首页

> 学术论文知识库

首页 学术论文知识库 问题

温度响应型复合材料毕业论文

发布时间:

温度响应型复合材料毕业论文

材料专业毕业论文开题报告

开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家收集的关于材料专业毕业论文开题报告,欢迎大家阅读!

论文题目: 高聚物对水泥抗蚀性能的影响

1、国内外研究现状、水平及存在的问题:

随着建筑科技的进步与发展,一种新型化学建材正悄悄的却又以飞快的速度在中国建筑界得到应用和发展,这就是聚合物水泥基复合材料。聚合物水泥基复合材料通常按其化学构成大致分为两类,一类是以聚合物为基、水泥作为填充料组合成的,最常见的如目前大量应用于工程防水的“聚合物水泥防水涂料”;另一类是以水泥为基,以聚合物单体或数种聚合物对水泥进行改性而组合成的材料,如各种聚合物水泥混凝土及各种聚合物水泥砂浆等[1]。原则上讲,聚合物水泥是聚合物改性水泥,它保持了水泥水化物的一系列优点,并用聚合物的优点弥补了水泥制品的不足。因此,聚合物水泥显示出了较大的抗压、抗冲击、抗穿刺能力及耐磨性,优良的抗渗性、抗腐蚀性及抗老化性,适当的弹性模量,而不需要刻意追求高的断裂延伸率[2]。

1923 年克莱森(Cresson)首次申请了有关聚合物硬化水泥体系的专利。他把天然橡胶乳液作为填料加入道路路面建筑材料中。1924年,Lefebure申请了用天然橡胶乳液使水泥砂浆及水泥混凝土改性的专利,第一次提出了用聚合物对水泥砂浆及混凝土进行改性的概念。从此,拉开了混凝土中添加聚合物的历史性序幕。1932年,Band第一个提出了利用人造橡胶改性水泥砂浆及水泥混凝土,也获得了专利。20世纪40 年代,人们先后尝试了用合成聚合物乳胶改性,以及把聚乙烯乙酸酯也用于改性的方法。50年代,这一领域的研究与尝试开始受到各国材料界专家学者的重视,并获得了很多项研究成果,许多成果在工程上也都得到了广泛的应用。60-70年代, 人们开始研究用液态和固态的聚合物,诸如聚合物单体、树脂、聚合物乳胶粉等对水泥砂浆及水泥混凝土进行改性。80年代,各国都投入了大量的人力、物力、财力,对混凝土改性进行了研究,随着科研成果的不断出现,这一领域也得到了极大的推动,研究水平得到了极大的提升。美国是世界上聚合物水泥基复合材料研究开发的先行国家,最早于50年代就开始了对其进行实际应用的尝试。

由于我国在聚合物水泥基复合材料方面的研究起步比较晚,所以,至今还没有出台相关方面的行业标准与测试方法。多数学者认为聚合物水泥基材料的增强机理主要是由于剔除了粗骨料,降低了细集料的粒径,从而提高匀质性,使集料所得集配曲线为非连续性的;另外聚合物在水泥浆内部聚结成网络结构,起到了很好的阻裂增韧作用。近年来,人们逐渐开始从微观结构方面对聚合物改性水泥基材料进行研究,认为聚合物颗粒的分散和聚合物薄膜的形成是聚合物水泥改性的主要原因。研究认为聚合物从两方面影响了改性水泥浆的结构: (1)混合后一部分聚合物粒子吸附在水泥颗粒表面,形成薄膜;(2)另一部分聚合物分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后,聚合物在孔中形成薄膜[3]。此外,关于聚合物在改性水泥砂浆中的分布,目前还存在一些异议。 按照著名的Ohama[4] 模型,聚合物均匀分散在水相中,随着水泥水化,水分减少,聚合物逐渐凝聚成膜,因而聚合物主要存在于改性砂浆的孔隙中。 Su[5] 等对新拌改性水泥浆水相成分的分析表明,在拌合开始就有相当多的聚合物被吸附在水泥颗粒表面,他们还发现,拌合初期被吸附在水泥颗粒表面的聚合物的量与聚合物乳液种类和乳液掺量有关。 通过含氯聚合物改性砂浆的EDAX 分析表明,在聚合物改性砂浆中,水泥浆体与骨料之间的界面上聚合物的含量较高。 Ollit rault-Fichet 等的研究也说明,聚合物颗粒最初会被水泥颗粒吸附,并最终被包埋在水化水泥的颗粒之中[6]。

在实际工程中,硅酸盐水泥易在酸和酸盐溶液中遭受侵蚀是因为:(1)硅酸盐水泥中含有大量的氢氧化钙及高碱性的水化C-S-H 凝胶、水化铝酸钙等水化产物,酸溶液中的H+与Ca(OH)2发生中和反应,使水泥石碱度急剧降低,进而造成高碱性水化硅酸钙和水化硫铝酸钙等水化产物分解,转变成低碱性水化产物,最后变成无胶结能力的SiO2·nH2O 及Al(OH)3等;(2)硫酸盐溶液中的硫酸根能和水泥石中的Ca(OH)2及水化铝酸钙等[7]发生化学反应,生成有膨胀性的石膏和钙矾石晶体,当这些结晶体在水泥石毛细孔隙中逐渐积累和长大,产生孔内应力,当应力大于临界破坏应力时,造成水泥试样破坏。由于水泥石本身也不密实,有很多毛细孔通道,使砂浆产生渗透性,使得水泥的使用性能下降。同时,侵蚀性介质容易进入其内部,以致由其配制的砂浆易受到腐蚀,导致水泥材料的耐久性下降。普通水泥砂浆不饱满、不密实,不能有效地形成具有防水抗渗作用的整体不透水层。它也存在抗压强度低、耐腐蚀能力不高等缺陷,其使用范围也受到了很大的局限。

