首页

> 学术论文知识库

首页 学术论文知识库 问题

数据仓库与数据挖掘论文

发布时间:

数据仓库与数据挖掘论文

大学生活将要谢下帷幕,毕业前要通过最后的毕业论文,毕业论文是一种比较正规的检验学生学习成果的形式,那么应当如何写毕业论文呢?下面是我精心整理的毕业论文导师评语,供大家参考借鉴,希望可以帮助到有需要的朋友。

良好:能按期完成任务书规定的任务,能较好地运用所学理论和专业知识。论文条理清楚,论述正确,符合规范化要求答辩时能正确回答主要问题。

中等:能按期完成任务书规定的任务,在运用理论和专业知识上基本正确。论文文理通顺,论述不够清楚,书写不够工整。答辩时对主要问题回答基本正确。

及格:在指导教师帮助下能按期完成规定任务,在运用理论和专业知识中没有大的原则性错误。论文文理基本通顺,叙述不够恰当。答辩时能回答主要问题,但个别欠妥。

不及格:未按期完成任务书规定的任务,在运用理论和专业知识中存在个别原则性错误。论文文理不通顺,叙述不规范。答辩时基本概念不清,回答主要问题有错误。

该生通过查阅有关论题的资料和信息,在吸收学术研究成果的基础上,能够良好的运用自身所学知识对论题进行较为深入的分析和研究。

整篇论文的论述观点正确,论点突出,材料充实,叙述层次分明,文字通顺、流畅,有较强的逻辑性和良好的时效性。

此外,论文格式正确,结构科学、书写规范,条理清晰,符合所要求的标准和规范,有一定的创新见解,但对有关问题研究的深入程度不足。

该生的综合能力反映了学士学位具备的良好水平,其论文达到了本科良好论文的水准。

该生查阅文献资料能力一般,能收集关于论题的资料和文献,在写作过程中能够运用系统知识对问题进行较合理的分析。

论文论题与论文内容基本相符,结构完整,语言比较流畅,学术表达一般。

文章篇幅符合所要求的规定,内容基本完整,层次结构安排一般,但主要观点不够突出,逻辑性较差,没有个人见解。

该生的综合能力反映了学士学位具备的中等水平,其论文达到了本科中等论文的水准。

该生热爱祖国,工作努力、勤奋,有创新精神,勇于探索新的东西和事物;科学研究和论文工作比较踏实,责任心较强;学习努力,成绩优良;外语水平较高,有很好的阅读、协作和口语表达能力;此外该生全面发展,科研学习和文艺社团工作都体现出较高素质。

完成硕士论文课题期间,该生运用科学的思维方法和严谨的科研思路进行实验设计,熟练掌握了纺织工程、生物材料、生物化学等方面的实验技能,并能够熟练的应用origin等数据处理软件进行统计分析。经过文献查阅、开题报告、课题实施、资料整理、论文等系统培养,该同学已获得了独立从事上述科研工作的能力。

我认为该硕士论文已达到申请硕士学位的要求,特同意其进行硕士论文答辩,并推荐其申请硕士学位。

论文对批量控制中的配方与异常处理进行研究,在分析了经典聚类算法和子空间算法基础上设计了一种改进的子空间算法,这种算法对配方数据聚类能够取到良好的效果。

异常处理是任何控制过程中都不可避免的,论文提出了一种基于内部模型状态机的方法,使用JGrafchart对啤酒生产过程中糖化过程进行建模。然后构建异常处理系统,该系统能够运行糖化配方,并进行异常诊断和异常处理,最后填料过程中阀门未响应,分析了三种原因。仿真结果表明,所设计的异常处理系统能够有效的对批量生产过程中的异常行为进行诊断和处理。

该文运用文献资料等方法,首先分析了高校校园足球文化的功能,进而研究了足球运动对高校校园体育精神文化的影响以及足球文化与大学生体育目标,对大学生足球运动的开展提供了一定的理论依据。

论文文字表达准确,内容阐述较为准确,格式较规范。该生在论文的写作过程中,积极与指导教师联系,并认真调查研究,阅读了大量的文献资料,能够熟练掌握本专业的基础理论知识,具有一定的科研能力。但本文题目有些偏大,内容略显空洞。

该文运用文献资料、调查访问和数理统计等方法,对德州学院大学生选修足球的各种动机进行调查分析,这对德州学院足球选修课的开展和调动大家学习的'积极性提供一定的理论依据。

论文结构较严谨,逻辑性较强,文字表达准确,内容阐述较为详实,格式较规范。该生在论文的写作过程中,积极与指导教师联系,并认真调查研究,阅读了大量的文献资料,能够熟练掌握本专业的基础理论知识,具有一定的科研能力。

