为86%~87%时,它对 siN4 的蚀刻率维持在 5nm/min 左右
选修课,急求微型机械的应用和制造论 biijao胡
蓝色圆球是氮原子,灰色圆球是硅原子 crystal structure of alpha-Si3N4. Data from Kato K., Inoue Z., Kijima K., Kawada I., Tanaka H., Yamane T. (1975). "Structural Approach to the Problem of Oxygen Content in Alpha Silicon Nitride".JOURNAL OF THE AMERICAN CERAMIC SOCIETY58: “α氮化硅中氧含量问题的结构方法” 由英语维基百科的Materialscientist,CC BY-SA , crystal structure of beta-Si3N4. Data from Schneider J., Frey F., Johnson N., Laschke K. (1994). "Structure refinements of Si3N4 at temperatures up to 1360 °C by X-ray powder investigation". ZEITSCHRIFT FUER KRISTALLOGRAPHIE 209: “通过X射线粉末研究,可在高达1360°C的温度下细化Si3N4的结构” 英语维基百科 的 Materialscientist 由英语维基百科的Materialscientist,CC BY-SA , Structure of gamma-Si3N4 (same as Sn3N4). Data from Scotti N., Kockelmann W., Senker J., Trassel S., Jacobs H. (1999). "Sn3N4, a Tin(IV) Nitride - Syntheses and the First Crystal Structure Determination of a Binary Tin-Nitrogen Compound".ZEITSCHRIFT FUER ANORGANISCHE UND ALLGEMEINE CHEMIE625: “Sn3N4,氮化锡(IV)-二元锡氮化合物的合成及第一晶体结构测定” 由Materialscientist - 自己的作品,公有领域, 氮化硅(Si3N4)存在有3种 结晶 结构,分别是α、β和γ三相。α和β两相是Si3N4最常出现的型式,且可以在常压下制备。γ相只有在高压及高温下,才能合成得到,它的硬度可达到35GPa [19] ,为包含 八面体 形六配位硅原子的 尖晶石 型结构。 全文引自维基百科 参考文献: J Z Jiang, F Kragh, D J Frost, K StÃ¥hl and H Lindelov. Hardness and thermal stability of cubic silicon nitride . J. Phys.: Condens. Matter. 4 June 2001,13(22): 515. doi: .
使用磷酸选择合适的体积比和温度,对二氧化硅和氮化硅有很好的选择比。可以参考氮化硅湿法蚀刻中热磷酸的蚀刻率这篇文献。请参考。
碳化硅陶瓷散热片其主要特点是高温性能优越,主要用于高温下的使用。常温下各种性能也是不错的,在低于150℃以下很少有研究。碳化硅陶瓷散热片一般不在低温下使用。SiC陶瓷不仅具有优良的常温力学性能,如高的抗弯强度、优良的抗氧化性、良好的耐腐蚀性、高的抗磨损以及低的摩擦系数,而且高温力学性能(强度、抗蠕变性等)是已知陶瓷材料中最佳的。热压烧结、无压烧结、热等静压烧结的材料,其高温强度可一直维持到1600℃,是陶瓷材料中高温强度最好的材料。
碳化硅主要以耐磨、耐高温、耐化学腐蚀性能出色,文献资料上很难看到关于其耐低温的提法,但有一点可以肯定,在火箭技术上有碳化硅材料的应用,主要应用其耐高温、耐磨性能,但在火箭穿越大气层,经过对流层顶部时,哪里的温度可达到-50——-60℃,在经过中间层时温差更是变化幅度极大,不过途径时间都不长,但足以说明碳化硅及其制品的各方面性能,希望给各位提供参考。
绪论第1章陶瓷材料显微结构的基本理论基本概念陶瓷材料的显微结构和相组成晶粒晶粒的取向及织构表面及界面的结构特征晶界气孔及裂隙平衡和非平衡条件下组成物相与显微结构之间的关系相平衡结晶过程与显微结构同质多晶转变与显微结构非平衡条件下的结晶过程与显微结构玻璃晶化及不混溶过程与显微结构烧结和固相反应与显微结构添加剂和杂质的存在与显微结构复合相结合过程与显微结构显微结构特征的研究晶体生长形态研究中若干问题的说明显微结构特征研究的若干要点说明非晶态材料的显微结构特征晶体生长过程中涉及的重要参数和显微结构的关系显微结构图像解析中若干问题的讨论第2章陶瓷材料的显微结构表征陶瓷材料的显微结构特征与结构参数陶瓷显微结构类型陶瓷显微结构特征分析体视学方法在陶瓷研究中的应用颗粒和粉体表征粉体表征表征颗粒的目的和目标颗粒尺寸分布颗粒尺寸分布测量在线颗粒测量统计直径粉末性能坯体显微结构及其表征坯体的结构生坯的结构表征方法陶瓷烧结体的显微结构及其表征表征技术含缺陷陶瓷材料的显微结构增韧陶瓷的显微结构新型结构及制备方法第3章陶瓷材料显微结构分析传统陶瓷的显微结构特征瓷胎釉层骨质瓷电瓷结构陶瓷的显微结构特征滑石瓷与镁橄榄石瓷氧化铝瓷氧化铍瓷氧化锆瓷氧化锡(SnO2)陶瓷硅灰石(CS)瓷金红石瓷的显微结构分析非氧化物陶瓷的显微结构特征氮化硅陶瓷与其它氮陶瓷碳化物陶瓷多相复合陶瓷功能陶瓷的显微结构特征概述电容器瓷和电子陶瓷磁性瓷压电瓷远红外辐射陶瓷光学陶瓷热敏电阻瓷氧化锌变阻器瓷湿敏瓷生物功能瓷薄膜功能瓷氧化物超导体和快离子导体的显微结构特征氧化物超导体快离子导体复合材料的显微结构陶瓷基复合材料概况复合材料中增强材料的显微结构陶瓷基复合材料的显微结构金属陶瓷的显微结构分析非均质材料的显微结构及其性质概述非均质材料显微结构特征非均质材料宏观性质的颗粒散射理论分形学在无机非金