而聚合物改性水泥由于聚合物及活性成分的掺入,改善了聚合物水泥砂浆的物理、力学及耐久性能,扩大了其应用范围。对水泥性能的改善主要体现在如下几个方面:

(1) 活性作用 聚合物乳液中有表面活性剂,能够起减水作用。同时对水泥颗粒有分散作用,改善砂浆和易性,降低用水量,从而减少了水泥的毛细孔等有害孔,提高砂浆的密实度和抗渗透能力。

(2) 桥键作用 聚合物分子中的活性基因与水泥水化中游离的Ca2+、Al3 + 、Fe2 + 等离子进行交换, 形成特殊的桥键,在水泥颗粒周围发生物理、化学吸附,成连续相,具有高度均一性,降低了整体的弹性模量,改善了水泥浆物理的组织结构及内部应力状态,使得承受变形能力增加,产生微隙的可能性大大减少。即使产生微裂隙,由于聚合物的桥键作用,也可限制裂缝的发展。

(3) 充填作用 聚合物乳液迅速凝结,形成坚韧、致密的薄膜,填充于水泥颗粒之间,与水泥水化产物形成连续相填充了孔隙,隔断了与外界联系的通道[8]。从而阻止了腐蚀性介质进入水泥石内部,提高了抗腐蚀和抗渗能力。

孙炎[9]曾研究冷混合沥青混凝土,用于道路工程;聚合物改性砂浆用于钢筋混凝土结构的永久模板,结果证明它们都可以更好地防止氯离子渗透和更好地抗碳化作用,从而提高钢筋混凝土结构的耐久性,掺加有硬沥青的钢桥面也具有更高的抗腐蚀性能[10]。鉴于此我们可以通过在水泥中掺杂沥青和石腊,来改善水泥的内部结构并填充其内部孔隙,从而提高水泥的抗蚀性,解决水泥抗蚀性较差的问题。

2、选题的目的、意义:

在我国,尤其是西部地区的盐碱地、盐湖区以及地下水中普遍存在着硫酸盐对水泥混凝土的侵蚀。在某些特种工业设施中,还存在有硫酸和硫酸盐的混合腐蚀以及H2S、CO2腐蚀等。从一些实例中我们可以看出,破坏水泥混凝土的主要原因一般都不是机械应力, 而是多种腐蚀或者是自身内部发生化学反应。这就引起了人们对水泥混凝土的耐久性能的讨论。因此,研究水泥的抗腐蚀性能不仅对建筑材料具有至关重要的作用,而且会对提高各种工程建筑的耐久性能有重大的经济价值和使用价值。关于聚合物对水泥砂浆改性的主要途径是在其中加入能起到改性作用的聚合物。从前人的研究中可看到,聚合物水泥基复合材料都显著高于普通混凝土的`力学性能,比如抗折强度、抗压强度、粘结强度等都得到了极大的提高。与普通硅酸盐材料相比,聚合物水泥基复合材料有着自身的优势见表1。

表1 聚合物水泥基复合材料与普通混凝土的比较 性能

材料 普通混凝土 PCC

W/C

断裂 1 50~60

冲击 5 80

密度

抗拉强度 2~3

抗折强度 5~7 150~200

抗压强度 40~50 200~300

此外,聚合物水泥基复合材料还具有良好的耐化学腐蚀、抗渗性、低温下的抗裂性等。这就使得聚合物改性水泥基复合材料在一定范围内部分取代了钢铁、高分子材料(像MDF 水泥基复合材料制作的唱片、轮胎都是具体的实例)[11]。它能提高水泥石的抗腐蚀能力主要是因为聚合物的添加提高了提高水泥石的密实度。混凝土结构正常情况下可以存在至少30年,但如果存在源于生物的硫酸腐蚀不过短短几年就会被破坏掉[12]。修复或完全取代这种腐蚀结构越来越有必要,但这种修复代价昂贵一直不能满足社会。然而通过沥青或石蜡对水泥进行改性,可大大提高水泥的抗蚀性,这无疑会节约了资源,减少了不必要的浪费,为社会积累更多的财富。

3、实施方案及主要研究手段:

、实验方案

、原材料的准备;

(1) 沥青粉的研制

制得分别过200目和300目筛的沥青粉,并适量添加矿物掺合料来减小沥青粉的粒度。

(2) 石蜡粉的研制

通过在石蜡中添加矿物掺合料来粉磨石蜡,并制得掺有石蜡的粉末。

、正交实验

(1) 因素水平表

因素水平用量(V%) 粒度(目) 温度(℃)

1 2() 100 100

2 4() 200 120

3 6() 300 150

(2) 根据正交表L9(34)列出以下几组实验:

序号用量(V%)粒度(目) 温度(℃)

