一样的。其实不然。基因抽奖可能是非常非常残酷的。你去问问行动迟钝的人,或问问有这样那样基因疾病的人,他们是不会相信什么基因抽奖是多么美妙公平这种抽象言论的。他们就希望自己能更健康些,或者获得某些方面的能力。这些技术的广泛应用,就在许多方面创造了一个平等的竞技场,因为那些本来由于基因原因处于劣势的人也有了竞争的机会。

另一个问题是,这些技术就像其他技术一样, 发展很快。在同代人之间,富人和穷人的应用差距不会很大,而在两代人之间的应用差距却会很大。如今,甚至比尔?盖茨也无法为他的孩子获得某种在25年后中产阶级也认为是很原始的基因增强技术。

所谓明智的一个重要因素,就是要懂得什么我们有权控制,什么无权控制。我们务必不要自欺欺人,以为我们有权对是否让这些技术进入我们的生活进行选择。它肯定会进入我们的生活。形势的发展必然要求我们去使用这些技术。

但在我们如何应用它们、它们会如何分裂我们的社会,以及它们对我们的价值观会产生什么影响等问题上,我们的确有某种选择余地。这些问题我们应该讨论。我本人对这些技术是满怀希望的。它们可能产生的好处会大大超过可能出现的问题,我想,未来的人类在回顾这些技术时,会觉得奇怪:我们在这么原始的时代是如何生活的,我们只活到75就死了,这么年轻,而且死得这么痛苦难过。

政府和决策者不应该对这些研究领域横加阻挠,因为由于误用或意外所造成的伤害,并不是仅有的风险。能够挽救许多人的技术因为延误而使他们继续遭受痛苦,也是一种风险。

当务之急是倾全力获得足够的安全性,防止意外的发生,而要做到这点,协调者看来要牺牲许多间受影响的人的安全。疫苗的例子就是这样。疫苗有许多年没有进展,因为引起诉讼的可能性很大。如果那个孩子受了伤害,会产生巨大的后果。然而很明显,对接受疫苗接种的全体人而言,是非常安全的。

我认为人们对于克隆也是同样的问题。它在近期可能会影响最多一小部份人。在我看来,拒绝会改变数以百万患者命运的非常有可能的 医学进步,振振有词地宣称这是对人类生命的尊重,这是一种奇怪的逻辑。

失去人性还是控制人性?

另一种祁人之忧,认为任意篡改生物机制有可能使我们失去人性。但是,“人性”究竟是与某些非常狭隘的生物结构有关,还是与我们接触世界的整个过程、与我们之间的相互作用有关呢?例如,假如我们的寿命增加一倍,会不会使我们在某种意义上“失去人性”呢?寿命延长必然会改变我们的生活轨迹,改变我们的互动方式,改变我们的 组织制度、家庭观和对 教育 的态度。但我们还是人类,我敢断言我们会迅速适应这些变化,并会对以往没有这些变化的生活觉得不解。

如果原始的狩猎者想象自己生活在纽约城,他们会说在那样的地方他们可能不再是人了,他们认为那不是人的生活方式。可是今天我们大多数人不仅把纽约的生活看作是人的生活,而且是大大优于狩猎生活。我想,我们改变生物机制所发生的变化也是如此。

目前人类还处在进化的早期阶段,至多是青少年期。几千年后,未来的人类来看我们这个时代,会认为是原始的、艰难的同时充满希望的时代。他们也会把我们这个时代看作是人类发展的特殊的光荣的时刻,因为我们为他们的生活打下了基础。我们很难想象即使一千年后的生活会是什么样子,但我猜想我们现在的生物重组会大大影响未来的人类。