(一)成果

王贞慧用广告作业中影片制作的监控方法与把握能力,来衡量一位创意人员是否合格,这是对广告业提出的一个狠问题。为了便于回应这个至今并未达成共识的意见,她将广告影像的形式与风格归结为一个系统,倡导用准绳作监控,而不是在专业技术上作并非专业人的外行干涉(因为那会伤到制作人的自尊而消极怠工,或是监控无力而造成放任)。她提出的影像广告构成的七条原则和规律,是一份协助创意人跨进制作门坎与影视导演、制作人对话的基础,是创意人自身专业知识补充的方便餐,更是一个便于把控工作节奏的系统方法。

为了方便认识影片系统,王贞慧用内、外两个属性概括了影片的宏观局面,这也是该论文的论述特点。她没有在具体的操作技术上细谈枝末,因为,如果创意人监控的是技术,那么,只会造成“你来吧”的尴尬局面,毕竟别人是专业,而你并不专业,她是从三维、四维、甚至五维的角度来说事,通过谈论影调风格、表现形式是否与创意协调,使创意者具有发言的空间,因为这样的监控,可为实现创意初衷找到对话的系统语境,串起创、导、摄、剪辑的共识。将形式与风格作为大局加以控制,是一个具有实践意义的原创性方法,因此,该论文具有学术价值。

(二)不足

王贞慧通过论文努力搭建广告创意人和影片制作人的对话平台非常好,如果能再将“影调概念”提出来,在执行过程中用影调概念词(比如:是“优雅”或是“酷”)将“影像的形式与风格”简短地概括出来,那么,论文的创新意义将会更加明显。

该文运用文献资料、调查问卷和数理统计等方法,对德州学院普通大学生参与足球运动的现状进行调查研究,分析成因,提出自己的结论与建议,这提高大学生足球运动参与的积极性和德州学院足球运动的开展具有一定的指导意义。

论文结构较严谨,逻辑性较强,文字表达较准确,内容阐述较为详实,但格式不够规范。该生在论文的写作过程中,积极与指导教师联系,并做了调查研究,阅读了大量的文献资料,能够熟练掌握本专业的基础理论知识,具有一定的科研能力。

该生能圆满地完成毕业设计任务,方案合理,方法正确,能综合运用所学知识分析和解决实际问题。

毕业设计过程中态度端正,勤奋刻苦,论文论点正确,论证充分,软件设计符合工程规范,文档及程序清单齐全。建议毕业设计评为优秀。

崔亮同学的学士学位论文《碎片剪辑与周星驰影片中“无厘头”风格的营造》研究了碎片剪辑这一近年来颇为流行的剪辑艺术手段,并重点分析了周星驰影片中碎片剪辑的运用,创作手段与艺术作品互见,具有明确的主题和清晰的理论脉络,也有比较强烈的使用价值。

该论文结构清晰,层次分明,对碎片剪辑产生的电影/文化背景进行了较为详尽的剖析,研究了历史传承,结合中外各国代表影片对碎片剪辑的方式方法进行了有效的分析。更加可贵的是,我国以往对香港/周星驰电影的研究多集中在文化/个体的层面上,而本文从具体的技术/艺术角度研究了周星驰电影的一个创作层面,以理性的态度对其独特艺术形态的形成进行了令人信服的总结和归纳,对于此类电影的研究有着积极的意义。

该论文文字严谨,论点明确,例证丰富,论证方法多样。崔亮同学在写作过程中参考了大量文字/影片资料,多次加工修改,不断提高了论文的水平。由于作者是剪辑专业的毕业生,在论文写作中也注重紧紧围绕电影剪辑的艺术/技术特点,避免空洞的理论说教,而是结合具体的剪辑艺术处理,以例证为论据,以分镜头列表、镜头截图和扎实的分析为论证过程,具有剪辑专业毕业论文的特点,并在各章节中注意理论的提升。这是一篇比较优秀的论文。

某某同学的学位论文《基于数据挖掘的高校本科专业设置预测系统数据模型的分析和研究》选题于教育部委托中山大学开展的高校本科专业设置预测系统项目。该论文研究成果对于构建高校本科专业设置预测系统具有一定的先导性意义。

本文主要围绕着高校本科专业设置预测系统的数据模型这个问题展开分析和研究。论文首先对已有的专业设置数据模型进行综述,分析其在功能性、预测性、分析性以及挖掘性方面的不足之处,然后结合高校本科专业设置的实际需求,引入数据挖掘技术、数据仓库和OLAP,构建基于数据挖掘的高校本科专业设置预测系统的数据模型。总的来说,论文框架清晰,逻辑严谨,行文体现了自己的学术思考及思辨结论,有自己的创见。

