首页

> 学术论文知识库

首页 学术论文知识库 问题

毕业论文stolz定理的应用

发布时间:

毕业论文stolz定理的应用

施笃兹定理:在数学中,Stolz(–CESàRO)定理,以数学家奥托Stolz和埃内斯托CESàRO命名,是检验一个数列是否收敛的准则。

施笃兹定理的证明(O'Stolz定理)是处理数列不定式极限的有力工具,一般用于*/∞型的极限(即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓)、0/0型极限(此时要求分子分母都以0为极限)。O'Stolz定理用于数列,它有函数形式的推广,这两个都可以认为是洛必达法则的离散版本。

毕业论文的开题报告一般会涉及到题目的研究背景及研究意义等。该公式一般适用于*/∞型数列极限和0/0型数列极限的计算和证明问题。

Stolz定理是一种求数列极限的方法。设有数列An,Bn 若Bn>0递增且有n→+∞时Bn→+∞(以下lim均表示lim(n→+∞)) 则有: 若lim(A(n+1)-An)/(B(n+1)-Bn)=L(L可以是0,有限数,或+∞(-∞))==>lim(An)/(Bn)=L。

由条件会得到公式:对任意e>0 存在N使 当n>N。

|(An+1-An)/(Bn+1-Bn)-L|

又Bn>0递增且有n→+∞时Bn→+∞,原式化为:|An+1-An|

固定e,则存在N1>=N,当n>N1时,有-e*BN+|AN|

|An|<=|An-An-1|+|An-1-An-2|+....+|AN+1-AN|+|AN|,代入⑴式,得:<=e*(Bn-Bn-1)+.....+e(BN+1-BN)+|AN|,代入⑵式,得:

定理:

O'Stolz定理是处理数列不定式极限的有力工具,一般用于*/∞型的极限(即分母趋于正无穷大的分式极限。

分子趋不趋于无穷大无所谓)、0/0型极限(此时要求分子分母都以0为极限)。O'Stolz定理用于数列,它有函数形式的推广,这两个都可以认为是洛必达法则的离散版本。

stolz定理一般有两个证明方法,一个是作为Toeplitz定理的推论,一个是按数列极限的定义证明,后者偏于技巧性,Toeplitz定理的证明不难,可以先看Toeplitz定理。stolz定理被称为数列的l'hospital法则,只是这样形式上称呼,和l'hospital没实质上的联系,主要用于解决0/0 和∞/∞型数列的极限。由stolz定理可以推出数列收敛于a,则其前n项的算术平均数收敛,并且也收敛于a。若数列的每一项都是正的,则还有其前n项的几何平均数也收敛于a。这两个结果是漂亮的。这可能就是所谓的均值极限吧。

微分中值定理的有关应用毕业论文

微分中值定理的应用如下:

微分中值定理是微分学理论的重要组成部分,在导数应用中起着桥梁作用,也是研究函数变化形态的纽带,因而在微分学中占有很重要的地位。

通过微分学基本定理的介绍,揭示函数与其导数之间的关系,在知识结构和思想体 系中,建立起应用导数进一步研究函数性质的桥梁。 在各类大型考试中,微分中值定理占有很重要的位置,是重要的考点,常 以该定理的证明及应用出现,涉及一些理论分析和证明,还有在极值问题中的实 际应用,因而对其进行较深层次的挖掘与探讨就显得很有必要。

国内外现状和发展趋势与研究的主攻方向人们对微分中值定理的研究,从微积分建立之后就开始了。 1637年,著名 法国数学家费马在《求最大值和最小值的方法》中给出费马定理。 教科书中通常 将它称为费马定理。

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

隐函数定理及其应用毕业论文

隐函数定理的应用研究现状写作:1、选题的背景、意义。2、相关研究的最新成果及动态。3、研究在现实中的应用以及拓展现状。4、结语。

答:(y-2xy)dx+x^2dy=0,写成x^2dy=y(2x-1)dx即dy/y=(2x-1)/x^2dx两边积分得:ln|y|=2ln|x|+1/x+c代入x=1,y=e,解得c=0所以ln|y|=2ln|x|+1/xy=x^2*e^(1/x)

