现在本科院校大数据专业都增加了,可想而知,前景如何。数据科学与大数据技术专业剖析同样,这个专业也是属于顺应时代发展,抢占市场先机的“投机”行为,作为新兴的、交叉的专业,不可能有成熟的概念、培养方案,各高校都是在黑暗中摸索前行,培养方案也是五花八门,但无论怎样变都是统计学、数学、计算机、软件工程等专业的“大杂烩”,核心是统计学+计算机。看一看相关介绍就知道了:数据科学与大数据技术专业毕业生通过掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,将领域知识与计算机技术和大数据技术融合、创新,从事大数据研究和开发应用。 也是很笼统很空虚,为什么?因为新啊,前无古人啊,没有经验可遵循啊。再看一下主要课程:数学、C程序设计、数据结构、数据库原理与应用、计算机操作系统、计算机网络、Java语言程序设计、Python语言程序设计,大数据算法、人工智能、应用统计(统计学)、大数据机器学习、数据建模、大数据平台核心技术、大数据分析与处理、大数据管理、大数据实践等课程。统计学知识和计算机知识是核心点,加一点数学、数据科学课程。
趋势一:数据的资源化
什么是数据的资源化,它指的是大数据成为企业和社会关注的重要战略资源,并且已经成为大家争夺的焦点。因此,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理能够为大数据提供弹性可拓展的基础设备,是产生大数据的平台之一。自从2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。
另外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:数据科学和数据联盟的成立
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。
与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
关于大数据未来的发展趋势的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
1、数据融合与数据价值挖掘数据融合对于数据价值挖掘来说,具有重要的意义。数据融合利用需要标准规范先行,实现数据可见性、数据易理解性、数据可链接性、数据可信性、数据互操作性、数据安全性。数据挖掘和AI分析需要面对海量处理能力、云边端协同、建模、小数据、人与数据融合、数据自身安全、隐私与商密保护等的挑战,需要从基础理论与工程实践多方面研究数据要素价值挖掘的问题,开发出更多的大数据和AI分析技术。2、知识图谱与决策智能随着大数据的发展,企业和公共机构越来越需要将不同的数据进行有效链接,从而形成新的动态知识,以辅助企业和公共机构的决策。这就需要运用图数据库、图计算引擎和知识图谱,其中知识图谱是图数据库和图计算引擎的重要应用场景。根据DB-Engines排名分析,图数据库关注热度在2013年到2020年间增长了10倍,关注度增长排名第一,远远高于其它数据库或数据引擎。用户画像和信用档案等,是知识图谱的新应用场景。目前,国内的阿里云、华为、腾讯、百度等大型云厂商以及一些初创企业都在布局图数据库、图计算引擎和知识图谱,特别是知识图谱已经开始深入应用到金融、工业、能源等多个行业和领域。知识图谱正在成为企业决策的重要技术平台与工具。3、产业物联网提速物联网是大数据的一个重要来源。传统观念认为消费物联网是物联网大数据的主要来源,但随着产业物联网的飞速发展,产业物联网正在超越消费物联网而成为物联网大数据的主要来源。智慧工业、智慧交通、智慧健康、智慧能源等领域,将最有可能成为产业物联网连接数增长最快的领域。产业物联网的大数据处理涉及到边缘计算。市场调研机构IDC预测,未来超过50%的数据需要在边缘侧进行存储、分析、计算,到2024年全球边缘计算市场将达到2506亿美元。在中国市场,2020新基建中的5G、AI、智慧交通、新能源汽车充电桩、工业互联网等都是与边缘计算相关的技术或场景。4、数据安全热度持续上升大数据、数字经济要通过相应的法律制度以及相关措施来保障健康发展。