属材料显微结构研究中的应用概述分形图形分形维数分数维的测量方法分形生长的动力学模型分数维的测量设备分数维测量的实例展望第4章先进陶瓷的性能特点材料性质与使用性能材料的物理和化学性质及其使用性能材料性质数据库陶瓷材料的性能特点陶瓷材料的性能特点先进陶瓷在性能上的特点功能陶瓷的性能与特征绝缘陶瓷的性能与特征陶瓷的基本性能与显微结构特征的关系可控气孔率室温力学强度断裂能抗高温变形性热震阻力硬度及抗磨耗性热导率热膨胀光学功能特殊的电功能磁学功能抗腐蚀性连接能力总结第5章结构陶瓷的性能概述力学性能高温性能耐磨性能耐蚀性能滑石瓷的性能和应用氧化铝(Al2O3)陶瓷瓷的类型和性能高铝瓷的组成和性能氧化铝陶瓷的特性及应用着色氧化铝瓷其它高熔点氧化物陶瓷氧化锆陶瓷的性质和应用熔融石英(SiO2)陶瓷透明氧化物陶瓷氧化铍和氧化镁陶瓷高温碳化物陶瓷碳化硅陶瓷的性能和应用碳化硼陶瓷碳化钛陶瓷氮化物耐热陶瓷氮化硅陶瓷六方氮化硼(HBN)陶瓷的性质和用途立方氮化硼(CBN)和超硬工具材料氮化铝(AlN)陶瓷高热导率瓷高热导率材料的结构特点瓷瓷瓷其它结构陶瓷二硼化锆陶瓷二硅化钼陶瓷结构陶瓷的合理使用陶瓷的脆性断裂和材料强度的韦伯(Weibull)分布联合强度理论和脆性材料的优化使用断裂韧性和陶瓷的韧化处理第6章功能陶瓷的性能陶瓷材料的电性能陶瓷材料的导电性及其机理电导率陶瓷材料的极化与介电常数介电常数陶瓷材料的介质损耗绝缘强度力学性质弹性模量机械强度断裂韧性热学性质热容热膨胀系数热导率抗热冲击性光学性质磁学性质耦合性质功能陶瓷的腐蚀与氧化其它物理性质参考文献
陶瓷碳化硅其主要特点是高温性能优越,主要用于高温下的使用。常温下各种性能也是不错的,在低于150℃以下很少有研究。一般不在低温下使用。SiC陶瓷不仅具有优良的常温力学性能,如高的抗弯强度、优良的抗氧化性、良好的耐腐蚀性、高的抗磨损以及低的摩擦系数,而且高温力学性能(强度、抗蠕变性等)是已知陶瓷材料中最佳的。热压烧结、无压烧结、热等静压烧结的材料,其高温强度可一直维持到1600℃,是陶瓷材料中高温强度最好的材料。抗氧化性也是所有非氧化物陶瓷中最好的。SiC陶瓷的缺点是断裂韧性较低,即脆性较大。下表是在常温下的耐腐蚀性能:
01、复合有机硅橡胶粉末、其制备方法及其用途02、连续式宽幅独立气泡的发泡硅橡胶组成物及其加工方法03、高导热硅橡胶组合物,热定影辊和定影带04、导电性硅橡胶组合物05、可固化硅橡胶组合物及其固化产品06、液体硅橡胶基础胶料、液体硅橡胶材料及其它们的制备方法07、复合硅橡胶颗粒及其制备方法08、一种低成本室温硫化硅橡胶组合物09、用在硅橡胶基配方中的有机中和的煅烧高岭土10、氟橡胶与耐油硅橡胶、硅橡胶涡轮增压胶管及制备方法11、内嵌导丝的医用硅橡胶导管12、新型硅橡胶软管13、生物塑化硅橡胶专用注胶机14、一种硅橡胶模具制造工艺15、用于制备高强度透明室温固化硅橡胶的填充胶16、硅橡胶密封圈的制造方法17、硅橡胶表面磷灰石涂层的仿生法制备18、硅橡胶成型产品及其生产方法19、一种具有电磁屏蔽性能的导电硅橡胶及其制造方法20、超支化有机蒙脱土/热硫化型硅橡胶复合材料及制备方法21、用于硅橡胶的粘合剂22、丙烯酰基-硅橡胶复合组合物、制备方法及其用途23、疏水二氧化硅及其在硅橡胶中的使用24、金属饰品浇注成型用硅橡胶模具材料及其应用25、高导热绝缘硅橡胶复合材料的制备方法26、制造填充硅橡胶组合物的工艺27、半导体均压层和中导电性硅橡胶及制备合成绝缘子的工艺28、高憎水性合成绝缘子用硅橡胶及其制备工艺29、加热固化性低比重液态硅橡胶组合物与低比重硅橡胶成型物30、硅橡胶海绵用乳胶组合物、其制造方法及硅橡胶海绵的制造方法31、硅橡胶32、硅橡胶成形方法33、不粘性硅橡胶混炼胶及其制备方法34、硅橡胶胸罩35、一种力敏硅橡胶薄膜的制备方法36、可辐射固化的有机硅橡胶组合物37、室温硫化硅橡胶胶粘剂/密封剂组成物38、一种热硫化型硅橡胶纳米复合材料及其制备方法39、高导热性硅橡胶组合物40、硅橡胶抗老化的化合物及其合成方法41、液态硅橡胶止血敷料制备方法42、半硫化硅橡胶涂层织物43、一种连续式宽幅硅橡胶薄制品复合薄胶布的制作方法44、阻燃性硅橡胶用组合物、阻燃性聚硅氧烷橡胶组合物和阻燃性硅橡胶45、有保护层的LED发光体及其应用和硅橡胶模具法46、硅橡胶混炼胶组合物及其制备方法47、RTV硅橡胶组合物,电路板,银电极和银晶片电阻器48、金属化硅橡胶基底的方法49、制备金属-硅橡胶复合材料的方法50、一种混炼型硅橡胶结构化控制剂51、硅橡胶开孔海绵52、一种开孔型硅橡胶泡沫材料及其制备方法和用途53、一种液体阻燃硅橡胶及其制备工艺54、用于黏着硅橡胶与玻纤布的接着剂配方及其制作方法55、制备含有高岭土的硅橡胶组合物的方法56、一种亲水性牙科印模硅橡胶57、纳米羟基磷灰石/硅橡胶复合生物医用材料及其制备方法58、硅橡胶互感器的生产方法59、室温硫化硅橡胶复合纳米材料防污闪涂料60、用于注射成型复合硅橡胶绝缘子混炼胶专用料的制备方法61、一种含有纳米蒙脱土的热硫化型硅橡胶及其制备方法62、高耐热、快固、中性脱丙酮型室温硫化硅橡胶及其制备方法63、晶彩硅橡胶的制备方法64、硅橡胶薄膜及其制造方法65、单组份室温可固化高导电硅橡胶组合物66、海绵用硅橡胶组合物67、一种混炼型硅橡胶抗结构剂68、新型硅橡胶胶管生产工艺及其专用模芯69、硅橡胶用乳液组合物,其制造方法和硅橡胶的制造方法70、硅橡胶海绵组合物71、固化性硅橡胶组合物以及液晶聚合物与硅橡胶的复合成型体的制造方法72、硅橡胶和基底材料的一体成型复合体及其制造方法73、定影辊或定影带用绝缘性硅橡胶组合物以及定影辊和定影带74、氟硅橡胶生胶的聚合方法75、一种硅橡胶裂解渣回收利用方法76、放射远红外线及阴离子的硅橡胶组成物及被该组成物包覆的发热线77、一种长条硅橡胶制品的接头方法78、一种闭孔型硅橡胶泡沫材料及其制备方法和用途79、硅橡胶粘合剂在变光焊接护目镜胶合中的应用方法80、加成型液体硅橡胶/有机蒙脱土纳米复合材料及制备方法81、固定辊用硅橡胶组合物及固定辊82、含有矿物纤维的硅橡胶组合物83、混炼型硅橡胶抗结构剂的制备方法84、硅橡胶泡沫及其制造方法和用