指标

腐蚀前 抗压强度

(MPa) 抗Na2SO4腐蚀强度 (MPa) 抗Na2CO3腐蚀强度(MPa)

1 2() 100 100 2

2()

200

120

6

3 2() 300 150 4 4() 100 120 5 4() 200 150 6 4() 300 100 7 6() 100 150 8 6() 200 100 9

6()

300

120

注:括号内为石蜡的用量

、以硅酸盐水泥为基体,按以上正交方案分别掺加沥青、石蜡成型,每种高聚物与水泥的复合分别作空白样,3天强度测试样,腐蚀样。分别测定抗压强度,抗硫酸盐及碳酸盐侵蚀的能力。

、在把水泥块放入腐蚀液中前和从腐蚀液中取出,分别称取其质量,查看其质量损失。

、每一个过程留样分别作物相分析和微观分析,进行腐蚀机理分析。

、通过各组实验试样的对比,确定聚合物在水泥中的最优抗蚀配比。

、研究手段

(1)用扫描电镜观察沥青、石蜡改性水泥的微观形貌,以及硫酸盐、碳酸盐腐蚀后的微观形貌。

(2)用X射线衍射仪分析沥青、石蜡改性水泥的物相组成。

(3)用压汞仪测试水泥试样的孔结构;

(4)利用粒度分析仪测试各添加物的粒径。

4、选题的创新之处:

目前已有许多聚合物乳液(如苯丙乳液、纯丙乳液、乙丙乳液等) 用于水泥砂浆的改性,而采用沥青和石腊这两种聚合物对水泥砂浆进行改性的研究却相对较少。实验利用沥青和石腊高分子的熔胀性,在水泥水化过程中,沥青和石腊受外界刺激产生一定的熔胀从而填充水泥石的内部孔隙,提高水泥的密实度,达到提高水泥抗蚀性的目的。

5、预期研究成果:

沥青、石蜡与水泥混合成型后,一部分沥青、石蜡颗粒填充在水泥孔隙里,另一部分沥青、石蜡颗粒在一定外界条件影响下分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后形成膜。这两方面共同作用大大提高了水泥的密实度并阻止了腐蚀液与水泥浆体的接触,从而使水泥的抗蚀性能得到改善。

参考文献:

[1] 陈建辉, 黄金莲. 小议聚合物基水泥基复合材料[J]. 建筑技术开发, 2004, 31(10):115-116.

[2] 袁大伟. 聚合物水泥若干问题探讨[J]. 中国建筑防水, 2001,(4): 22-24

[3] 王茹, 王培铭. 聚合物改性水泥及材料性能和机理研究进展[J]. 材料导报, 2007, 21(1): 93-96.

[4] Ohama Y. Polymer2based admixtures[J ]. Cement and Concrete Composites ,1998 ,20 (3):189-212.

[5] Su Z , Sujata K, Bijen J M J M , et al. The evolution of the microstructure in styrene acrylate polymer modified cement pastes at the early stage of cement hydration[J]. Advn Cem Bas Mat ,1996 , (3): 87-93.

[6] 钟世云, 王培铭. 聚合物改性砂浆和混凝土的微观形貌[J]. 建筑材料学报, 2004, 7(2): 168-173.

[7] 吴国林, 文梓芸, 殷素红. 土壤聚合物耐酸性能的研究[J]. 新型建筑材料, 2006, 2: 5-7.

[8] 张文渊. TK聚合物砂浆在混凝土表面修补加固中的应用[J]. 腐蚀与防护, 2003, 24(7):300-302.

[9] 孙炎, 徐晓蕾, 钱玉林. 我国混凝土聚合物复合材料的研究现状及发展[J]. 建筑技术,2007, 38(1): 12-14.

[10] Yang Jun. Study on low temperature performance ofGus sa sphalt on steel decks with hard bitumen[J]. Journal of Southeast University (English Edition), 2003, 19(2): 160-164.

[11] 李民强. 聚合物水泥基复合材料研究及进展[J]. 广东建材, 2007 , 7 : 10-12.

[12] J. Monteny, N De Belie, E Vinck.,W Verstraete, et al. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer- modified concrete[J]. Cement and Concrete Research, 2001,31: 1359-1365.