点击下页还有更多>>>关于基因的生物科技论文范文

最近被朋友圈和各大公众号基因编辑婴儿的文章链接和评论刷屏了,因为这个事情和每个人的未来息息相关,涉及范围广泛,不同的大V出现了两极分化的观点,不同的观点也一直在激烈的碰撞。生物医学界普遍强烈谴责这种行为,我们群也进行了激烈的讨论,尤其群里有生物医学界的学霸。发表了两点观点:“在人没有疾病的情况下,人为的为了做实验编辑基因,对人不带来治疗效果,而是带来潜在风险”。这两个小孩原本就是健康的小孩,在我眼里这样的做实验人的目的完全是为了自己的成功和出名。第二点,学霸提到:“还记得几个月前出了个新闻用基因编辑方法可以把蚊子灭绝吗?同样的技术,用在不同生物上也会有类似的效果,制约大家的就是行业规范和伦理。结果,现在,这些全被击穿了”。这样的一个如同基因的核弹武器具有巨大的威力,是需要收到严格限制和管控的。因为威力巨大,用的人不同,会具备毁灭性打击,进攻总是比防守容易。千万不能低估大众的想象力。这次的新闻广泛的传播,基因编辑撕开了一个口子后,有多少人会幻想去做这方面的试验,尤其是有先天性遗传病的,生健康小孩困难的,已经有不同想法的有钱人,觉得自己这代不行,想要靠下一代好基因的普通人.......第三点,“这样的生物技术出现,以后就会让人种分离——穷人和富人,无论生理技能和寿命都将不一样”。人人生而平等,就是无论贫穷还是富有,下一代的基因都是相差无几的,这个情况如果下去,无非这些结果。“弱小和无知不是生存的障碍,傲慢才是”——《三体》里面贯穿整个小说的一句话想送给大家。当我们拥有不属于自己的超力量时候,比如核弹,基因改造.....就像一个反对的大V所说“当人类把自己想象成上帝,那将是最可怕的灾难的开始。”也有一个大V说了这个事件对未来的影响“基因编辑婴儿,这个技术已经打开,那就关不上了,尤其是有明确好处时,舆论的谴责,法律的禁止,都无法阻止想要的人们得到它。接受也罢,抗拒也罢,它终将改变人类。”我不否认这个以后可能会发展到,地下操作这些事情,完全禁止总是非常理想化的。现实中,不同的人的道德水平和关于道德伦理的理解实在是千差万别的。很多人看到这次的新闻,仿佛置身于科幻文章一样。我自己从小也是科幻谜,初中开始就一直每月看《科幻世界》,高中开始在《科幻世界》中追刘慈欣的《三体》连载,现在反复看了很多遍。那么多年前那么多篇科幻世界的文章,对其中两篇婴儿的基因改造科幻文,非常印象深刻。第一篇短篇科幻文章:里面的科学家是顶尖的生物医学界的科学狂人,他致力于通过科学改造出来最完美的人类小孩,设置出来完美小孩之前,他的朋友一直反对他在做上帝的工作,但是已经来不及反对了。就像这两天的双胞胎已经出生了。很颠覆的一刻来临,他虔诚的看着他的实验室出来的那个完美婴儿,结果出来的是一个非常普通,和别的婴儿毫无差别的人类小孩……这篇科幻明显的写了一个故事,我们不断追求完美的小孩其实已经存在,宇宙创造我们就已经很完美了。第二篇短篇科幻文章:一位女科学家,觉得每个婴儿从成长的过程要学的东西,是耗费十几年的。因为如此,科技的增长才非常缓慢。于是她研究出,母体的记忆,感受,经历,和思维是同样遗传给腹中胎儿的。她疯狂开始做人体试验,第一个实验中婴儿是研究所的一位保洁阿姨,怀孕的小孩。当这个小孩还在肚子里面的时候,已经拥有保洁阿姨这半辈子的记忆,感受,学识,思维所有她脑中的东西,在小孩脑子也有。于是小孩子尚在肚子里的时候,开始和她们两个沟通聊天。和她妈妈回忆起,她妈小时候,大字不识,成长过程差点在农村里面就夭折的各种辛苦的经历。回忆她那时候去县城,几十公里,从农村一路走过去,脚磨的起泡,在路边饥渴难耐的感觉。保洁阿姨对着腹中胎儿说,这些都过去了,现在生活也慢慢变好了,期待着胎儿的降生。结果胎儿反应剧烈,她对世界所有的认知都是母亲这么艰辛的半辈子,她受不了自己也要过那样的人生,这与母亲腹中羊水温暖的环境天渊之别。不管这个女科学家和保洁阿姨怎么对胎儿说未来的生活会越来越好的,胎儿始终不信,总记得她妈这么多年的苦难……觉得自己是肯定过不了那么难的生活,然后婴儿就在肚子里面用脐带缠绕了自己的脖子,自杀了。直到这样,这个女科学家才明白,无知其实是对婴儿成长的重要保护。我看过那么多篇科幻文章,当我们想象自己在那个世界之后,再回到现实世界,会异常珍惜现实世界的平和和幸福,这些我们习以为常的东西,待我们进入科幻的世界后,才会发现,我们以为的理所当然,其实只是偶然。