途85、耐高低温高阻尼硅橡胶86、高连泡率硅橡胶海绵、其制法及用其的定影辊87、一种硅橡胶成型工艺88、无色透明硅橡胶交联固化剂89、高粘接强度硅橡胶交联固化剂90、硅橡胶海绵组合物和硅橡胶海绵91、硅橡胶组合物92、生产硅橡胶的方法、生产硅橡胶用的含水乳液和生产前述乳液的方法93、包含未经处理的氢氧化铝作为填料的硅橡胶组合物94、热压粘合用硅橡胶片及其制造方法95、硅橡胶废料裂解灰渣的回收综合利用工艺96、绝缘性硅橡胶组合物97、烷基酰氧基硅烷及其制备方法和用于制备RTV室温硫化硅橡胶醋酸型交联剂的方法98、球形有机硅橡胶制品及其制造方法99、用于注射成型复合硅橡胶绝缘子混炼胶专用料的制备方法100、纳米硅橡胶改性超高分子量聚乙烯及其制备方法和用途101、用硅橡胶边角废料生产环硅氧烷的方法102、硅橡胶夹布及包绕胶管的制备方法103、双组分室温硫化硅橡胶及其单包装方法104、硅橡胶用纳米活性碳酸钙的制备方法105、自润有机硅橡胶材料、其制备方法及用途106、一种表面涂覆聚乙烯醇的硅橡胶微流控芯片及其表面修饰方法107、以硅橡胶为基础的耐焰组成物108、硅橡胶复合空心绝缘子的生产方法109、硅橡胶基压敏粘合剂片材110、RTV导热硅橡胶组合物111、使用硅橡胶的散热系统112、硅橡胶再生胶的制造方法113、电线被覆用硅橡胶组合物114、电极电路保护用硅橡胶组合物、电极电路保护材料和电气、电子零件115、一种医用硅橡胶假体材料及其制备和使用方法116、硅橡胶组合物及其制造方法117、自粘性助交联的硅橡胶混合物和其制备方法以及复合模制件的制备方法及其应用118、非高温真空脱水法电子级单组份脱醇型室温硫化硅橡胶的制备方法119、阻燃硅橡胶及其制备方法120、导电硅橡胶组合物121、双组分室温交联水性有机硅橡胶防水涂料及其制备方法122、硅橡胶海绵垫板的制备方法123、含有增量油的硅橡胶组合物和制备所述增量油的方法124、硅橡胶组合物125、室温可固化的硅橡胶组合物126、制备硅橡胶组合物的综合方法127、具有脱离特性的粘性硅橡胶128、粘性硅橡胶组合物及其用途129、热压合用硅橡胶片材130、缩合型双组份粘牢硅橡胶131、通过烷氧基交联的RTV-1硅橡胶混合物132、混凝土伸缩缝密封硅橡胶133、热固性硅橡胶组合物134、纳米硅橡胶制品及其制备方法135、树枝状分子交联的加成型高温硫化硅橡胶及其制备方法136、树枝状分子交联的过氧化型高温硫化硅橡胶及其制备方法137、移动体用硅橡胶胶粘剂组合物138、硅橡胶配剂及其应用139、涂覆玻璃纤维布用水性硅橡胶乳液140、一种硅橡胶组合物及其制备方法和用途141、一种含可溶性聚铁有机硅氧烷的硅橡胶耐热添加剂142、一种表面永久亲水性的硅橡胶及其制法和用途143、用于固定辊的液态硅橡胶组合物和氟碳树脂涂布的固定辊144、全硫化粉末硅橡胶及其制备方法145、乳液聚合硅橡胶-基冲击改性剂、制备方法及其共混物146、室温可固化的硅橡胶组合物147、用硅橡胶增韧的热塑性树脂148、剥离型接枝硅橡胶/粘土纳米复合材料及其制备方法149、全硫化粉末硅橡胶及其制备方法和用途150、阻燃性硅橡胶电线和电缆涂层组合物151、硅橡胶/三元乙丙并用导电橡胶及其制备方法152、含钴(II)改性硅橡胶富氧膜及其制备方法153、氟硅橡胶在制备合成绝缘子的用途154、卤烃基化合物交联的高温硫化硅橡胶及其制备方法155、异氰酸酯交联的高温硫化硅橡胶及其制备方法156、加热线圈用硅橡胶耐热电线157、导热硅橡胶复合片材158、阻燃性硅橡胶组合物159、散热绝缘硅橡胶材料及其制造工艺160、阻燃性室温硫化硅橡胶161、含有硅橡胶颗粒的水乳液及其制备方法162、加成交联的硅橡胶混合物、其制备方法和其用途163、模塑型硅橡胶海绵组合物、硅橡胶海绵和生产硅橡胶海绵的方法164、加热部件,图像形成装置和生产硅橡胶海绵和辊的方法165、一种从硅橡胶废品中回收硅单体的方法166、硅橡胶制树脂整体型键垫及其制造方法167、剥离型硅橡胶/粘土纳米复合材料及其制备方法168、硅橡胶用油墨和模制的硅橡胶169、生产模制硅橡胶产品的方法170、用作袖珍键盘的硅橡胶组合物171、低比重液态硅橡胶组合物172、特氟伦膜的硅橡胶压力辊生产方法及其装置173、用于嵌件模塑或双模腔模塑的硅橡胶组合物174、液体硅橡胶组合物及其制备方法和生产发泡硅橡胶的方法175、可室温固化的硅橡胶组合物176、热固性树脂组合物及其与硅橡胶的二部分复合体177、防降解室温硫化硅橡胶178、双层护套整体注射成型硅橡胶合成绝缘子179、硅橡胶的回收工艺及其应用180、热压合用硅橡胶片材181、卷式硅橡胶薄膜的制法182、磁性硅橡胶耳183、含有聚亚芳基硫化物和硅橡胶的复合型材部件184、耐热热传导性热压合用硅橡胶片材185、真空灭弧室外包硅橡胶层的方法186、含有疏水性二氧化硅的硅橡胶组合物 187、硅橡胶海绵组合物188、发泡硅橡胶189、人造革用液体硅橡胶190、可用于渡槽伸缩缝填缝止水的硅橡胶及其制备方法
硅胶生产的工艺特性及其工业应用 1引言 硅胶是具有二维空间网状结构的一氧化硅干 凝胶,属多孔性固体物质,孔分布范围广,具有很 大的比表而,表而覆盖有大量的硅烷醇基因匕 Si- OH),具有一定的活性。使它成为干燥剂、吸 附剂、催化剂及催化剂载体等,被广泛应用」几工业 生产中。 2工艺特性 硅胶的生产虽然大都经过凝胶、洗涤、干燥这 一共性,但具体到某一类型胶,又有工艺各异,相 互区别的个性。 2. 1凝胶造粒过程 凝胶造粒是硅胶生产的关键性步骤之一,是 指一定浓度的稀泡花碱液和稀硫酸在一定条件卜 充分反应形成溶凝胶溶液,达一定浓度后形成凝 胶颗粒。凝胶颗粒的形状、大小等完全山用户的需 求及工艺生产能力决定,关」几成胶方法,日前多采 用空气造粒,粒度要求微细时,考虑到空气造粒的 难度,则大多采用反应罐凝胶造粒,例微粉硅胶的 生产。凝胶所用的酸碱比例、浓度、温度及凝胶造 粒时间等是凝胶造粒过程的特定工艺参数。 酸性成胶(酸碱比例问题)时,一次凝胶粒 r(相当少初级粒向小,聚集时易形成细孔结构 的硅胶;碱性成胶时,一次凝胶粒r大,聚集时易 形成粗孔性的硅胶。这就是粗孔胶的生产优选碱 性成胶,细孔胶生产则优选酸性成胶的道理。 