随着生活水平的日益提高,人们对自己生活环境的舒适性要求也越来越高,空调、电热油汀、暖风机等消费品都已进入寻常百姓家庭。对于安装了这些家用空气调节设备的房间来说,最大限度地满足人体的舒适性是我们面临要解决的问题。在空调房间内,影响人体舒适性的因素主要有:温度、湿度、空气洁净度、噪声,另外还有一个重要因素“四周墙壁的温度”。一般认为,在冬季,室内气温达到16~20℃左右,人体就感到比较舒适,其实不尽然。例如,在夏季,室内气温为20℃时,人们穿衬衫活动感到很舒适;而在冬天室内同样为20℃的情况下,即使穿着较厚的羊毛衫也会感到冷。究其原因就是周围墙体的低温造成了人体辐射散热损失增大,产生了辐射冷感。因此,为了在冬季改善室内人体的热舒适性,目前采用的主要措施是增加对室内的供热量(如安装大功率空调器),提高室内的空气温度,同时通过空气间接提高围护结构的温度。这又带来两个问题:一是不利于节能;二是室内气温升高,空气的相对湿度降低,变得比较干燥,人呆在空调房间内也会感到不舒适。要解决这些问题的关键在于怎样快速提高空调房间四周墙体内壁面温度,从而减少人体对墙壁的辐射散热损失。事实上,在间歇供热(制冷)的条件下,建筑物的围护结构是不可能达到稳定温度分布。稳态条件下隔热性能相同的两种围护结构,在非稳态条件下可以表现出很大的差别。例如,用砖混结构的墙体和一层木板构成两种复合墙体,其中一种木板在内层,另外一种木板在外层。在稳态条件下,两种复合墙体的内表面温度是相同的,但是在非稳态条件下,两者的温度分布随时间的变化规律却会有很大的不同,木板在内侧的结构内表面温升较快,而木板在外侧的结构内表面温升较慢。这种现象给我们一个重要的启示,那就是我们有可能利用围护结构的动态传热特性,通过采用不同的墙体内表面材料来改善间歇供热(制冷)条件下的室内热舒适性,同时达到节能降耗的目的。1 数学模型 下面我们从空调房间冬季热量平衡关系式来研究室内墙壁温度对气温响应的规律。对于一般的民用空调房间:得热量有:(1)空调(或电热油汀、暖风机)等热源的散热量;(2)太阳辐射进入室内的热量;(3)人体散热量、照明、设备散热量。失热量有:(1)围护结构传热耗热量;(2)室内空气温升所吸收的热量;(3)加热由门、窗缝隙渗入室内的冷空气的耗热量。此外还会有通过其它途径散失或获得的热量。 热舒适性的评价指标以往的研究结果表明,人体在室内环境中的热舒适感觉不仅取决于室内空气的温度,还与内墙、门窗天花板等围护结构的平均辐射温度有关。2 室内空气温度的计算方法为了计算开始加热后房间的温升情况,需要联立求解关于空气温度的常微分方程和关于围护结构热传导的偏微分方程。关于空气温度的常微分方程,可采用隐式的欧拉方法或四阶龙格-库塔方法来求解。关于围护结构热传导的偏微分方程,采用控制容积有限差分方法求解。围护结构的墙、地板、天花板、窗、门几个部分,它们可以分别具有不同的边界条件和初始条件。这意味着要求解四个初边值条件不同的偏微分方程。房间的供热量可以按照空调设备的实际制热功率来计算。冷风渗透耗热量可以参考有关建筑采暖设计的方法来计算。在计算门窗的散热量时没有考虑它的热惯性,它的传热系数可从供热工程设计方面的手册中得到。计算中涉及到的其他有关数据均从有关的设计规范中获得。计算步骤如下:(1)首先给定空气的初始温度和其它相关的初边值条件及时间步长;(2)估计下个时间步的空气温度;(3)计算各部分热量,进行能量平衡;(4)如果能量基本平衡,转入下个时间步,否则估计新的空气温度重新返回第3步进行计算;(5)完成每个时间步的计算并保存计算结果;(6)绘制温度随加热(制冷)时间的变化曲线。3 计算实例分析针对南京地区的一个典型的房间进行了对比分析。该房间层高3m,开间,进深为。外窗与外墙比约为,.单层木结构。采用24砖墙内抹灰,木制地板,钢混预制楼板。其中的一个房间的墙壁和天花板采用了泡沫塑料,而另外一个房间墙内表面抹灰。根据暖通设计规范,南京地区在冬季室外采暖计算温度可选为-6℃,计算冷风渗透量的换气次数取为1次/h,墙壁的初始温度可取5℃,热源制热功率取3000W。在夏季墙壁的初始温度可取30℃。冷源制冷功率取3000W。对两种不同结构(一种是墙内表面抹灰,一种是墙内表面装饰泡沫塑料)的计算结果分别绘制在图1、3和图2、4中。对比图1、3和图2、4中空气温度和墙内表面平均温度随时间的变化规律可以看出,无论是空气温度还是墙内表面平均温度,都是墙内表面装饰泡沫塑料的温度响应速度快。4 总结通过以上对比,我们可以看出,无论是在间歇性供热,还是间歇性制冷情况下,在相同的加热(制冷)条件下,由相同材质、相同尺寸组合构成的复合材料墙体,在不同的材料排列方式的情况下,室内的温度响应有很大的不同,这对间歇性供热房间内人体的热舒适性有较大的影响。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

新型复合材料及其应用论文

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。

复合材料的应用论文

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

LDZ1994 - 助理 二级 连自己的身份都敢暴露真是胆子大啊,复合材料在军事上的应用非常广泛,如坦克的复合装甲应用前景非常的好,上面的资料已经非常的充分了

文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。

复合材料,强度高,重量轻,在军事上用途广泛。飞机,坦克,军舰,防弹衣,导弹等等。

复合材料学报影响力如何

1、复合材料学报。2、无机材料学报。3、功能材料。4、材料导报。5、材料研究学报。

如果你的投的期刊是100% EI 检索的话,一但期刊结构并刊登出来就可以检索了。只要期刊没有被踢出EI,发表的文章就能被EI检索,但这个时间也不是固定的,从1周~3个月都有可能。 耐心等吧,《复合材料学报》目前属于EI收录,你的文章迟早会被检索的。 还有些期刊只是 EI 部分检索的话,就看情况,甚至还有可能补录,这个间隔就比较长了,多达几年。