本文的写作符合硕士研究生毕业论文规范,学术水准虾茫体现了两年学习的成果,可进入答辩程序。

论文长于思辨和综合,而短于对实际需求和现实情况的考量,比如各用户对于专业设置的需求以及数据挖掘中数据的可采集性及可用性等。建议今后在相关研究中采取更广泛视角。

初学者短期学会数据仓库与数据挖掘技术比较不现实,不过学术性的随便做个主题应该还不是很难。要想深入学习,建议报培训机构。1.数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,所以学好数据仓库与数据挖掘技术还是有必要的。2.数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。如果说想要了解数据仓库和数据挖掘技术,这里推荐CDA数据分析师的相关课程。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括概率统计知识、软件应用、数据挖掘、数据库、数据报告、业务应用等。CDA数据分析师分为LEVELⅠ、Ⅱ、Ⅲ三个等级,成为一名合格的CDA数据分析师能够胜任企业不同层次的数据分析工作。点击预约免费试听课。

研究生中,学术能力是导师非常看重的一个方面,下面就是我为您收集整理的研究生学术实践评语的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

该论文选题合理,为xxxx提供理论支持,研究意义重大。

该论文引用文献具有代表性和科学性,对有关的中外文献材料进行综合分析和归纳整理,掌握了xxxx的研究背景、研究现状和发展前景等内容,文献综述丰富而规范。

论文借助统计分析软件对xxxx进行了因素分析,论文内容丰富、条理清晰、结构完整,资料收集详实,数据准确,论证清晰有力,论据充分可靠,结论可靠。

该论文研究结果表明,xxxx,研究具有很强的实践价值和操作性,充分反映了作者对于xxxx知识掌握的全面性,对于xxxx实践有经验,有分析,有思考,有建议。

论文格式正确,结构严谨,层次分明,书写规范,逻辑严密,语言流畅,重点突出,反映了作者具有较强的独立科研能力。论文总体优秀,同意提交答辩,建议授予农学硕士学位。

该课题选题新颖,紧密结合临床,设计合理,属于本学科研究热点,研究工作具有一定的理论意义与实际价值。论文的内容与题目基本相符,结构完整,格式规范,层次清楚,条理分明,语言通顺流畅,内容丰富。文献材料收集丰富详实,基本涵盖了本学科相关的主要文献,并对本学科发展趋势有一定的归纳作用。数据资料充分,论述过程严谨,思路清晰,综合运用了所学知识解决问题,分析方法选用得当,结果可信。论文撰写严肃认真,推理符合逻辑,结论和建议具有现实意义。

该论文反映出了作者在本门学科方面坚实的理论基础、系统的专业知识以及良好的科研能力。达到了硕士学位论文的要求,建议安排答辩。

xxx同学的学位论文《基于数据挖掘的高校本科专业设置预测系统数据模型的分析和研究》选题于教育部委托中山大学开展的高校本科专业设置预测系统项目。该论文研究成果对于构建高校本科专业设置预测系统具有一定的先导性意义。

本文主要依靠着高校本科专业设置预测系统的数据模型这个问题展开分析和研究

论文首先对已有的专业设置数据模型进行综述,分析其在功能性、预测性、分析性以及挖掘性方面的不足之处,然后结合高校本科专业设置的实际需求,引入数据挖掘技术、数据仓库和OLAP,构建基于数据挖掘的`高校本科专业设置预测系统的数据模型。总的来说,论文框架清晰,逻辑严谨,行文体现了自己的学术思考及思辨结论,有自己的创见。

开题报告评语:

该生在前期通过查阅文献,对研究内容所涉及的研究领域进行了较为全面的调研,对课题《拱桥平面内自由振动模型及特性研究》有了较全面的认识,论文的研究方法基本已经掌握。工作安排合理,态度认真,目前论文写作的前期准备工作已经基本完成,开题报告符合规范格式,准予开题。

中期考核导师意见

该生为人处世和善热情,乐观开朗,乐于助人,意志坚强。尊重师长,和同学关系融洽。学术上努力、勤奋,认真钻研专业知识,奠定了较为坚实的专业基础,取得了较好的成绩。在校期间积极参与学校的各项集体活动,锻炼了自身的实践操作能力,也提升了自身素质 在硕士论文研究期间,具有积极探索的精神,埋头苦干,努力钻研,阅读了大量的文献资料,能依据导师要求积极进行论文创作课题进展符合预期计划 。

中期考核小组意见:

该生在前期的工作中能充分的分析课题任务需求,熟练掌握拱桥平面内自由振动模型及特性研究,完成了下承式拱桥和系杆拱桥平面内自由振动模型及特性研究所做研究具有一定的工程实际意义,也为下一步工作的展开做好了充分的准备。期间该生工作安排合理,学术态度认真,学术作风严谨,科研工作量较大,课题进展符合预期计划。