一是改变计算方式,边计算边保护;二是构建免疫系统,改变安全体系结构;三是网络系统安全要构建“安全办公室”“警卫室”“安全快递”这“三重”防护框架;四是对人的操作访问策略四要素(主体、客体、操作、环境)进行动态可信度量、识别和控制;五是对“风险分析、准确定级”“评审备案、规范建设”“感知预警、应急反制”“严格测评、整顿完善”等环节进行全程管控,技管并重;六是达到非授权者重要信息拿不到、系统和信息改不了、攻击行为赖不掉、攻击者进不去、窃取保密信息看不懂、系统工作瘫不成等“六不”防护效果。总结而言:进入2021年,大数据已经从单纯的技术体系,向着与实体经济结合、真正挖掘和发挥数据价值的方向发展。特别是新冠疫情和新基建,加速了大数据与实体社会基础设施的快速融合,而5G与物联网等的快速发展也进一步加大了大数据与实体经济的深度融合。随着数博会即将进入第6个年头,大数据将真正深入到社会经济的方方面面,推进下一轮经济长周期。
我国大数据产业开始已进入深化阶段
中国大数据产业从萌芽到如今渐成体系,已走过将近10个年头。“十四五”开局之年,大数据产业也进入了集成创新、深度应用的新阶段。大数据在医疗、工业、交通等领域的融合应用技术加快创新突破,大数据融合应用重点从虚拟经济转变为实体经济;大数据底层技术方面,信息安全、模式识别、语言工程、计算机辅助设计、高性能计算等加快突破,大数据技术领域逐渐补齐短板,并进一步强化长板。
2021年市场规模接近900亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的亿元增长至2021年的亿元,复合年增长率达到,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。在全球新冠肺炎疫情之下,我国经济率先复苏并总体保持恢复态势,伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。
金融行业是我国大数据产业规模最大的下游行业
大数据分析行业是指借助大数据技术对规模巨大的数据进行处理、分析挖掘、应用等,实现大数据价值,并以产品或服务等形式,赋能客户数字化运营的大数据细分行业。近年来,伴随下游行业对全业务流程数字化运营需求的持续广泛和深入,大数据分析市场取得了良好发展,呈现出高速发展态势。根据赛迪的数据,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为、、和,合计超过60%。
大数据软件与服务的需求不断提升
目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为、和,市场规模分别为亿元、亿元和亿元。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
不同类型大数据企业竞争程度差异极大
目前,IT产业在发展过程中已经形成了一些层次分布,有做服务器和底层系统的,有做软件的,有做应用的,大数据也需要在原有的架构上加以发展。原来做基础设施的企业,如联想、华为,也要向大数据转型,提供低成本、低能耗的大型存储器,这是大数据产业的基础。中间层是类似Hadoop、MapReduce的数据分析软件,原有的软件产业也要转型,由卖软件转为以数据为中心。再往上就是百度、腾讯、阿里巴巴等大数据应用服务公司,需要增加数据分析的效用。
—— 更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,以下是我精心整理的大数据和人工智能论文的相关资料,希望对你有帮助!
基于大数据和人工智能的被保险人行为干预
【摘要】随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,则可以实现对被保险人行为的干预,降低给付发生的概率和额度,提高人民健康水平。基于此,文章介绍了利用大数据和人工智能技术对被保险人行为干预的优点及干预方式,并预期可能实现的干预结果,最后对保险公司进行被保险人行为干预提出了阶段建议。
【关键词】大数据 人工智能 行为干预
近年来随着大数据和人工智能技术的发展,越来越多的领域应用这些技术来提高自身的专业水平。保险作为基于大数法则进行风险管理的一种方式,对数据的处理和应用要求更高。目前大数据技术在保险业的应用主要是精准营销、保险产品开发和理赔服务等,但在保险中的防灾防损方面的应用还不够。如果能够深入挖掘大数据在被保险人行为方面的研究,再结合人工智能进行智能干预,则可以对被保险人实现有效的风险管理,提高被保险人的身体健康状况,从而极大程度的提升客户效用,提高社会整体福利水平。