新型保温材料本科毕业论文

建议参考建筑材料相关的期刊 例如《建材世界》 我之前发表过一篇

建筑装饰施工中节能环保材料应用分析论文

无论是在学校还是在社会中,大家总免不了要接触或使用论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。相信许多人会觉得论文很难写吧,下面是我整理的建筑装饰施工中节能环保材料应用分析论文,希望能够帮助到大家。

摘要:

建筑装饰材料的选择影响是多方面的,如工程的质量、成本、环保性能和健康安全。所以本文针对建筑装饰施工环节中的节能环保材料进行分析,从节能环保的角度出发,考虑装饰选材的合理性。在同能的条件下,应当优先选用节能环保的材料,达到降低能耗,保护环境的目的。本文主要从建筑装饰施工过程中选择节能环保材料的意义、建筑装饰材料施工中节能环保材料的应用、节能环保型建筑材料发展的建议出发展开论述,以期望能够给今后的应用提供一定借鉴意义。

关键词:

建筑;装饰;施工;节能环保材料;应用;

1、引言

随着经济和社会的不断发展,经济水平的提升也使得我国逐步追求单纯的经济增长,转化为了综合治理,不能以环境破坏来发展经济。对于环境的保护和综合治理越来越重视。建筑行业在发展的过程中表现出、能源消耗多,能源利用率低的特征。所以要加强建筑行业的降低能耗。建筑行业中,建筑装饰过程中消耗了大量的材料,不同于结构施工过程中主要的材料为钢筋和混凝土,装饰施工工程中应用的建筑材料更加的多元化。可选择的余地更多,因此,本文从建筑装饰施工过程中的节能环保材料的出发,分析节能环保材料的应用[1]。

2、建筑装饰施工过程中选择节能环保材料的意义

保证身体健康,免受危害

建筑装饰材料的好坏直接关系到了居住人的身体健康。近年来一些不法的商家为了最求利益,使用劣质的材料进行加工,导致了装饰材料中甲醛等有害物质严重超标。甲醛超标严重的损害了人的身体健康,尤其是对发育不健全的孩子,抵抗能力更差。据统计,患白血病的儿童中,有一定比例的家庭都在近1-2年内装修过,所以对于建筑装饰材料的选择应该尤为注意。选用绿色节能环保材料能够有效的降低材料中的甲醛含量,减少材料中的有害物质。所以建筑装饰施工过程中选择环保材料具有重要意义[2]。

降低污染,改善生态环境

发展经济的过程中严重的破坏了生态环境,还绿水青山已经成为了国家的政策。所以在建筑装饰过程中使用节能环保的材料有助于减少对于环境的破坏。一方面环保节能材料生产的时候多采用对于环境无污染的材料,能够有效的节省能源,另外一方面节能环保材料在使用的过程中能够有效的减少对于环境的污染。保护了环境,就是保护了我们自己的健康安全[3]。

3、建筑装饰材料施工中节能环保材料的应用

木地板在建筑装饰施工中的应用

木地板在民用住宅中应用广泛,大部分的住宅都会选择模板进行家用柜子的制作。由于木材的生长周期较长,天然的木板价格很高。在实际的装饰施工过程中多采用复合板。如:胶合板、刨花板和细工木板。这些物质都会产生具有有害物质的甲醛,甲醛主要产生于木板的粘合剂中。因此,在进行木板的选用过程中需要注意木板的甲醛含量,自信核对质量检测报告,关注甲醛指标含量。

石材在建筑装饰施工中的应用

石材的种类众多,有人造石材也有天然石材。石材中韩鸥大量的天然放射性物质,并且这种物质不容易被察觉,但是会潜在危害人的健康安全。所以,对于石材的选用需要符合质量检测的标准。

低辐射玻璃在建筑装饰施工中的应用

随着国家大力发展建筑工程,楼的高度越来越高,对于建筑结构外墙的重量和美观有了更高的要求。一时之间,玻璃幕墙的应用有如雨后春笋般兴起。玻璃目前应用的过程中,同时也表现出了光污染的问题。光污染会对人的`健康造成极大的危害,影响到人的心理健康和生理健康。随着材料技术的发展,节能环保材料的不断研发,低辐射的玻璃被发明出来缓解光污染的问题。

瓷砖在建筑装饰施工中的应用

瓷砖根据用途的不同可以分为墙面瓷砖和地面瓷砖。如在卫生间等地方为了达到防潮的目的需要进行墙面和地面进行贴瓷砖处理。瓷砖是经过人工烧纸加工的材料,主要的材料为黏土。

墙纸在建筑装饰施工中的应用

住宅中为了保护墙壁并起到装饰的作用,部分家庭会选择用墙纸进行装修。墙纸在生产过程中多采用木浆,但是墙纸在黏贴的过程中需要使用到大量的粘结剂。粘结剂中含有大量的甲醛,危害健康。

废弃植物纤维在建筑装饰施工中的应用

我国是传统的农业大国,我国人工众多需要消耗大量的粮食。每年都有大量的粮食种植,秋天农作物产生大量的植物秸秆,大量的秸秆在焚烧过程中会产生有毒气体,如果把秸秆转化为建筑装饰材料,不仅能够避免焚烧秸秆产生的有害气体对于环境的污染,另外也能够起到装饰的作用,节省装饰材料,实现节能减排的目的。