摘要:随着网络、数据库技术的迅速发畏以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。 关键词:数据挖掘;知识;分析;市场营销;金融投资 随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。由此,数据挖掘技术应运而生。下面,本文对数据技术及其应用作一简单介绍。一、数据挖掘定义数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。简而言之,数据挖掘其实是一类深层次的数据分析方法。从这个角度数据挖掘也可以描述为:按企业制定的业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的先进有效的方法。二、数据挖掘技术数据挖掘技术是人们长期对数据库技术进行研究和开发的结果,代写论文其中数据仓库技术的发展与数据挖掘有着密切的关系。大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖掘库或数据集市中,因为数据仓库会对数据进行清理,并会解决数据的不一致问题,这会给数据挖掘带来很多好处。此外数据挖掘还利用了人工智能(AI)和统计分析的进步所带来的好处,这两门学科都致力于模式发现和预测。数据库、人工智能和数理统计是数据挖掘技术的三大支柱。由于数据挖掘所发现的知识的不同,其所利用的技术也有所不同。1.广义知识。指类别特征的概括性描述知识。根据数据的微观特性发现其表征的、带有普遍性的、较高层次概念的、中观和宏观的知识,反映同类事物的共同性质,是对数据的概括、精炼和抽象。广义知识的发现方法和实现技术有很多,如数据立方体、面向屙性的归约等。数据立方体的基本思想是实现某些常用的代价较高的聚集函数的计算,诸如计数、求和、平均、最大值等,并将这些实现视图储存在多维数据库中。而面向属性的归约是以类SQL语言来表示数据挖掘查询,收集数据库中的相关数据集,然后在相关数据集上应用一系列数据推广技术进行数据推广,包括属性删除、概念树提升、属性阈值控制、计数及其他聚集函数传播等。2.关联知识。它反映一个事件和其他事件之间依赖或关联的知识。如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。最为著名的关联规则发现方法是Apriori算法和FP—Growth算法。关联规则的发现可分为两步:第一步是迭代识别所有的频繁项目集,要求频繁项目集的支持率不低于用户设定的最低值;第二步是从频繁项目集中构造可信度不低于用户设定的最低值的规则。识别或发现所有频繁项目集是关联规则发现算法的核心,也是计算量最大的部分。3.分类知识。它反映同类事物共同性质的特征型知识和不同事物之间的差异型特征知识。分类方法有决策树、朴素贝叶斯、神经网络、遗传算法、粗糙集方法、模糊集方法、线性回归和K—Means划分等。其中最为典型的分类方法是决策树。它是从实例集中构造决策树,是一种有指导的学习方法。该方法先根据训练子集形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练子集中,重复该过程一直到形成正确的决策集。最终结果是一棵树,其叶结点是类名,中间结点是带有分枝的屙性,该分枝对应该屙性的某一可能值。4.预测型知识。它根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。目前,时间序列预测方法有经典的统计方法、神经网络和机器学习等。1968年BoX和Jenkins提出了一套比较完善的时间序列建模理论和分析方法,这些经典的数学方法通过建立随机模型,进行时间序列的预测。由于大量的时间序列是非平稳的,其特征参数和数据分布随着时间的推移而发生变化。因此,仅仅通过对某段历史数据的训练,建立单一的神经网络预测模型,还无法完成准确的预测任务。为此,人们提出了基于统计学和基于精确性的再训练方法,当发现现存预测模型不再适用于当前数据时,对模型重新训练,获得新的权重参数,建立新的模型。5.偏差型知识。它是对差异和极端特例的描述,揭示事物偏离常规的异常现象,如标准类外的特例、数据聚类外的离群值等。所有这些知识都可以在不同的概念层次上被发现,并随着概念层次的提升,从微观到中观、到宏观,以满足不同用户不同层次决策的需要。三、数据挖掘流程数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的、有效的、可实用的信息,代写毕业论文并使用这些信息做出决策或丰富知识。数据挖掘的基本过程和主要步骤如下:过程中各步骤的大体内容如下:1.确定业务对象,清晰地定义出业务问题。认清数据挖掘的目的是数据挖掘的重要一步,挖掘的最后结构不可预测,但要探索的问题应该是有预见的,为了数据挖掘而挖掘则带有盲目性,是不会成功的。2.数据准备。(1)数据选择。搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据。(2)数据预处理。研究数据的质量,进行数据的集成、变换、归约、压缩等.为进一步的分析作准备,并确定将要进行的挖掘操作的类型。(3)数据转换。将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的,这是数据挖掘成功的关键。3.数据挖掘。对所得到的经过转换的数据进行挖掘。除了完善和选择合适的挖掘算法外,其余一切工作都能自动地完成。4.结果分析。解释并评估结果。其使用的分析方法一般应视挖掘操作而定,通常会用到可视化技术。5.知识同化。将分析所得到的知识集成到业务信息系统的组织结构中去。四、数据挖掘的应用数据挖掘技术从一开始就是面向应用的。目前在很多领域,数据挖掘都是一个很时髦的词,尤其是在如银行、电信、保险、交通、零售(如超级市场)等商业领域。1.市场营销。由于管理信息系统和P0S系统在商业尤其是零售业内的普遍使用,特别是条形码技术的使用,从而可以收集到大量关于用户购买情况的数据,并且数据量在不断激增。对市场营销来说,通过数据分析了解客户购物行为的一些特征,对提高竞争力及促进销售是大有帮助的。利用数据挖掘技术通过对用户数据的分析,可以得到关于顾客购买取向和兴趣的信息,从而为商业决策提供了可靠的依据。数据挖掘在营销业上的应用可分为两类:数据库营销(database markerting)和货篮分析(basket analysis)。数据库营销的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客,以便向它们推销产品。通过对已有的顾客数据的辱淅,可以将用户分为不同级别,级别越高,其购买的可能性就越大。货篮分析是分析市场销售数据以识别顾客的购买行为模式,例如:如果A商品被选购,那么B商品被购买的可能性为95%,从而帮助确定商店货架的布局排放以促销某些商品,并且对进货的选择和搭配上也更有目的性。这方面的系统有:Opportunity Ex-plorer,它可用于超市商品销售异常情况的因果分析等,另外IBM公司也开发了识别顾客购买行为模式的一些工具(IntdligentMiner和QUEST中的一部分)。2.金融投资。典型的金融分析领域有投资评估和股票交易市场预测,分析方法一般采用模型预测法(如神经网络或统计回归技术)。代写硕士论文由于金融投资的风险很大,在进行投资决策时,更需要通过对各种投资方向的有关数据进行分析,以选择最佳的投资方向。无论是投资评估还是股票市场预测,都是对事物发展的一种预测,而且是建立在对数据的分析基础之上的。数据挖掘可以通过对已有数据的处理,找到数据对象之间的关系,然后利用学习得到的模式进行合理的预测。这方面的系统有Fidelity Stock Selector和LBS Capital Management。前者的任务是使用神经网络模型选择投资,后者则使用了专家系统、神经网络和基因算法技术来辅助管理多达6亿美元的有价证券。3.欺诈甄别。银行或商业上经常发生行为,如恶性透支等,这些给银行和商业单位带来了巨大的损失。对这类行为进行预测可以减少损失。进行甄别主要是通过总结正常行为和行为之间的关系,得到行为的一些特性,这样当某项业务符合这些特征时,可以向决策人员提出警告。这方面应用非常成功的系统有:FALCON系统和FAIS系统。FALCON是HNC公司开发的信用卡欺诈估测系统,它已被相当数量的零售银行用于探测可疑的信用卡交易;FAIS则是一个用于识别与洗钱有关的金融交易的系统,它使用的是一般的政府数据表单。此外数据挖掘还可用于天文学上的遥远星体探测、基因工程的研究、web信息检索等。结束语随着数据库、人工智能、数理统计及计算机软硬件技术的发展,数据挖掘技术必能在更多的领域内取得更广泛的应用。 参考文献:[1]闫建红《数据库系统概论》的教学改革与探索[J].山西广播电视大学学报,2006,(15):16—17.