酸碱浓度要适中。酸碱浓度过高,一次凝 胶粒r较大,聚集时成为较粗孔径的硅胶,Ifn凝胶 溶液中一次粒I浓度也大,即凝胶网状结构的紧 密度增大,聚集时又易成为细孔,一者有相互抵消 的倾向。再者,酸碱浓度过高,凝胶溶液的粘度增 大,给造粒带来一定的难度,另外,酸碱浓度的大小还要受到凝胶粒度、结构及生产设计能力等的 限制。 2. 1. 3酸碱温度过高.酸碱反应的速度过快.Ifu 酸碱反应木身又是放热反应.一次粒r聚集时又 要放热.因此.使得一次粒r任曾大”.造粒速度减 慢.势必超出工艺要求范围.对造粒不利;酸碱温 度过低.一次粒r减小.易形成细孔.但山」几凝胶 溶液温度太低、粘度增加.同样也对造粒不利。因 此酸碱温度也要适中。 2. 1. 4凝胶造粒时间是凝胶造粒过程中又一至 关重要的工艺参数。是指从酸碱混合反应开始到 粒度凝胶形成为止所经历的时间.包括凝胶时间 与造粒时间。凝胶造粒时间短.则可能使凝胶溶液 反应不充分或均匀度不够.使得一次粒r的浓度 分布不匀.形成局部凝胶或局部紧密堆积.这就产 生造粒过程中的汽泡胶.碎胶或胶球强度不够等 现象。同时这也是造成胶球颗粒内部结构紊乱.孔 分布范围大的一个主要原因。因此.在生产实践 中.对」几空气造粒.在工艺允许范围内.颗粒大的 胶.时间要尽量长.颗粒小的胶.时间则可适当短 些。Ifn对」几在反应釜罐中凝胶造粒的特细微球硅 胶.时间则要更长.目_要加搅拌。 2. 2洗胶过程 洗胶是硅胶生产中不可少的工艺过程.是为 了将粒状凝胶所形成的NazSO}洗掉,7{将各阴 阳离r(主要为H十、N扩,SO呈一、Si0穿iY}r等)控 制到工艺要求范围内。同时.它也是一个调整颗粒 内部结构(即老化)的过程。 2. 2. 1交换吸附(即Na十与H十的交换)现象是 洗胶过程的木质特性之一。酸泡过程是交换吸附 的主要过程.1}' a'与H十的交换多在这一过程完 成。水洗过程的交换远未停止只不过是交换量越 来越小。酸泡浓度、洗水介质、水洗温度是洗胶过 程的主要工艺参数,影响交换速度、数量等。 2. 2. 2成品硅胶的孔特性好大一部分是山洗胶 过程的老化决定的,而这一过程的老化程度取决 」几洗胶介质、温度。洗胶介质、温度则是控制一次 粒子增长幅度”的主要因素,即通过调整一次粒 子的增幅”达到调整孔结构的目的。 细孔胶的洗涤要求抑制老化,因此,在凝胶造 粒形成后即进行必要而短促的老化后就进行酸 泡,洗胶介质自始至终必须显酸性,因为酸性介质 (即H十)能有效的抑制一次粒子的‘长大”,目_含 酸量的大小即决定了抑制老化程度的大小。同时, 洗胶温度应低些,因为老化是个吸收能量的过程, 温度低、供能少,老化程度自然也小。即细孔胶的 洗涤是通过抑制一次粒子的‘长大”,达到调整孔 结构的目的。特别对」几孔结构要求严整(即孔分布 范围小)目_堆密度又要求在一定范围的细孔胶的 生产,例如对于变压吸附COz专用细孔胶的生 产。洗胶时洗水的含酸量、温度均要做出严格的要 求。山」几细孔胶的洗涤温度低,交换速度慢,所以 洗涤时间要长些,但不能太大,时间太长,特别是 临近终l从时,反而加速老化。 粗孔胶的生产则要求促进老化。遵循碱性介 质、高温热水促进老化的原则,采取在酸泡前加入 高温热水,目_设法使其显碱性,提高水洗过程中的 温度,7{在终l从结束时,加入一定浓度的氨水,以 增加0 H-离子的浓度等措施,促使一次粒子‘长 大”,扩大孔径,达到老化的目的。不难看出,在整 个水洗过程中,老化程度呈上升的趋势。山」几水洗 温度高,不但颗粒内部一次粒子长大,目_颗粒间特 别是胶粉粒子间亦有‘长大”的趋向,这就是水洗 温度高时,胶粉聚集处容易结块,胶球表而粘粉的 又一主要原因。 对于较粗孔径即介于粗细孔胶间如T3型胶 的生产,适中老化即可,有时为缓冲干燥过程中的 液体表而张力作用,水洗终了进行表而处理。山」几 温度过高,时间过长,处理液的存在会使胶球变化 ,因此处理液的应用要受干燥工艺条件的限制。 2. 3干燥过程 干燥是在液体表而张力作用卜,使胶球颗粒 水分蒸发体积收缩,7{使一次粒子再度聚JI‘长 大”,达到深度老化的目的。细孔胶为了抑制老化 程度,经常是通过控制进干燥时胶球中的含酸量达到日的。在生产实践中,粗细孔胶多在一般的高 温条件卜干燥。干燥温度越高,一次粒r聚7{的速 度越大,孔径越大。焙烧扩孔就是这个道理。为制 得孔烃收缩不大,甚至不缩孔的硅胶,常常采用降 低液体表而张力的方法达到日的。 2. 4成品胶质量参数指标与硅胶工艺特性的关 系 硅胶的工艺特性决定了成品胶的质量参数指 标,反过来成品胶的质量参数指标又要求一定的 工艺特性控制。现就成品胶堆密度为例剖析一者 的关系。堆密度是硅胶成品分析中的重要质量参 数之一,能直观Ifn简便的反应硅胶颗粒内部孔结 构的物理参数。硅胶是一种多孔性的固体颗粒,它 的表观体积V u}实际山二部分组成,第一部分是 硅胶颗粒内部实际的孔所,片的体积以V a}表示。 第_部分是堆积时颗粒之间的孔隙,以V },}表示。 第二部分是硅胶肾架所具有的体积,以Vi。表示。 这样V u}-= V },}+ V a}+ V t,=,设n,为硅胶的质量,即 得Pug-= m/V },'}+ V}}+ V i',=(有别」几硅胶密度Porgy= mlVa}+ Vi',=)。 2. 4. 1同等条件卜,一定孔体积的硅胶,对应一 定的堆密度,A,T3,C二种类型胶的孔径、孔容依 次增大,V u}则依次减小,这就是堆密度变成为区 别A,T3,C二种类型胶的依据,即便是同一类型 胶,堆密度的大小会粗略的判断硅胶颗粒内部的 孔结构。 2. 4. 2一般情况卜,酸性成胶时,一次粒r小,聚 集成的凝胶颗粒的孔径小,同等条件卜,形成成品 硅胶的孔径亦小,一定体积硅胶的Va:就小,堆积 密度自然大,碱性成胶,堆密度则小。空气造粒时, 若形成气泡胶,结构疏松,或因其它原因造成凝胶 一次粒r浓度降低等均会使成品胶的V a}增大, 从Ifn使Par减小。 2. 4. 3洗胶条件影响成品胶的堆密度,例生产A 型胶时,山」几洗胶介质一直为酸性,目_温度低,一 次粒r‘长大”的幅度小,即老化程度小,成品胶的 V a}小,Pir自然大,含酸量不同,抑制老化的程度 亦不同,Pir也就不同。这就是洗胶过程中通过分 阶段取样检测堆密度来分析各阶段老化程度的一 个主要依据。对」几粗孔胶的生产山」几采取了酸泡 前用碱性热水老化一段时间,JI目_高温热水洗涤, 有时还用氨水处理终l从胶等措施,因Ifn使得老化 程度大,成品胶的孔体积增大,Pir则小。