光导照明系统在建筑装饰施工中的应用

光导照明系统是一种新型的照明材料,因为其制作的特殊性,并对自然光线进行采集,能够使自然光线均匀分布,形成一种特殊的照明效果,在现阶段的建筑装饰施工中被广泛的应用。

泡沫玻璃在建筑装饰施工中的应用

泡沫玻璃的原料主要是耕种颜色的平板或者是各种瓶罐的玻璃碎片、碎块,能够实现对废弃物的二次利用,有效的保护了生态环境,同时,泡沫玻璃具有保温、隔潮、吸声、阻燃等诸多优点,是一种新型的节能环保绿色装饰材料,被广泛的应用到现在的建筑装饰施工当中。

石膏建材在建筑装饰施工中的应用

石膏建材具有很多的优点,石膏建材能够有效的节省了材料,并且石膏在煅烧的过程中更为节省能源的消耗,因为水泥煅烧能耗是石膏的四倍,石灰的煅烧是石膏的三倍,其次,石膏具有良好的耐热性,无毒无害,最后,石膏不会产生建筑垃圾,可以进行循环使用,符合生态环境保护的作用,在现阶段的建筑装饰是施工中被广泛的应用。

4、节能环保型建筑材料发展的建议

汲取其它国家的先进经验

国外在绿色环保建筑发展历程上具有先进性,发展比我国早了很多年。我国为了发展经济,在追求经济效益的过程中损害了环境生态。任何一个发达国家的发展都率不开对于环境破坏,其他国家发展过程早于我国,对于环境的破坏、环境的修复都早于我国。因此,我们需要在前人的路上走出自己的新路,借鉴国外的成功经验,防止走先破坏后修复的老路。发展建筑施工过程中的绿色节能材料。

加强对节能环保型材料的开发

绿色环保材料的研发需要结合工程施工的实际进行应用,所以要加强材料的开发,不断的进行改进和改良。除此之外还需要考虑到材料的实用性,考虑在实际应用过程中的困难,针对性的解决,实现经济型、耐久性、实用性都能够满足要求的建筑装饰材料。

培养材料学和建筑学复合型人才

建筑环保材料的研发过程中,如果只具有单纯的材料学知识是不够的,还需要有建筑学相关知识,能够研发出真是适用的建筑材料,理论应用于实践相互结合。现在我国高等教育过程中,需要结合复合型人才的教育的培养,交叉学科才能够迸发出新的思想,提供新的解决问题的思路。

大力推进建筑设计绿色化

设计阶段决定了整个工程的施工方案,对于建筑装饰的过程中,在建筑设计阶段直接决定了装饰材料的类别。所以,在设计阶段需要严格的制定绿色环保设计,在设计的源头就决定了整个工程的环保节能效果。

加强相关政策的制定,推进绿色材料的发展

绿色环保建筑装饰的推行离不开政府政策的支持,一般绿色材料因为研发投入大、成本高等原因造成了市场价格偏高,一般在进行装饰过程中选用的人较少。开始推行绿色环保材料的过程中需要政府进行政策的扶持,如进行补贴或者要求公用建筑使用绿色节能环保材料等。通过推行绿色环保节能装饰材料,加强群众对于建筑装饰的绿色材料选用的理念,使得绿色节能的理念能够深入人心。

5、结论与展望

在现代工程建造过程中,随着材料技术和施工技术的发展,建筑材料越来越注重节能环保理念的设计和材料的应用。节能环保技术不仅能够给居住的人带来舒适的环境,还能够提供一个健康的生活环境。因此,在建筑装饰施工过程中需要注意材料的选用,最大程度的保证建筑的居住环境安全。同时,关注建筑装饰中的环保材料的选用就是保护环境,维护环境生态的重要措施。所以,本文从建筑装饰施工中节能环保材料应用展看分析,以期望提供一定的解决问题的思路。

参考文献

[1]张兰君.建筑装饰施工中节能环保绿色装饰材料的应用[J].黑龙江科学,2014,5(2):125.

[2]章永洁,蒋建云,叶建东,等.节能环保技术在小型公共建筑中的集成应用及能耗模拟分析[J].建筑技术,2015,46(6):504-507.

[3]陈荣国,陈艺兰,刘心中,等.相变材料及其在建筑节能中的应用[J].材料导报,2015,29(23):51-57.