数据挖掘与数据分析论文

浅谈数据挖掘技术在企业客户关系管理的应用论文

摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技

关键词:客户关系管理毕业论文

高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。

关键词:客户关系管理毕业论文

一、数据挖掘技术与客户关系管理两者的联系

随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的.结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。

二、数据挖掘技术在企业客户关系管理实行中存在的问题

现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。

1.客户信息不健全

在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。

2.数据集中带来的差异化的忧虑

以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。

3.经营管理存在弊端

从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。

三、数据挖掘技术在企业的应用和实施

如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。

1.优化客户服务

以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。

2.利用数据挖掘技术建立多渠道客户服务系统

利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。

四、数据挖掘技术是银行企业客户关系管理体系构建的基础

随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

数据挖掘论文

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘论文数据分析

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

论文供应链数据分析

论文供应链数据分析,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM),目前有几项重大中断正在影响供应链。以下分享论文供应链数据分析,一起来看看。

数据挖掘技术在供应链精细化管理中的应论文

摘 要:对企业大量的历史数据,采用SQL Serve的OLAP技术,建立了供应链数据的挖掘模型,对现库存结构、呆废账和供应周期进行了分析,找出了存在问题,提出了相应的解决方法;对现系统提出了二次开发具体目标。

关键词:数据挖掘 精细化 大物流 供应链

一、前言

生产管理信息系统运行5年来,形成了了大量的历史数据,如生产主计划、备件计划、供应商、供货信息、质检信息和入库、领用信息等。

但该系统只是一个顶层数据逐级向下单向透明、注重出入库管理的平台,丰富的历史数据只是偶尔备查,没有把已有庞大的数据转化为知识,从全局上辅助企业决策,使公司在计算机软硬件的开发、维护上的巨大投资,只在局部管理上取得了改进,总体成效并不显著。

本文以半成品库供应链为主体,从计划、采购、外协厂商、质检等多维度分析供货周期及库存的相互关系,以减少冗余环节,降低供应链成本;同时对信息系统的二次开发提出了具体目标。