硅胶生产的工艺特性及其工业应用 1引言 硅胶是具有二维空间网状结构的一氧化硅干 凝胶,属多孔性固体物质,孔分布范围广,具有很 大的比表而,表而覆盖有大量的硅烷醇基因匕 Si- OH),具有一定的活性。使它成为干燥剂、吸 附剂、催化剂及催化剂载体等,被广泛应用」几工业 生产中。 2工艺特性 硅胶的生产虽然大都经过凝胶、洗涤、干燥这 一共性,但具体到某一类型胶,又有工艺各异,相 互区别的个性。 2. 1凝胶造粒过程 凝胶造粒是硅胶生产的关键性步骤之一,是 指一定浓度的稀泡花碱液和稀硫酸在一定条件卜 充分反应形成溶凝胶溶液,达一定浓度后形成凝 胶颗粒。凝胶颗粒的形状、大小等完全山用户的需 求及工艺生产能力决定,关」几成胶方法,日前多采 用空气造粒,粒度要求微细时,考虑到空气造粒的 难度,则大多采用反应罐凝胶造粒,例微粉硅胶的 生产。凝胶所用的酸碱比例、浓度、温度及凝胶造 粒时间等是凝胶造粒过程的特定工艺参数。 酸性成胶(酸碱比例问题)时,一次凝胶粒 r(相当少初级粒向小,聚集时易形成细孔结构 的硅胶;碱性成胶时,一次凝胶粒r大,聚集时易 形成粗孔性的硅胶。这就是粗孔胶的生产优选碱 性成胶,细孔胶生产则优选酸性成胶的道理。 酸碱浓度要适中。酸碱浓度过高,一次凝 胶粒r较大,聚集时成为较粗孔径的硅胶,Ifn凝胶 溶液中一次粒I浓度也大,即凝胶网状结构的紧 密度增大,聚集时又易成为细孔,一者有相互抵消 的倾向。再者,酸碱浓度过高,凝胶溶液的粘度增 大,给造粒带来一定的难度,另外,酸碱浓度的大小还要受到凝胶粒度、结构及生产设计能力等的 限制。 2. 1. 3酸碱温度过高.酸碱反应的速度过快.Ifu 酸碱反应木身又是放热反应.一次粒r聚集时又 要放热.因此.使得一次粒r任曾大”.造粒速度减 慢.势必超出工艺要求范围.对造粒不利;酸碱温 度过低.一次粒r减小.易形成细孔.但山」几凝胶 溶液温度太低、粘度增加.同样也对造粒不利。因 此酸碱温度也要适中。 2. 1. 4凝胶造粒时间是凝胶造粒过程中又一至 关重要的工艺参数。是指从酸碱混合反应开始到 粒度凝胶形成为止所经历的时间.包括凝胶时间 与造粒时间。凝胶造粒时间短.则可能使凝胶溶液 反应不充分或均匀度不够.使得一次粒r的浓度 分布不匀.形成局部凝胶或局部紧密堆积.这就产 生造粒过程中的汽泡胶.碎胶或胶球强度不够等 现象。同时这也是造成胶球颗粒内部结构紊乱.孔 分布范围大的一个主要原因。因此.在生产实践 中.对」几空气造粒.在工艺允许范围内.颗粒大的 胶.时间要尽量长.颗粒小的胶.时间则可适当短 些。Ifn对」几在反应釜罐中凝胶造粒的特细微球硅 胶.时间则要更长.目_要加搅拌。 2. 2洗胶过程 洗胶是硅胶生产中不可少的工艺过程.是为 了将粒状凝胶所形成的NazSO}洗掉,7{将各阴 阳离r(主要为H十、N扩,SO呈一、Si0穿iY}r等)控 制到工艺要求范围内。同时.它也是一个调整颗粒 内部结构(即老化)的过程。 2. 2. 1交换吸附(即Na十与H十的交换)现象是 洗胶过程的木质特性之一。酸泡过程是交换吸附 的主要过程.1}' a'与H十的交换多在这一过程完 成。水洗过程的交换远未停止只不过是交换量越 来越小。酸泡浓度、洗水介质、水洗温度是洗胶过 程的主要工艺参数,影响交换速度、数量等。 2. 2. 2成品硅胶的孔特性好大一部分是山洗胶 过程的老化决定的,而这一过程的老化程度取决 」几洗胶介质、温度。洗胶介质、温度则是控制一次 粒子增长幅度”的主要因素,即通过调整一次粒 子的增幅”达到调整孔结构的目的。 细孔胶的洗涤要求抑制老化,因此,在凝胶造 粒形成后即进行必要而短促的老化后就进行酸 泡,洗胶介质自始至终必须显酸性,因为酸性介质 (即H十)能有效的抑制一次粒子的‘长大”,目_含 酸量的大小即决定了抑制老化程度的大小。同时, 洗胶温度应低些,因为老化是个吸收能量的过程, 温度低、供能少,老化程度自然也小。即细孔胶的 洗涤是通过抑制一次粒子的‘长大”,达到调整孔 结构的目的。特别对」几孔结构要求严整(即孔分布 范围小)目_堆密度又要求在一定范围的细孔胶的 生产,例如对于变压吸附COz专用细孔胶的生 产。洗胶时洗水的含酸量、温度均要做出严格的要 求。山」几细孔胶的洗涤温度低,交换速度慢,所以 洗涤时间要长些,但不能太大,时间太长,特别是 临近终l从时,反而加速老化。 粗孔胶的生产则要求促进老化。遵循碱性介 质、高温热水促进老化的原则,采取在酸泡前加入 高温热水,目_设法使其显碱性,提高水洗过程中的 温度,7{在终l从结束时,加入一定浓度的氨水,以 增加0 H-离子的浓度等措施,促使一次粒子‘长 大”,扩大孔径,达到老化的目的。不难看出,在整 个水洗过程中,老化程度呈上升的趋势。山」几水洗 温度高,不但颗粒内部一次粒子长大,目_颗粒间特 别是胶粉粒子间亦有‘长大”的趋向,这就是水洗 温度高时,胶粉聚集处容易结块,胶球表而粘粉的 又一主要原因。 对于较粗孔径即介于粗细孔胶间如T3型胶 的生产,适中老化即可,有时为缓冲干燥过程中的 液体表而张力作用,水洗终了进行表而处理。山」几 温度过高,时间过长,处理液的存在会使胶球变化 ,因此处理液的应用要受干燥工艺条件的限制。 2. 3干燥过程 干燥是在液体表而张力作用卜,使胶球颗粒 水分蒸发体积收缩,7{使一次粒子再度聚JI‘长 大”,达到深度老化的目的。细孔胶为了抑制老化 程度,经常是通过控制进干燥时胶球中的含酸量达到日的。在生产实践中,粗细孔胶多在一般的高 温条件卜干燥。干燥温度越高,一次粒r聚7{的速 度越大,孔径越大。焙烧扩孔就是这个道理。为制 得孔烃收缩不大,甚至不缩孔的硅胶,常常采用降 低液体表而张力的方法达到日的。 2. 4成品胶质量参数指标与硅胶工艺特性的关 系 硅胶的工艺特性决定了成品胶的质量参数指 标,反过来成品胶的质量参数指标又要求一定的 工艺特性控制。