二、发展新型建材及制品是可持续发展战略的要求对于能源和耕地等资源人均占有量只有世界平均水平1/4的中国来说,国民经济和社会与资源、生态环境协调发展显得更为重要和迫切。目前我国粘土实心砖仍占墙体材料总产量的近80,能耗高、毁田、污染等问题十分严重,每个消耗22亿吨的粘土资源,制砖毁田约12万亩,耗能8200万吨标煤,同时排放大量的粉尘和二氧化碳。因此,发展机关报型建筑材料及制品关系到我国可持续发展战略的实施,同时也关系到建材工业的健康发展。随着国民经济的发展和人民生活水平的逐步提高,人们对居住和工作场扬要求也不断提高。许多国家的经验证实,它是经济发展和社会进步的必然趋势。建筑业的进步不令要求建筑物的质量、功能要完善,而且要求其美观且无害人体健康等。这就要求发展多功能和高效的新型建材及制品,只有这样才能适应社会进步的要求。使用新型建筑材料及制品,可以显著改善建筑物的功能,增加建筑物的使用面积,提高抗震能力,便于机械化施工和提高施工效率,而且同等情况下可以降低建筑造价。天津、成都等城市的实践证实,在同等条件下,采用新型建筑材料及制品可增加有效使用面积近10,减轻建筑自重40以上,有效提高抗震能力。按目前年竣工城镇住宅亿平方米的10采用新材料计,每年可增加有效使用面积约2000万平方米,综合造价可降低约4-7。此外,发展新型建材对于环境保护和资源综合利用也有显著效果,以"八五"期间为例,仅发展新型墙体材料就累计节约生产能耗和建筑采暖能耗2200多万吨标煤,减少毁田约15万亩,利用工业废渣9500万吨,减少三氧化碳排放量2300万吨。作为与建筑业关联性最强,70的产品应用于建筑业的建材工业来说,发展新型建材及制品纳入到建筑设计、施工规程规范中,以推广应用新型那样工促进新型建材的发展。推广应用新型建材不仅社会效益可观,而且经济效益显著。如建筑上应用新型保温材料节能一项的费用,就远大于用新型建材顶替粘土实心砖所增加的费用。因此,发展新型建材及制品是社会进步和提高社会经济效益的重要一环。三、新型建材及制品发展展望按照建材工业"由大变强,靠新出强"跨世纪发展战略的要求,发展新型建材将着重在新字上做文章,促进产业结构的调整。新型建筑材料及制品产值"九五"期间以20-25左右的速度发展,到2000年产值接近1300亿元。其中乡以上独立核算企业产值800-900亿元,占建材工业总产值的20。工艺技术装备和产品质量达到国际70年代水平,骨干企业达到国际80年代初水平,先进企业达到国际同期先进水平。.1、部分新型建材产品2000年及2010年猜测(1)防水密封材料。预计到2000年,全国新型防水卷材产量达到8300万平方米,市场占有率达到20,全国城镇永久性建筑采用新型防水材料达到60。到2010年,全国新型防水卷材产量将达到亿平方米,市场占有率达到50,城镇永久性建筑采用新型防水材料将达到80。(2)保温隔热材料。预计到2000年,全国保温材料需求量为,岩(矿)棉40万吨,玻璃棉5万吨,膨胀珍珠岩30万吨,硅酸铝纤维4万吨。预计到2010年,全国保温材料需求量为:岩(矿)棉60万吨,玻璃棉10万吨,膨胀珍珠岩40万吨,硅酸铝纤维8万吨。(3)矿棉吸声板。预计到2000年,全国矿棉吸声板需求量为2000-2500万平方米。预计到2010年全国矿棉吸声板需求量为4000-5000万平方米,产品品种、质量和数量不但可以满足国内市场需要,而且将有部分产品出口。(4)装饰石膏板。预计到2000年,全国装饰石膏板需求量为700万平方米。预计到2010年,全国装饰石膏板需求量为1400万平方米。石膏板2000年需求量约8000万平方米左右。(5)建筑涂料。预计到2000年,全国建筑涂料需求量为100万吨,中、高档建筑涂料将占较大比例。预计到2010年,全国建筑涂料需求量将达到160万吨。(6)塑料异型材和门窗。预计到2000年,全国塑料异型材需求量为20万吨,可组成1000万平方米塑料门窗。预计到2010年,全国塑料异型需求量为50-60万吨,可组成塑料门窗2500-3000万平方米。(7)塑料地板。预计到2000年,全国塑料地板需求量为8000万平方米。预计到2010年,全国塑料地板需求量将达到-2亿平方米。届时,各种塑料地板(包括弹性卷材地板、半硬质塑料地板、柔性卷材地板)和各种功能地板)抗静电、防腐蚀、防火、保健)的品种、档次将有显著的提高,可基本满足不同层次的需求。(8)塑料管道。预计到2000年,全国塑料管道需求量为40万吨(其中33万吨为排水管、7万吨为给水管),塑料管材与管件不配套问题基本可解决。预计到2010年,全国塑料管道需求量将达到100万吨,其品种包括塑料给水管、电线导管、冷热水管、燃气管等。(9)壁纸、墙布。预计到2000年,全国壁纸、墙布的需求量为-3亿平方米。胶印壁纸、全天然壁布、水墨印崦及其他功能的壁纸将进一步发展,可基本满足高级宾馆、饭店的需要。预计到2010年,全国壁纸壁布需求量将达到4亿平方米以上,并有部分出口。(10)化纤地毯。