二、库存结构和供应链分析

我集团的半成品采购,采取多外协厂家的定点生产、每年对价格招标、每月下达采购数量的策略,由外协厂家按照我方提供的设计图纸生产,需要开模或使用专业机具加工,更换厂家有一定的难度。做好供应商的考核和选取,对保质按时完成生产,就显得尤为关键。

我用半成品的相关历史数据,按照关系型数据库第三范式,建立雪花形数据仓库,在其逻辑结构中,将数据表划分为存储实际数据的事实表;以及存储测评指标的维度表,如供应链上的采购、质检、结账周期、质量符合度等。

数据准备

以系统后台采用的sql server 2005数据库中自带程序Business Intelligence Development Studio为挖掘工具。数据准备如下:获取和供应链相关的完整历史数据,从2013年2月到2015年3月的基本信息:批量、计划数、厂家。

下达日期、返回数量和日期、质检完成日期和合格数量,点收入库数量和日期,以及非结构化的返回日期要求等数据。剔除了试制新品等异常数据;建立了相应的维度数据库,转换所有的日期为考核的维度,以精确分析供应链周期。

数据挖掘结果和分析

库存分析:平均月入库为1373万,出库为1399万,库存金额平均为802万,比原库存下降400万以上,比例为34%,逐步消化了存货,有效地降低了半成品库存。

呆废账分析:我们重点对三年(74万元)及五年以上(24万元)无动态的呆账进行了分析,其产生的原因如下:

(1)BOM表中已经不存在此类备件。

(2)产品设计发生了变更。

(3)对应的产品已经淘汰停产。

(4)配套的产品仅在部分支线上使用,存量过多、过久。

(5)订单变更、采购的半成品不配套,部分出现冗余。针对以上原因,我们提出如下解决方法:

(1)全面清理此类半成品,做好外观和质量检测,不符合要求的申请报废。

(2)尽可能替换使用、降级使用。

(3)按材质、规格制定改制表,按需对半成品改制,减少呆废料。

(4)除少量必须备件外,多余部分调拨给可能生产此类产品的`子分公司待用。

供货期分析:期间平均供货总周期为天;其中外协厂家生产期天,到公司后质检期天,入库天,供货后到发票开具天。在提前期为半个月的采购模式下,数据表明大部分半成品在每月初就基本入库,占用了大量库房,并在当月末转化为财务付款压力。

针对外协厂家大多位于省外,重点分析了供应商区域、数量、重量、采购品种和供货周期的关系,对锻铸件类产品的挖掘结果分析如下:

(1)为减轻库房压力,本省市的外协厂家按需分批次组织运送,期供货周期和质检周期存在人为失真。

(2)外省市供货周期和区域距离成正比。

(3)供货周期与采购的数量和重量无关,表明生产能力和运力现阶段充沛。

(4)质检周期短的供货商,其一次到货率和合格率较高。

三、供应链管理新模式

基于供应周期分析结论1,我们可以把所有的外协厂商作为外围库房,按大数据模式下的机器学习法,自动计算不同外协厂家、不同半成品的提前期,借助第三方物流,由生产流水线上主导产品的需求,决定其配送日期;包装用数量就近选择厂家,第三方质检合格后,直接发到施工现场。

为实现此设想,信息系统必须互联互通、信息共享,实时采集需求和获取外协厂商的生产、库存情况,建设一条敏捷的供应链。系统可做如下改进:

(1)对供应商做出科学考核评价:资质;产品质量(尺寸、外观、表面的目视检查合格率;化学成分等合格率;力学性能参数、内部的超声无损检测缺陷值等)、退货率,降级接收率、及时完成率、交货紧迫性、变更配合度、售后服务等指标进行动态考核。按指标得分高低对外协厂家优胜劣汰,在任务分配时优先向优秀供应商倾斜。

(2)拉伸供应链,把各生产部门、库房、供应商作为一个整体,对内实现数据的全透明,共享主计划、车间旬计划、采购计划,做好内部关键工序的报工和外协厂商的数据采集,使相关人员能从数据流中自动获取到所需数据,实时监控所需半成品,及时协调相关生产;在任务繁重时,对外适度开放采购信息,有利于外协厂家安排生产。

(3)领用定额只获取BOM表中的组装数量,包装用备件可由外协厂商直发施工现场。

(4)多粒度获取半成品需求,多层次规划生产。在销售部门取得合同后,按照交货期汇总其总量,和外协单位的产能对比,做好生产分配和预测;按旬计划汇总需求,精准组织半成品的到货时间。

四、结论

建立数据透明的信息系统,充分利用挖掘数据技术,动态获取需求和产能,借助第三方物流,可以精准地满足生产和施工需求,同时优化控制库存结构,可以减少库存量,降低对流动资金和库房的占用。在实际应用中,还需要发挥人的主观能动性,按实际情况调整采集信息量和透明度,提升供应链管理水平。

参考文献:

[1]王桂从,姜兆亮,李兆前.协同供应下的库存控制及供应商选择[J].现代制造工程,2007(11).