现就成品胶堆密度为例剖析一者 的关系。堆密度是硅胶成品分析中的重要质量参 数之一,能直观Ifn简便的反应硅胶颗粒内部孔结 构的物理参数。硅胶是一种多孔性的固体颗粒,它 的表观体积V u}实际山二部分组成,第一部分是 硅胶颗粒内部实际的孔所,片的体积以V a}表示。 第_部分是堆积时颗粒之间的孔隙,以V },}表示。 第二部分是硅胶肾架所具有的体积,以Vi。表示。 这样V u}-= V },}+ V a}+ V t,=,设n,为硅胶的质量,即 得Pug-= m/V },'}+ V}}+ V i',=(有别」几硅胶密度Porgy= mlVa}+ Vi',=)。 2. 4. 1同等条件卜,一定孔体积的硅胶,对应一 定的堆密度,A,T3,C二种类型胶的孔径、孔容依 次增大,V u}则依次减小,这就是堆密度变成为区 别A,T3,C二种类型胶的依据,即便是同一类型 胶,堆密度的大小会粗略的判断硅胶颗粒内部的 孔结构。 2. 4. 2一般情况卜,酸性成胶时,一次粒r小,聚 集成的凝胶颗粒的孔径小,同等条件卜,形成成品 硅胶的孔径亦小,一定体积硅胶的Va:就小,堆积 密度自然大,碱性成胶,堆密度则小。空气造粒时, 若形成气泡胶,结构疏松,或因其它原因造成凝胶 一次粒r浓度降低等均会使成品胶的V a}增大, 从Ifn使Par减小。 2. 4. 3洗胶条件影响成品胶的堆密度,例生产A 型胶时,山」几洗胶介质一直为酸性,目_温度低,一 次粒r‘长大”的幅度小,即老化程度小,成品胶的 V a}小,Pir自然大,含酸量不同,抑制老化的程度 亦不同,Pir也就不同。这就是洗胶过程中通过分 阶段取样检测堆密度来分析各阶段老化程度的一 个主要依据。对」几粗孔胶的生产山」几采取了酸泡 前用碱性热水老化一段时间,JI目_高温热水洗涤, 有时还用氨水处理终l从胶等措施,因Ifn使得老化 程度大,成品胶的孔体积增大,Pir则小。 哥们我也太辛苦拉,给多加点分0 这只是一半 这篇步行的我还有别的,可以加我的
有国外学者研究发现,硅胶也能吸附蛋白质,不过主要是不含芳香族氨基酸而是富含精氨酸的蛋白质。既然天然蛋白质通常都还有一定比例的芳香族氨基酸,所以不易被硅胶吸附。DNA可与硅胶富含的羟基形成氢键,因此易被硅胶吸附。参考文献:Christelle Mathé, Stéphanie Devineau, Jean-Christophe Aude, et al. Structural determinants for protein adsorption/non-adsorption to silica surface. PLoS One. 2013 Nov 25;8(11):e81346. doi: . eCollection 2013.
Nature:陆地生态系统碳动态和气候反馈
有充分的实证证据表明,碳循环的地面组成部分正在应对全球范围内的气候变化和趋势。这可以通过全球平均大气CO2增长率的强烈年际变化来证明,这与 厄尔尼诺-南方涛动气候变化密切相关 (图1)。许多证据表明,CO2增长率的变化主要是由陆地效应引起的,特别是热浪和干旱对亚马逊西部和亚洲东南部植被的影响,导致生态系统碳损失,降低了植被生产力和/或增加呼吸。然而,这些年际变化反映了碳循环对气候扰动的短期反应,并且不能期望持续更长的时间尺度。相反,在最后一次冰期循环期间,大气中CO2、甲烷和N2O浓度与全球气候之间的密切关系表明,生态系统-气候相互作用也在数千年及更长的时间尺度上运作。
Figure 1:全球大气CO2浓度的估计增长率。 全球CO2浓度根据南极和莫纳罗亚(夏威夷)长期监测站的测量结果估算。黑点代表以六个月为间隔计算的居年中平均值。彩色背景显示多重厄尔尼诺-南方涛动指数的变化。蓝色阴影表示该指数的负相位,棕色阴影表示正相位。.,百万分之一。
不幸的是,与当前全球气候变化相关的长时间尺度(几十年到几个世纪)的全球碳循环-气候相互作用的经验证据非常缺乏。因此,必须通过全面、耦合的碳循环气候模型在这些时间尺度进行评估。工业时代(过去约150年)和未来100年的不同模型模拟的最近比较,基于标准的CO2排放模型,已经显示出各种各样的反应。几乎所有模型都表明,在十九世纪和二十世纪工业扩张的早期阶段,陆地CO2封存,但随着世界变暖,封存大幅减少(图2)。在某些模型中, 陆地碳循环甚至成为大气CO2的重要来源,从而强烈地放大了全球气候变化 。来自不同模型模拟的相当广泛的结果一方面证明了模拟气候变化的真实差异,另一方面表明对这些模型中所表示的功能生态系统中的过程的非常不了解。
Figure 2:碳循环-气候系统不同模型评估的全球陆地碳吸收的比较。 全球陆地碳吸收由11个耦合的碳循环气候模型模拟,该模型由SRES-A2排放剖面的碳排放驱动。数据来自耦合碳循环气候模型比对项目,采集率平滑为30年移动平均值。
生态系统碳动态的概念发生改变
在碳循环-气候模型中,气候对陆地生态系统碳平衡的影响,主要通过相对简单的响应函数、以及光合作用吸收CO2、呼吸作用释放CO2的动力学概念来描述。研究人员在过去二十年采用的基本范例是光合作用吸收受到CO2浓度上升、以及温度升高(主要北方和温带地区)的刺激,尽管预计两种效应在这些变量的高水平下都会饱和。另一方面,模型均假设 呼吸作用的生物过程以指数方式响应温度,但不受CO2浓度的影响 。由此得出结论,生物圈能够对CO2和温度升高提供负反馈,直到温度上升到对呼吸的刺激作用超过CO2施肥效应。这一基本原则反映了前面描述的比较研究中几乎所有模型的行为。
这种推理背后的基本假设是, 简单认为地上同化过程(植物光合作用)和地下异养呼吸过程可以在概念上分离并分别进行分析 。尽管这种概念模型为实验和模型设计提供了有价值的指导,但近年来已经积累了证据表明 地上和地下过程密切相关,构成了一个具有不可忽略的相互作用的复杂而动态的系统 。因此,情况比先前想象的要复杂得多,并且可能通过生态系统内的物理,化学和生物过程之间的相互作用 - 特别是在土壤中 - 产生意想不到的动态。这意味着, 除了CO2浓度升高和温度升高外,其他气候和环境因素可能会改变甚至主导全球生态系统的碳平衡 。此外,不仅温度等参数的平均值的长期变化率,而且其变异性的变化,包括更大的极值,可能对生态系统碳动态至关重要。