隐函数存在定理1设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0,则方程F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具有连续导数的函数y=f(x),它满足条件y0=f(x0),并有dy/dx=-Fx/Fy,这就是隐函数的求导公式。隐函数存在定理2设函数F(x,y,z)在点P(x0,y0,z0) 的某一邻域内具有连续偏导数,且 F(x0,y0,z0)=0,Fz(x0,y0,z0)≠0,则方程F(x,y,z)=0在点 (x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 z=f(x,y),它满足条件z0=f(x0,y0),并有αz/αx=-Fx/Fz;αz/αy=-Fy/Fz;隐函数存在定理3(略)见参考资料

有两个定理。 1、唯一性定理:隐函数在内点的某一区域上连续且存在连续的偏导数,则这个隐函数是唯一的。 2、可微性定理:隐函数自变量在某个未知点的改变量与函数改变量有关系则这个隐函数可微。 隐函数:即能确定因变量是自变量的函数称为隐函数。

应用心理学的毕业论文

很多呀,我就分享几篇心理学进展这本期刊上的论文标题吧:自我概念清晰性与初中生攻击行为的关系研究:有调节的中介作用、社会排斥后的行为反应研究综述、从“完全理性”到“生态理性”——人类决策智慧的演进、乡镇地区高年级小学生同伴关系与同胞接纳的关系、大学生社会节奏与积极心理健康的四年纵向研究、母亲积极评价对幼儿掌控动机的影响研究等

建议你去看下心理学这样的期刊~多看下(心理学进展)这样的期刊里面的文献论题~可以好好学习参考下吧

据学术堂了解,心理学是一门研究人类心理现象、精神功能和行为的科学,主要包含基础心理学与应用心理学。这里最新收集了20个心理学毕业论文题目供大家参考:1、大学生自我控制与心理压力的关系研究--以安徽师范大学为例2、性别视角下的高校女大学生心理健康教育3、广西监狱警察敬业心与心理资本的相关性研究4、儿童文学对低龄儿童焦虑心理的干预5、青少年心理弹性、癌症症状困扰与生活质量的相关性6、云南鲁甸震后青少年心理健康状况及其影响因素7、高校辅导员应对学生心理危机的方法和途径研究8、远程开放教育的教材改革与开发实践--以《成人心理健康教育》为例9、心理咨询课程体验式教学的实践探索10、武陵山连片特困区贫困人员的心理特征探析11、浅析人居环境中人的心理对植物的需求和影响12、关注职工心理 提升铁路安全风险管理水平13、我国老年人心理健康实证研究的文献计量学分析14、大学生农民工相对剥夺感的心理疏导15、大学生应对方式、疏离感与心理健康三者机制16、心理咨询技术在基层派出所治安调解中的应用17、浅谈敬老院老年人心理护理策略18、留守儿童与流动儿童存在的心理问题及对策19、临床检验人员心理健康现状探讨20、信访工作中的心理分析及对策研究

学术堂整理了十个新颖的心理学毕业论文题目供大家进行参考:1、女性心理学思潮述评2、建构主义心理学思潮述评3、后现代心理学思潮述评4、超个人心理学思潮述评5、某一心理学大师的人格与学术贡献述评6、用质的方法(如心理传记法、叙事法、访谈法等)研究一个心理问题或一种心理现象7、中国思想史上的人性论对心理学的价值8、建构主义学习理论述评9、人本主义心理学思潮的渊源与背景10、论自我效能感及其培养