[2]王晶,唐玲,张在晓.供应商共享POS信息时的信息挖掘策略与方法[J].工业工程,2008(07).

大数据分析对供应链有什么影响

如今,从物流到客户偏好的各种数据的持续增长正在迅速改变企业的经营方式,并突出了对加强数据管理和分析的强烈需求。大数据分析(指大型和复杂的数据集)的好处是显而易见的:大数据可以完全改变组织的工作方式,在效率、成本、可见性和客户满意度方面产生巨大差异。

大数据来源广泛:

-如今的技术和社交平台允许企业以评级、评论和博客评论的形式获得直接的客户反馈。

-来自移动通信、社交平台和电子商务的数据正在与来自企业系统的数据集成。

-随着物联网和机器对机器通信的引入,制造业正在从基于事件的计划转变为实时感测。

-不断发展的传感器技术可提供实时设备和产品状况数据,从而实现自动维护和过程调整。

数据在数量上、种类上和速度上都有所增长,如果以正确的方式加以利用,可以带来巨大的价值。

研究显示,企业已经在推动整个企业供应链的生产力,但在供应链功能中使用大数据分析在全球企业中并不普遍或协调得很好。受益于大数据分析的公司有三个共同点:它们拥有强大的企业级分析战略,它们将大数据分析嵌入供应链运营,它们拥有合适的人才库,能够从大数据中产生可操作的见解。

有必要雇用、培训和扶持能够帮助企业从大数据分析中受益的领导者。从人力资本的角度来看,大多数公司的定位尚不足以接受数字化供应链转型。我们分析了各行各业的50多位高级供应链高管的个人资料,以了解他们在供应链数字化方面的定位。在涉及所谓的“数字防备连续性”方面,各行各业的公司中绝大多数高管都普遍缺乏。

调研机构采访了各行各业的商界领袖,以探讨当今日益数字化的世界对首席供应链官的角色以及供应链领导者与高级管理人员中其他高管人员之间互动的影响。通过这些访谈,我们发现了供应链领导者应具备的四个关键特征,以便能够从大数据分析中获得收益:

1、对数据和系统技术有深刻的了解。当今的企业可以通过数据分析和通过数字方式收集数据来深入了解客户行为。尽管不需要首席供应链官成为信息技术(IT)专家,但他们应该对数据收集、技术和分析有足够的了解,以引导对话并为高级领导者及其供应链团队提供数字化愿景。

供应链领导者应认识到如何实施和利用相关平台和流程以及数据来自何处,并应表现出对来自各种渠道的数据范围和规模的扎实理解。重要的是,领导者必须准备好对数据采取明智的行动。

2、具有影响力的协作方法。如果首席供应链官在孤岛工作,将无法从大数据分析中获得收益。在内部,供应链领导者必须能够与首席技术官进行沟通和协作,以帮助确定适合组织的技术和政策;

与首席数据官一起了解如何最佳地捕获和使用数据;与首席营销官一起,评估供应链如何能够更专注于客户和需求驱动,并与首席执行官具体沟通更广泛的创造价值的机会。最终,供应链执行官将需要能够与内部利益相关者和外部供应商建立桥梁。

3、跨职能经验。如今的供应链管理人员具有跨部门的'经验,并且能够理解和与来自多个业务部门的人员进行交流。重要的是,首席供应链官员还必须具有销售、财务或技术方面的知识。

4、发展新技能和培训他人的能力。当今的首席供应链官必须紧跟最新技术,以确保组织适当地吸收数字技能和分析人才。企业犯的最大错误之一是在没有适当准备组织的情况下实施大数据分析项目。建立内部计划以确保在整个供应链中采用技能至关重要。

要从整个供应链或整个组织的大数据分析中获取所有好处,不仅需要技术和IT。从首席执行官和执行委员会开始,企业必须准备好支持一种全新的思维方式,培养一种对创新和技术开放的文化,并愿意挑战关于供应链管理方式的惯例。

大数据分析对供应链有什么影响、中琛魔方大数据分析平台表示由于供应网络上数十亿的连接设备提供关于服务需求、位置和库存分布的实时信息,甚至实现预期的需求,理解和接受大数据的执行领导层、数字颠覆和这些趋势的人力资本方面对未来企业的优势至关重要。

供应链案例分析的方法

一、供应链案例的类型

供应链案例可以是从原材料供应一直到最终产品送到最终用户手中的整个供应链的案例,也可以是只涉及供应链一个环节或只关注于单一的物流活动的案例。无论哪一种案例,在分析时都应该从供应链整体的角度进行,要考虑单一环节的变化对供应链中其他环节产生的影响。

二、供应链案例分析的目标

提高客户服务水平和降低总的运作成本是供应链管理的两大目标,在案例分析时,必须牢记这两大目标。

三、供应链案例分析的方法

供应链案例分析可分为这样几步进行:

第一,分析供应链现状。

首先分析供应链的结构,在分析时可绘制一个从原材料或零配件供应的起点开始,通过生产制造环节和分销配送环节,直到最终用户手中的货物流动示意图,示意图目的是为了描述供应链中各固定节点(如工厂、仓库)的结构和货物在这些节点之间的流动模式。即货物流。

然后分析支撑货物移动的信息流和信息系统,包括订单信息处理、需求预测信息、管理信息和计算机系统。其次对现行的供应链绩效进行分析,这对改进措施的提出是非常有效的,绩效分析可包括供应链的总体绩效、供应链的相对绩效和单项物流功能的绩效。

第二,在现状分析的基础上找出问题。

这常常是案例分析最困难的也是最重要的一步。因为如果无法正确地鉴别出主要问题,也就无法作出正确的选择。在分析时要注意症状与原因的区分,通常在分析时症状是比较容易明确的。

例如,经理可能认为仓储能力短缺是一个问题,实际上,这可能仅仅是一个症状,造成的原因可能是库存管理不良或生产安排不合理而使得库存的大大超过了实际需求。因此在分析时,必须找到真正造成问题的原因。

第三,设想并提出解决问题方案

解决方案的提出是和现状分析紧密联系在一起的,一个好的现状分析能够对主要问题进行清晰的确定,从而指出正确的解决问题或行动路线。提出解决问题方案时通常可从三个层面上考虑:具体功能部门层面;公司层面,在公司内实行跨部门的改革;供应链层面,同一供应链上的公司间相互配合上进行改革。

最后对提出的方案应当做全面的说明。

以上是对分析供应链问题提供一个思考分析的框架,这不是一个应用于所有供应链问题的万能方法,而是列出了在分析问题时可考虑的因素,案例分析时应根据实际问题确定相关的研究因素。

毕业论文数据挖掘与数据分析

数据分析和数据挖掘不冲突,两者可以说是相辅相成的。数据挖掘是一个统称,就算你把数据统计一下也是数据挖掘,人工智能是属于比较高端的数据挖掘。现在的数据越来越多,不可能再用人脑来思考怎么解决,这时候就需要用到算法,但是最后的工作还是对数据进行分析。数据分析的未来前景相当广阔的,我们可以想象在数据分析的应用层面, 许多企业未来逐步逐步都要开始做数据分析那么一个企业利用到了数据分析,提升了他的经营效益之后,它在市场上必然具备相当强的竞争力,那么在这个竞争力的压迫之下其他的企业就必须要跟上,他必须要采纳一些数据分析技术,来提升它的竞争力。那么在这个环境下,当一个企业开始使用了数据分析的技术,雇佣了数据分析师之后,他的竞争对手也会跟上,这样的现象会蔓延到各行各业。我在北美看到大数据分析的发展已经经历了几十年了,从刚开始没有多少数据分析师到现在一师难求,整个工资水平已经涨到了将近20万美金到30万美金这样一个水平,这个发展历程也就是最近这几年非常非常的火爆。那么我们国家的数据分析师的职位,目前在北上广深杭州,一些比较发达的城市已经开始了,那么根据我的预计,未来两三年之内,这种风会蔓延到二线城市,也就是说在其他城市,很多企业都会跟上,都会需要雇佣数据分析师,我们国家主要是中小企业多,全国有六千万家各式各样的企业,每个企业都要雇佣数据分析师的情况下,我们对数据分析师的需求可能要上亿个人才,那么这个市场在未来,是非常非常广阔。在未来的行业里,不光人工智能需要数据分析,各行各业都需要数据分析,数据分析的核心就是分析思维,有这样一个分析思维,各行各业就都能融会贯通。

1.从侧重点上来说,相比较而言,数据分析更多依赖于业务知识,数据挖掘更多侧重于技术的实现,对于业务的要求稍微有所降低。2.从数据量上来说,数据挖掘往往需要更大数据量,而数据量越大,对于技术的要求也就越高。3.从技术上来说,数据挖掘对于技术的要求更高,需要比较强的编程能力,数学能力和机器学习的能力。4.从结果上来说,数据分析更多侧重的是结果的呈现,需要结合业务知识来进行解读。而数据挖掘的结果是一个模型,通过这个模型来分析整个数据的规律,一次来实现对于未来的预测,比如判断用户的特点,用户适合什么样的营销活动。显然,数据挖掘比数据分析要更深一个层次。

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程,更偏向于建模型。数据分析是对数据的一种操作手段,或者算法。更偏向统计分析,出图,作报告比较多,做一些展示。两者的区别为:1、数据量上:数据分析的数据量可能并不大,而数据挖掘的数据量极大。2、约束上:数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。3、对象上:数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据,比如声音,文本等。4、结果上:数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。真正理解商业思维,项目思维,能够遇到问题解决问题。点击预约免费试听课。

相关百科

热门百科

首页
发表服务