基因编辑婴儿会带来的风险:有严重缺乏科学评估验证,安全性存在不可预知风险。

在伦理与道德上,在严重缺乏科学评估验证,安全性存在不可预知风险的情况下,贸然开展以生殖为目的的人类生殖细胞基因编辑临床操作,严重违背了基本伦理规范和科学道德。

扩展资料:

科技工作者必须加强科学道德自律,强化自我管束,在探索和创新活动中必须遵守相应的伦理道德准则和法律法规。针对科学技术发展中出现的新情况、新挑战,科技界要深入思考,认真研究,未雨绸缪,加强教育,完善相关行业规范和伦理指南,以保证科技界从事负责任的研究。

有关部门要动态完善相关法规,严格审查监管程序,适时推进有关立法工作,严密防范科研伦理不端行为发生。

参考资料:中国新闻网-工程院:“基因编辑婴儿”严重违背伦理和科学道德

基因编辑婴儿

基因编辑的话会让父母觉得孩子并不算是自己的孩子了而且在伦理道德上也存在着一些严重的伦理道德问题比如说基因因问题还有就是遗传问题

因为基因编辑的孩子有违背正常伦理所以不允许这样。

加州大学伯克利分校(University of California Berkeley)的分子生物学家Jennifer Doudna说,“这项技术还没有准备好。”Doudna是CRISPR-Cas9基因组编辑系统的先驱,“这并不令人意外,但令人非常失望和不安。”

基因编辑胚胎在全球引起巨大争议的一个原因是,如果允许婴儿出生,这些编辑过的基因就可以传递给后代——这是一种影响深远的干预,被称为改变生殖系。研究人员一致认为,这项技术有一天可能有助于消除镰状细胞贫血和囊性纤维化等遗传疾病,但在用于人类改造之前,还需要进行更多的实验。

而目前许多国家都禁止植入基因编辑胚胎。据《自然》报道,俄罗斯有一项法律,禁止在大多数情况下进行基因工程,但尚不清楚这些规则是否会在胚胎基因编辑方面得到实施,或者如何实施。2017年,一项针对多个国家的辅助生殖法规的分析显示,俄罗斯关于辅助生殖的法规并没有明确提到基因编辑。

在禁止以繁殖人为目的的生殖性克隆,并且明确注明这种行为是“反人类物种的罪行”。随着技术的发展,法国人还就医疗辅助生育、安乐死、修改基因等问题展开过长时间的讨论,目前,法国法律仍不允许修改受精卵治疗遗传病,法国专家认为,基因修改面临着疗效、安全性、后遗症等尚不可知的重大问题。

基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。

基因编辑的原理

这主要是通过基因编辑技术进行基因处理,同时对于基因其中的碱基进行改变实现的。

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

基因编辑技术指能够让人类对目标基因进行定点“编辑”。基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂,诱导生物体通过非同源末端连接或同源重组来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。现在运用最多的基因编辑就是CRISPR/Cas系统,CRISPR全称是Clustered Regularly Interspaced Short Palindromic Repeats(成簇的规律间隔的短回文重复序列),而Cas的全称是CRISPR associated(CRISPR关联)。在CRISPR/Cas系统中,CRISPR/Cas9系统是研究最深入,应用最成熟的一种类别。CRISPR/Cas9是继锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代基因组定点编辑技术。

我之前碰到过类似的问题,总结一下就是,基因编辑的原理的确是基因突变,不是基因重组。基因编辑是比较精确的能对生物体基因组特定目标基因进行修饰(改变几个碱基之类的);转基因技术才是基因重组(将特定的外源目的基因转移到受体生物中)。

相关百科

热门百科

首页
发表服务