研究性课题余弦定理的应用论文

正余弦定理教学案例分析溧阳市戴埠高级中学 冯春香教材:新课标教材----必修5课题:正余弦定理[摘要]: 辩证唯物主义认识论、现代数学观和建构主义教学观与学习观指导下的“情境 .问题.反思.应用”教学实验,旨在培养学生的数学问题意识,养成从数学的角度发现和提出问题、形成独立思考的习惯,提高学生解决数学问题的能力,增强学生的创新意识和实践能力。创设数学情境是前提,提出问题是重点,解决问题是核心,应用数学知识是目的,因此所设情境要符合学生的“最近发展区”。“正余弦定理”具有一定广泛的应用价值,教学中我们从实际需要出发创设情境。 [关键词]: 正余弦定理;解三角形;数学情境 一、教学设计 1、教学背景 在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题。这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在 2003级进行了“创设数学情境与提出数学问题”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。 2、教材分析 “正余弦定理”是普通高中课程标准实验教科书数学必修5的第一章第二节的主要内容,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、正余弦定理”教学的第二节课,其主要任务是引入并证明正余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“正余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 3、设计思路建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。 为此我们根据“情境 --问题”教学模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:①创设一个现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用正余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出正余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点 ;二是如何将向量关系转化成数量关系。④由学生独立使用已证明的结论去解决中所提出的问题。二、教学过程类型一:解三角形和与之相关的问题1.⑴在 中,如果 , , ,那么 , 的面积为 .变式:若已知 ,可否求出其他三个元素?例1.已知 中, 求 及 。变式:(小题训练4)在 中,已知 则边长 。例2. (原例4.) 中三个内角 的对边分别是 ,已知 ,且 ,求角 的大小。变式:(小题训练3)若三角形三边之比为 ,那么这个三角形的最大角等于 。 类型二:判断三角形形状的问题2.在 中,若 ,则 是 (形状)。例3.在 ,若 ,试判断 的形状。学生练习:1. 已知 中,若 ,则 。2. 在 中,若 ,则 的形状是 (形状)。3. 在 中,已知 ,则 。4.在 中,已知 ,解三角形。三、教学反思 创设数学情境是“情境 .问题.反思.应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。 从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“正余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第一章 正弦、正余弦定理应用的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。 “情境 .问题.反思.应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