一、被保险人行为干预简介
行为干预是通过对环境进行控制从而使个体产生特定行为的方式,目前主要在教育,医疗等方面发挥作用。但在被保险人管理方面,行为干预应用很少。现行的对被保险人的管理主要集中在投保审核的过程中,而在投保后提供的服务和干预很少,一般也就是提供健康体检等服务,而对被保险人投保后的日常生活行为方式,健康隐患则基本处于放任自流的状况。而被保险人行为干预则是通过对被保险人日常生活行为,饮食习惯等进行实时数据收集和分析,然后制定干预方式进行针对化管理的模式。
二、利用大数据和人工智能进行被保险人行为干预的优点
实现精准、良好的对被保险人的行为干预,需要利用大数据和人工智能技术。大数据相比传统数据具有海量、高速、多样等特点,它实现了对信息的全量分析而不是以前的抽样分析。在被保险人行为干预模式中,需要对每一个个体的日常生活作息,行为,饮食,身体健康指标的进行实时数据采集,然后进行分析,这用传统的数据统计方法是难以做到的。利用大数据技术进行分析能从海量信息中获取被保险人的风险状况,从而为精准干预提供基础。简单的干预难以实现特定的干预结果,而人工智能则让干预显得更加自然,让被保险人更加易于接受,从而很大程度上提高了干预效果。
三、如何利用大数据和人工智能进行被保险人行为干预
利用大数据和人工智能进行被保险人的行为干预主要有以下步骤:
首先利用人工智能设备进行被保险人数据收集,除了目前的手机APP,网络等软件和设备上的数据能够被收集外,未来人工智能家居能提供更多的被保险人信息。例如提供体重、坐姿等数据的椅子,提供饮食时间和品种的筷子,提供身体运动和健康数据的智能穿戴式设备等等。数据收集后,需要利用大数据技术对海量数据进行清洗,去噪等技术处理,然后对数据进行分析。第三步是根据数据分析结果,制定具体的行为干预方案。最后一步是根据制定的方法,利用人工智能进行干预,如智能椅子调整坐姿,智能厨具减少含油量,针对性的健康食谱推荐,锻炼提醒,智能家居辅助锻炼等等。与此同时,新一轮的数据收集又开始了,整个过程是连续进行,不断循环的。
四、利用大数据和人工智能进行被保险人行为干预的预期成果
对被保险人来说,这种干预方式能有效的进行健康管理。未来的健康保险将成为个人真正的健康管家,从日常生活行为,到身体机能都能提供很好的干预,并且让良好生活方式的养成更加容易,从而提高自身的健康状况,达到更好的生活状况。但另一方面,全面数据化,智能化的方式可能会带来很大的数据泄露风险,所以如果保护客户私密数据是另一个值得研究的问题。另外,对于投保前健康状况较差的客户,或者是对行为干预较为抵制,干预效果较差的客户,可能需要承担更多的保费。当然对于优质客户和乐于提升和改变的客户则可以享受到更加优惠的费率。也就是说在大数据和人工智能技术下,客户进行了进步一步细分。
对保险人来说,行为干预能够降低被保险人的风险,很多疾病能实现防范于未然,降低赔偿程度。另外,借助大数据和人工智能,保险人还能根据分析结果,被保险人对干预的反应等进行客户的进一步分类,从而实现区块化管理。但这对保险公司也提出了更高的技术要求,尤其在前期,可能会带来加大的成本。
五、保险公司推进被保险人行为干预的建议
对于保险公司来说,目前的一些人工智能技术还未能实现,或者成本高昂,难以普及。所以现阶段对保险公司来说首先是提高大数据能力。
具体来说,首先是利用大数据对公司已有客户信息进行数据挖掘,包括承保数据,理赔数据等,从而一定程度挖掘出客户的特征,并提供服务。如根据挖掘出的性别差异,地区差异,年龄差异等,提供不同的生活建议。
如果公司已经充分进行了自身客户已有数据的挖掘,则可以利用目前的手机APP,佩戴设备进行数据的进一步收集。例如,利用薄荷、饮食助手、微信运动、春雨掌上医生、血糖记录、小米手环等数据进行用户数据收集。同时可以针对被保险人开发专门的手机APP,集数据收集和服务于一身。
更进一步,保险公司可以尝试与其他高科技企业合作,开发一些智能穿戴式设备,智能家居等,逐步实现对被保险人的行为干预。
参考文献
[1]彼得・迪亚曼迪斯.将会被人工智能和大数据重塑的三个行业[J].中国青年,2015,23:41.
[2]王和,鞠松霖.基于大数据的保险商业模式[J].中国金融,2014,15:28-30.