预计到2000年,全国化纤地毯需求量为1200万平方米,预计到2010年,全国化纤地毯需求量将达到5000-8000万平方米,品种基本可配套,可满足不同要求的建筑物对抗静电、阴燃、防毒、防沾污、耐磨等功能的要求。2、"十五"期间新型建材行业发展重点新型建材将成为中国第十个五个计划期间(2001-2005年重点发展行业。新型墙体材料占墙材总量的比例将由"九五"末期的28增长至35。重点是建设上档次、不水平、规模的主导产品生产线。空心砖重点发展利用废渣的掺加量、高空洞率、高保温性能、高强度的承重多孔砖、外墙饰面的清水墙砖;混凝土砌块重点发展双排孔或多排孔的保温承重砌块、外墙饰面砌块,重点发展机械化(挤压式)生产的轻质多孔条板、外墙复合保温或带饰面的装配式板材,并配合建设部门推广应用轻钢结构体系,发展各种装配式条板。积极推广UPVC塑料管及其它新型塑料管。全国新建住宅室内排水管80、穿线管90。外墙雨水管50采用塑料管,基本淘汰铸铁管,约需各种管材管件16万吨左右;室内上水管和供暖管分别有30和20采用柔性塑料管;城市供水管道50;村镇供水管道80采用塑料管,下水管道15使用塑料管,共需UPVC管道20万吨左右。新型防水材料重点发展SRS、APP、APO改性沥青油毡,工程应用量将达到防水材料市场的55以上,用量约7000万平方米,逐步淘汰纸胎油毡防水材料。高分子防水卷材工程应用量将达到20,用量约5000万平方米,防水涂料工程应用量达7,年用量约6万吨,特种机关报型防水材料应用量将占防水材料应用量的80以上。新型保温材料产量将达到70-80万吨(不包括膨胀珍珠岩)。重点是加强各咱保温材料在建筑上的应用,使新型保温隔热材料在建筑中应用量占当年应用量比例达到35。建筑装饰材料重点发展丙烯酸类乳胶、高档发内外墙涂料、复合仿木地板等一些适销对路产品,朝着功能化、高档化、无化害化方向发展,做到新奇、美观、实用、方便,使装饰装修材料产值达到2000亿元,其工程产值约4000亿元。四、对策与建议1、确定新型建材及制品发展的主导产品,加强结构调整的导向工作。新型墙体材料以节能、节地、利废和改善建筑功能为目的,大力发展各种轻质板材和砼砌块,开发承重复合墙体材料。防水材料重点发展改性沥青防水卷材、聚氨酯防水涂料和硅酮、聚氨酯密封材料;保温材料重点发展建筑用矿物棉、玻璃棉制品;装饰装修材料重点发展丙烯酸类乳胶内外墙涂料、复合仿木地板等一些适销对路的产品;门窗重点发展塑料门窗,并注重解决好款式新奇、功能各异的设计和高档五金件的开发配套;上下水管道重点发展UPVC塑料管材件,并解决好管材与管件的配套问题。无机非金属新材料重点发展建筑、石油化工、电子、汽车等支柱产业所需的各类玻璃钢和制品,以及农渔业等行业所需的玻璃钢渔船、风力发电叶片等产品,不断提高集约化程度和产业化水平。2、加大科研开发的力度,提高技术装备水平。结合不同地区、不同建筑类型,以新型墙体材料为重点,瞄准有市场前景的新产品、新技术,在引进、消化、吸收国外先进技术装备的基础上,研究开发适合我国国情的新工艺、新技术和新装备。重点围绕尽可能少用天然资源,降低能耗并大量使用总收入弃物作原料;尽量采用不污染环境的生产技术;尽量做到产品不仅不损害人体健康,而应有利人体健康;加强多功能、社会效益好的产品开发。力争在下世纪30年代从总体上赶上中等发达国家同时代水平,在2015年部分有条件的产业率先实现现代化。近期应加强中高档外墙涂料的研制和开发,注重承重的复合墙体材料、保温材料在建筑上的应用研究,促进厨房卫生间产品的系列化、配套化开发,另外还应加强功能建材和绿色建材的研究和开发,优化产品结构。3、加强产品在工程技术应用的研究,加快新型建材及制品的应用步伐。建材主管部门和建筑业主管部门,要加强合作,尽快制定、落实新型建材纳入建筑应用于的规程和治理办法,切实解决新型建筑材料发展过程中科研、生产、建筑设计、施工等各个环节的具体问题;研究适合新型建材及制品应用的设计规程和施工工艺;编制、修订有关新型建材及制品的市府、生产、施工规范、规程及施工通用图集;颁布比较成熟的机关报型建材及制品设计、应用、推广产品目录,部分产品可考虑实行生产许可证等。力争在工作到一定程度时以几个部门联合下文的方式予以法定化。4、统筹规划、合理布局,形成一批新型建材及制品的生产基地和在型企业集团,按十五大提出的"抓大放小"和组建"大企业集团"的精神,结合各地的实际情况,选择一批有基础的城市和有实力的新型建材及制品生产企业集团和基地进行重点发展,使之形成生产规模大、配套能力台的大型新型建材及制品企业集团和生产基地。结合住宅产业化试点工作,抓好北京、上海、天津等一批城市发展新型建材及制品,使之形成各具特色,具有自己的主导产品和合理的产品结构、有一定规模和配套能力的新材料基地,对全国其他大中城市起到示范作用。 结 束 语 随着我国科学技术的飞速发展,可持续发展战略思想深入人心,建筑节能技术发展空间广阔,对新的节能材料的开发与应用势必成为今后研究的焦点,通过建筑节能新材料应用研究最终达到节省消耗,节约能源的目的。

相关百科

热门百科

首页
发表服务