浅述对高中数学研究性学习的认识和实践摘要:数学研究性学习是指以培养学生的数学创新精神和创造能力为目的的教学课程。由于教师教学观念和教学行为形成定式的约束,在实施数学研究性学习中还存在很多问题。笔者结合自己的教学经验,提出了“情境法”和“问题法”研究性教学方法,相信对高中数学有借鉴作用。关键词:高中数学 研究性学习 情境法 问题法2001年4月,教育部颁发了普通高中“研究性学习”实施指南的通知以来,研究性学习就成为基础教育领域出现频率较高的一个名词。那么究竟什么是研究性学习,几年来高中数学研究性学习的进展如何,存在哪些主要问题,针对这种现状广大一线教师应该如何结合日常教学活动做好研究性学习的教学呢?本文拟就这几个问题进行探讨。一、研究性学习基本涵义所谓数学研究性学习,是指主要以培养学生的数学创新精神和创造能力为目的的教学课程。它主要是给学生介绍数学科学研究的基本过程与方法,指导学生开展数学课题研究。它要求给学生提供探究的问题和探究的手段,让学生自主探究学习的过程,因而具有研究性;它从问题的提出、方案的设计与实施,到得出结论,均由学生来做,因而具有自主创新性;它一般要通过调查、实验、小课题研究、专题讨论、社会实践等方式进行学习,因而具有开放性和实践性。二、 研究性学习中存在问题长期以来,相当一部分教师的教学观念和教学行为形成定式,在教学内容和教学条件变化不大的情况下,要实现教学行为方式的重大转变从而指导学生改变学习方式,需要一个较长的适应过程。事实上,目前高中数学教学中进行的研究性学习只浮于表面,对于新教材中有关于研究性学习的课题,大多数教师并没有按照研究性学习的方式让学生亲历知识的发现、检验与论证的过程,而是采用了变相灌输的方式促使学生记住结论而已。其实,在高中数学教学中如何处理好基础知识的教学、基本技能的训练与培养探究能力、创新精神的关系,目前仍是有待解决的课题。也正是因为如此,现在将研究性学习作为数学学习的一种新类型,列入课程计划,使之成为有目标、有实施要求、实施渠道和评价标准才是十分必要的。而且通过进行研究性学习,高中数学新课程标准所强调的学生学习方式的转变,教师教学观念、教学行为的改变才能比较容易实现。不过,这并不是说只有在研究性学习活动中才进行研究性学习,也不意味着传统的高中数学学科课程的教学中不能进行研究性学习。学科课程的教学与研究性学习恰恰是相辅相成的。只要处理得当,原有的课程内容也能在一定程度上支持学生的研究性学习的展开。而且,在高中数学教学中,既打好基础,又培养学生的创造精神和实践能力,是可能的,也是必要的,更是我们应该追求的教学上的很高境界。三、研究性学习方法目前,二期课改已在我校高中阶段全面推开,这对所有教师都是一个新的考验。研究性学习的使用不仅符合课改的要求,而且也是针对当前高中数学教学过程中仍存在的教学方法单一、理论与实际脱节、课堂氛围沉闷等问题所提出的教学方法。以下是笔者在实践中总结出的适应于当前课改的两种研究性学习方法。方法一:情境法教师在教学中可以采用引趣、激疑、悬念、讨论等多种形式激发学生的求知欲,活跃课堂气氛,特别是在讲授新课时,可根据课题创设问题情境,使学生对所述问题感兴趣,并激发他们的创造性思维,从而解决问题。例如,在学完函数的奇偶性和单调性后,教师提出这样的问题:设a、b为常数,且a≠0,b≠0,研究函数f (x)=ax+b/x的奇偶性和单调性。本题并没有涉及更深的数学知识,而是学生熟知的两种函数——正比例函数f(x)=kx(k≠0)与反比例函数f(x)=k/x(k≠0)的和,这题的特点是学生利用近阶段所学的数学知识,通过探究、合作和教师的适当指导,都能很快得到解决,具有“短、平、快”的特点。方法二:问题法数学研究性学习的过程就是围绕着一个需要解决的数学问题而展开,经过学生直接参与研究,并最终实现问题解决而结束,学生学习数学的过程本身就是一个问题解决的过程。因此,使学生能够将学到的数学知识应用到解决实际问题中去,也是研究性学习的一个重要的方面。例如,学习了正弦定理和余弦定理后,教师向学生布置利用解三角形的知识进行建筑高度的测量研究。如测量嘉定法华塔高度的方案,先选定一点A,在A点测得塔顶的仰角。为30°,再向前取一点B,在D点测得塔顶的仰角旦为45°,用皮尺测得A、B两点间的距离为a,见下图。设BD=x,在Rt△ACD中,∵a =30°, 。在Rt△BCD中,∵日=45°,于是 ,解得 。∴嘉定法华塔高度 。一方面使学生学习的数学理论与实际相结合,另一方面,调动了学生的学习积极性,拓展了思维,使得教学活动更有效地进行。CB AD图1:问题法求解塔高四、结束语研究性学习作为教育改革的新事物还有很多值得重视与探讨的问题。在数学教学中,既打好基础,满足眼前利益,又要体现出研究性学习的性质和价值,培养创新精神和实践能力,实现可持续发展,是数学教学的理想状态,这种理想状态的实现,现在还存在诸多困难。但是笔者认为,传统的数学教学应注入研究性学习的时代活水是不容置疑的,广大的一线高中数学教师应该积极探索研究性学习教学方法,广泛交流经验,使我国的高中数学研究性学习教学更进一个台阶。参考文献:1. 范宝忠,高中数学新教材教学中开展研究性学习的思考[J]。兵团教育学院学报,2006年 第4期。2. 陆开扬,高中数学教学中对学生研究性学习进行分层指导的探索[J]。教育导刊,2006年10月。仅供参考,请自借鉴希望对您有帮助

容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

研究是多层面的活动,包括观察;提出问题;通过游览书籍和其它信息资源发现什么是已经知道的结论,制定调查研究计划;根据实验数据证明对已有的结论作出评价;用工具收集、分析、解释数据;提出解答、解释和预测以及交流结果。研究要求确定假设,进行批判的和逻辑的思考,并且考虑其它可以替代的解释。”简言之,数学研究就是以观察和实验为直观依据,以合情推理为猜想手段,以提出数学问题和解决数学问题为目标的心智活动过程。 我的研究不需要调查 只需要观察与思考 非常迫切地期待你们的指引 现成文章无比欢迎

相关百科

热门百科

首页
发表服务