[4]尹会岩.保险行业应用大数据的路径分析[J].上海保险,2014,12:10-16.
下一页分享更优秀的<<<大数据和人工智能论文
如果是以下这些领域,可以考虑汉斯出版社的《数据挖掘》期刊:数据结构、数据安全与计算机安全、数据库、数据处理、知识工程、计算机信息管理系统、计算机决策支持系统、计算机应用其他学科、模式识别、人工智能其他学科。
有大数据信息的新闻杂志有:《数据挖掘》《大数据时代》《大数据》《物联网与云计算》《数据之巅》等等
另外推荐一个与大数据有关的网站——中国大数据,里边有商业动态、技术方案、大数据分析、商业平台等信息可供你参考及学习;另外还有入门和论坛,可以供大家一起交流经验~
大数据时代学术期刊的机遇与挑战_数据分析师考试
在数字化再造并融合传统出版的大背景下,就学术期刊而言,其传播方式已经发生巨大变化,数字化、新媒体融合已成期刊传播新常态。在近日中国社会科学院图书馆(调查与数据信息中心)、国家期刊库(NSSD)举办的“大数据时代的学术期刊数字出版??机遇与挑战”研讨会上,学术期刊如何应对大数据时代的机遇和挑战,成为关注的主题。
主动适应“大数据”时代
据社科院图书馆数据网络部主任杨齐介绍,为适应“大数据时代”的需求,中国社会科学院国家期刊库项目组对643种学术期刊的网站建设进行了详细的调研分析,包含社科基金资助期刊195种,非社科基金资助期刊448种,并公布了调研结果。从调研数据中发现,目前大部分学术期刊在大数据时代的数字出版及开放获取意识有待提升,对于数字化和新媒体融合发展前景及方向还在探索之中。
专家认为,从表面上看,“大数据”的概念及其价值更多的是为IT业和企业营销领域所关注,但从深层次看,传媒业将是受到大数据时代冲击较大的行业。在大数据时代,与学术期刊处于同一环境体系的学术创新模式、学术研究范式、知识形态、知识获取、知识交流及处理机制的改变,将直接影响着学术期刊的生存和发展。
“大数据”深刻地改变着学术期刊的边界,使学术期刊面临新的挑战和机遇, “大数据”将造就新意义上的中国学术期刊。因此,各个学刊必须积极主动探索以学术期刊为纽带的大数据全产业链和新业态发展路径,应用大数据技术,跳出传统学术期刊的编辑出版流程局限,实现以学术期刊为纽带的学术研究全流程传播。
数字化时代的诸多挑战
当前,来自数字化潮流的挑战使得学术期刊正经历着一场革命。这场肇始于传播,继而扩展至整个编辑出版流程的革命,使学术期刊抛掉了纸本载体而实现了更为迅捷的网上编辑和传播,在传播流程中,数字化传播已成为学术期刊的主流渠道。学术期刊以综合性为主的结构和分散的布局导致以原期刊为单位的数字化传播意义不大,而经过汇集和重新编排后更能适应读者的需求,大型期刊数据库网站做的正是这样的工作。
另外,当以综合性、分散性和内向性为特征的学术期刊遭遇来自学术国际化、评价数量化和传播数字化的挑战时,处境更是日益艰难,而自然科学期刊尤甚,每年以10万篇计的优秀稿源的流失,使得国内一些顶尖学术期刊也面临着前所未有的稿源荒,更遑论一般期刊了。优稿的外流必然带来学术前沿的失守和读者的流失,使得学术期刊在数字化时代面临着诸多挑战,急需创新观念,走出一条数字化发展的新路径。
对此,中国社会科学院调查与数据信息中心副主任赵胄豪表示,通过高层次的文化碰撞,刷新旧有理念,加速学术期刊数字化、网络化的建设步伐;变革学术期刊投稿、编审、出版、传播及阅读的方式与途径;积极探索哲学社会科学领域学术期刊数字化转型、新媒体应用、开放获取及网络化建设等方面的问题,这是今后学术期刊适应数字化之路的重要途径。
加快数字化转型步伐
在如何探索学术期刊数字化转型上,中国科学院文献情报中心编辑出版中心主任初景利从数字出版环境与技术、学术期刊建设要素、期刊质量与影响力、传播能力的关系、数字出版平台建设、语义出版、开放获取出版等多方面详细介绍了科技期刊的经验,并提出六方面建议:一是期刊质量是期刊的生命;二是学术期刊编辑须承担社会责任与使命;三是采取综合措施提升期刊的传播力与影响力;四是重视数字出版与数字化刊群建设; 五是善于知识分析工具的开发与利用; 六是加强技术的研发和投入。
以上是小编为大家分享的关于大数据时代学术期刊的机遇与挑战的相关内容,更多信息可以关注环球青藤分享更多干货
大数据分析行业是最近这几年比较火,比较高薪的行业了,很多人都想分一杯羹,经常同学问我什么是大数据分析?什么是python?这些能学到什么技能?以后能学到什么知识?有太多的疑问,小编姐姐今天就简单写出来出来,分享给大家!