多重全球变化下的生态系统
【 水 】世界上一半以上的生态系统的初级生产力受到水资源供应的严重限制。因此,降水的变化将直接影响生态系统的碳动态。在一个较温暖的世界,预计蒸发量会增加,导致更加负面的水平衡,而在富含CO2的世界中通过气孔减少的水分流失将有助于缓解这种影响。较为负的总体水平衡的净效应(产量-呼吸)可能取决于土壤的持水能力、土壤中碳和根的垂直分布以及植被的一般干旱敏感性。例如,如果大部分土壤碳含量集中在土壤顶部,而根深入具有较高的持水能力的土壤,,甚至可以挖掘地下水,随着表土首先变干,相比生产力,土壤碳分解最初会受到干旱的影响。水限制甚至可能抑制温度对呼吸的有效生态系统水平响应。相反,如果土壤持水能力较低,如浅层土壤,植被生产力将受到负水平衡的强烈影响。因此,有研究预测干燥可以通过抑制呼吸作用和降低生产力来降低碳的净损和增加增加固存量。
【 氮 】第二个重要的相互作用因素是可利用的氮,它通常决定了CO2施肥效应的大小,并且如果氮是限制性的,可以完全抑制它[8,99(见第293页)。还有迹象表明水和氮之间存在强烈的相互作用,氮在干燥条件下变得更加有限。
【 光、空气污染、臭氧 】其他需要考虑的因素是光的数量和质量(直接或漫射)的变化,这会改变植被生产力,以及空气污染物和臭氧的增加,以及它们对初级生产的不利影响。
气候变异和极端气候
同样,水分缺乏、风速、空气温度和湿度的时间变化改变了森林火灾的频率和严重程度,以及随之而来的生物圈中碳的快速损失。一场大风暴造成的风灾使树木死亡,从而使以前 "锁定的碳 "受到腐烂和释放二氧化碳的影响。温度的季节性变化也会产生影响;例如,2006/2007年北半球大部分地区的冬季和春季变暖,导致植物提前落叶和开花,从而更容易受到晚霜的影响。我们对这种当地天气状况的预测能力显然受到以下两方面的限制:可以纳入大气-海洋总循环模型的详细程度,以及我们对生态系统的季节性动态及其在各种时间尺度上的适应能力的理解。
生态系统的非线性反馈循环
Figure 3:气候变化引起的地下生态系统碳平衡中的反馈循环。 这里给出的3个例子是生态系统中的关键过程,以简化形式显示。 a ,微生物代谢、永久冻土融化、碳释放之间的潜在相互作用。 b ,'微生物激发效应'。碳和能源的增加可以刺激微生物对“老”土壤碳的分解,特别是在草地土壤中。在气候变化的背景下,这种影响可能对CO2增加和全球变暖产生正反馈效应。 c ,碳和氮循环之间的交互作用可能会改变预期的生态系统碳响应气候变化的主流趋势。粉红色箭头表示陆地生态系统对气候的影响,橙色箭头表示气候变化对陆地生态系统的影响,黑色箭头表示生态系统内的交互作用。背景图像是土壤有机碳的世界地图。
【 微生物代谢、永久冻土融化、碳释放之间的潜在相互作用 】图3a显示了微生物代谢与永久冻土融化和碳释放的物理学之间的潜在相互作用。目前对永久冻土地区深度冷冻储存的碳的估计相当于至少400 petagrams(4 1011吨)的碳(参考文献13),它们相对未被处理和不稳定,因为冷冻状态保护其免受微生物分解。 苔藓和草皮层是对大气非常好的绝缘体 。随着夏季气温上升,这些土壤开始融化,碳被代谢掉,微生物代谢可释放出足够的热量(“粪堆效应”dung-heap effect),以促进进一步融化,提供一个非线性的正反馈机制,以加强永久冻土的融化,并通过甲烷和二氧化碳排放,增加温室效应。模型模拟表明,模型模拟表明,几年之后可能会引起不受控制的动态,但这种反馈机制的强度和这些模拟的真实性仍不清楚。
【 微生物激发效应 】另一个可能调动大量碳的机制是所谓的 "微生物激发效应"。在一些实验系统中显示,向土壤中添加具有现成能量的底物(如葡萄糖和纤维素)会刺激 "老 "土壤碳的分解。Sébastien Fontaine等人15,16表明,仅仅通过向土壤中添加纤维素,他们就可以从草原的底层调动被认为是稳定的碳,而其他因素如温度、加氮或增加氧气浓度则没有影响。与此相反的是,由于土壤中的碳储量很大,添加这种材料甚至会引起土壤样本中碳的净损失。在气候变化的背景下,这种影响可能会引起正反馈效应,特别是在草原土壤中(图3b)。二氧化碳浓度的增加可导致通过根和根系渗出物对易耗碳的地下分配增强,这可提高微生物的活性,促进被认为是稳定的碳物质的分解,但实际上由于微生物不活跃而没有被攻击。此外,如果由于降水的改变或作为一般植被动态的一部分,根系模式发生了变化,碳输入到以前没有生根的深层,可能会通过这一机制引起旧碳的释放。
【 碳、氮循环之间的交互作用 】最后,碳和氮循环的相互作用提供了过多的机制,可以改变预期的生态系统碳响应气候变化的主流趋势。其中一些显示在图3c中。在受氮限制的生态系统中,在二氧化碳水平增加几年后,经常发现氮营养限制了二氧化碳对树冠的同化作用。也有迹象表明,氮的可用性影响着土壤有机物的分解。真菌利用木质素—一种在植物细胞壁中发现的丰富、稳定的有机物质—在氮供应有限的条件下作为氮源。木质素分解的增强可能会导致对大气中二氧化碳含量上升的正反馈反应。然而,在数年的时间尺度上,物种组成的适应或变化,或者例如通过增加对土壤的碳水化合物输入而增加固氮作用,可能会缓解甚至过度补偿氮限制效应。此外,通过更密集和更深的植物根系与微生物 "引发"(见上文)的相互作用也不是不可能的,因为氮供应的减少往往会导致更多的碳分配给根系。
因此,过去认为二氧化碳和温度逐渐升高,对同化作用和呼吸作用的影响是分离的、非交互式的,这种观点需要更新,要更多考虑到多种气候变化因子间的交互作用,需要对环境因素的变化,包括其变异性和极端情况进行更复杂的描述,而且,也许最重要的是,需要对不同组织层次的生态系统过程之间复杂的相互作用进行更有力的综合考虑。这些新出现的特征大多表明,二氧化碳的吸收潜力比目前的模型所估计的要低,并突出了几千年来积累的土壤碳的脆弱性。生态系统碳对气候变化的正反馈可能比目前碳循环-气候耦合模型所预测的更早、更强烈地发生。
未来的方向