很多人还没搞清楚什么是PC互联网,移动互联网来了,我们还没搞清楚移动互联的时候,大数据时代又来了。
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据分析也应运而生。大数据分析是什么
大数据分析师有两种岗位定位:
1、大数据科学家,Data Scientist,DS
2、大数据工程师,Data Engineer,DE
从这两个单词里,你就能看出端倪了,后面小编姐姐会详细的讲解,这两者的区别,以及工作内容划分。今天我们先初步认识一下大数据分析是什么?
在不同行业中,那些专门从事行业数据的搜集、对收集的数据进行整理、对整理的数据进行深度分析,并依据数据分析结果做出行业研究、评估和预测的工作被称为数据分析。如果是熟悉行业知识、公司业务及流程,对自己的工作内容有一定的了解,比如熟悉行业认知和公司业务背景,该工作人员分析结果就会有很大的使用价值。
首先我们要列出搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识;另一方面是针对数据分析结论提出有指导意义的分析建议。能够掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,对于开展数据分析起着至关重要的作用。大数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,必须依靠强大的数据分析工具帮我们完成数据分析工作。
1、大数据分析可以让人们对数据产生更加优质的诠释,而具有预知意义的分析可以让分析员根据可视化分析和大数据分析后的结果做出一些预测性的推断。
2、大数据的分析与存储和数据的管理是一些数据分析层面的最佳实践。通过按部就班的流程和工具对数据进行分析可以保证一个预先定义好的高质量的分析结果。
3、不管使用者是数据分析领域中的专家,还是普通的用户,可作为数据分析工具的始终只能是数据可视化。可视化可以直观的展示数据,让数据自己表达,让客户得到理想的结果。
4、大数据分析已经不像前些年给人一种虚无缥缈的感觉,而当下最重要的是对大数据进行分析,只有经过分析的数据,才能对用户产生最重要的价值,越来越多人开始对什么是大数据分析产生联想,所以大数据的分析方式在整个IT领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。大数据分析12大就业方向
传统的数据分析就是在数据中寻找有价值的规律,这和现在的大数据在方向上是一致的。大数据具有“高维、海量、实时”的特点,就是说数据量大,数据源和数据的维度高,并且更新迅速的特点。
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)模型预测:预测模型、机器学习、建模仿真。结果呈现:云计算、标签云、关系图等。要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。第一,数据体量巨大。从TB级别,跃升到PB级别。第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。现在大数据这么流行,ITjob官网有关于大数据的文章和帖子,其他论坛和博客也有很多大牛独到的见解,不一定要看期刊才能了解大数据的。希望对你有帮助。
大数据经典案例:啤酒与尿布全球零售业巨头沃尔玛在对消费者购物行为分析时发现,男性顾客在购买婴儿尿片时,常常会顺便搭配几瓶啤酒来犒劳自己,于是尝试推出了将啤酒和尿布摆在一起的促销手段。没想到这个举措居然使尿布和啤酒的销量都大幅增加了。如今,“啤酒+尿布”的数据分析成果早已成了大数据技术应用的经典案例,被人津津乐道。
1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:
大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究