显然,未来几十年内对陆地碳循环气候反馈的能力的评估仍存在很大的不确定性。目前的实验给出了模糊的结果,也没有对上述机制的重要性提供明确的结论。总体而言,至少在全球范围内,陆地生态系统可能会在增温的世界中提供正的、放大的反馈,尽管幅度不确定。通过将 长期多因子实验 与 非破坏性生态系统级观测 (如整个生态系统的通量测量)相结合,并将结果与多约束框架下的生态系统模型相结合,我们的认识可能会有一个重要的改进。只要对所涉及的过程没有基本的了解,碳循环-气候耦合模型的模拟就只能说明其重要性,而不能显示出碳循环-气候系统众多可能的反馈的确凿情况。此外,这里描述的自然过程与土地使用、覆盖和管理方面的人为变化之间的强烈互动是可以预期的。
论文作者:Martin Heimann & MarkusReichstein【Max Planck Institute for Biogeochemistry】,2008-1-16发表于 Nature 。
- END -
毕鸣,王绍武等.1996.近百年气候变化模拟以及未来50年气候变化预测,85-9132项目论文编委会,气候变化规律及其数值模拟研究论文集.北京:气象出版社
蔡绪贻,佘云平.1993.洛阳市浅层地下水硬度升高机理初探.中国地质灾害与防治学报,第4卷第4期
曹鸿兴,郑耀文,顾今.1988.灰色系统理论浅述.北京:气象出版社,120页
曹鸿兴.1994.气候动力模式与模拟.北京:气象出版社
曹银真.1991.大气CO2浓度的变化及其气候环境效应.地理科学,第1期
陈望和,倪明云等.1987.河北第四纪地质.北京:地质出版社,108页
程麟生.1994.中尺度大气数值模式和模拟.北京:气象出版社
地质矿产部水文地质工程地质研究所.1982.地下水资源评价理论与方法的研究.中国地质学会首届地下水资源评价学术会议论文选编.北京:地质出版社
丁开宁,郝爱兵,王孟科.1996.石家庄市地下水污染特征及机理.水文地质工程地质,第6期
丁一汇.第二次气候变化科学评估报告的主要科学成果和问题.地球科学进展,第2期
段永候等.1993.中国地质灾害.北京:中国建筑工业出版社
鄂竞平.1997.为彻底改变海河流域水环境而奋斗.海河水利,第2期
冯金量,李庆辰.1998.论华北河口衰亡.地理科学,第18卷第4期
符淙斌,严中伟.1996.全球变化与我国未来生存环境.国家攀登计划“我国未来(20~50年)生存环境变化趋势的预测研究”项目论文集.北京:气象出版社
高玉荣,许木启,朱江,赵忠宪.1995.府河浮游植物群落结构特征与水体质量研究.见:白洋淀区域水污染控制研究(第一集),水陆交错带水环境特征与调控机理.章申,唐以剑等著.北京:科学出版社
高玉荣,许木启.1995.白洋淀浮游植物群落结构特征与水体营养水平研究.见:白洋淀区域水污染控制研究(第一集),水陆交错带水环境特征与调控机理.章申,唐以剑等著.北京:科学出版社
巩无禄.1995.河北省水文特性.水文,第4期
郭秉荣等.1996.气候系统的非线性特征及预测理论.北京:气象出版社
胡喜荣.1995.水库与周围地区生态环境的关系.海河水利,第6期
黄洪峰.1997.土壤-植物-大气相互作用原理及模拟研究.北京:气象出版社
黄玉瑶.1995.白洋淀水域生态系统的退化与修复.见:白洋淀区域水污染控制研究(第一集),水陆交错带水环境特征与调控机理.章申,唐以剑等著.北京:科学出版社
金相烂,屠清英.1990.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,239~302页
李浩.1993.全球变化与人类生态.海洋地质与第四纪地质,第2期
李鸿吉,张菊明.1981.电子计算机制图方法及应用.北京:地质出版社
刘俊等.1994.城市化对天津市雨洪情势变化的影响.海河水利,第5期
陆铮,王金荣等.1995.地下水超采引起的水环境变化.海河水利,第2期
陆中央.1996.河北省水资源总量计算;张卫东.水资源与可持续发展.北京:地质出版社
马强等编译. C++环境下的Windows编程技术与实例.北京:海洋出版社
毛文永,文剑平.1991.全球环境问题与对策.北京:科学出版社
任荣.1991.沧州市地下水开采与地面沉降关系的初探.地质灾害与防治,第21卷第1期
施雅风主编.1995.气候变化对西北华北水资源的影响.济南:山东科学技术出版社
石广玉等.1996.近百年全球平均气温变化的物理模式研究,85-9132 项目论文编委会,气候变化规律及其数值模拟研究论文集.北京:气象出版社
史风波.1994.海滦河流域河川径流的开发利用.水资源研究,第15卷第1期
宋玉宽等.1996.二氧化碳稳态倍增下的气候变化数值模拟,85-9132 项目论文编委会,气候变化规律及其数值模拟研究论文集.北京:气象出版社
孙建中,盛学斌,杨明华,冯建斌.1995.海河流域水资源地理环境.见:刘昌明主编.中国水问题.北京:气象出版社
孙讷正.1981.地下水流的数学模型和数值方法.北京:地质出版社
汤奇成.1990.黄河水资源利用对河口环境影响初探,水资源开发与环境.北京:科学出版社
天津市海岸带和海深资源综合调查领导小组办公室,天津市海岸带和海深资源综合调查组.1987.天津市海岸带和海深资源综合调查报告.北京:海洋出版社,39~43页
王东胜等.1998.氮迁移转化对地下水硬度升高的影响.现代地质,第12卷第3期
王绍武等.1996.近百年全球及中国气候变暖,85-9132 项目论文编委会,气候变化规律及其数值模拟研究论文集.北京:气象出版社
王秀兰,陆中央.1998.河北省水环境特征.河北水利科技,第19卷第3期
王裕玮.1997.海河流域水环境的主要问题及对策.海河水利,第2期
魏忠义等.1985.华北平原地下水开采水文效应.地理研究,第2期
许木启,朱江,黄玉瑶,赵忠宪.1995.白洋淀水系浮游动物的群落结构与水质.见:白洋淀区域水污染控制研究(第一集),水陆交错带水环境特征与调控机理.章申,唐以剑等著.北京:科学出版社
薛禹群,谢春红.1980.水文地质学的数值法.北京:煤炭工业出版社
姚檀栋.1987.二氧化碳对气候的影响及气候趋势问题.地理科学,第2期
姚玉致.1994.河北平原过量开采地下水对环境的影响.河北地质情报,第4期
叶岱夫.1998.降水与森林相互作用机理的探讨.大自然探索,第1期
颐庭敏.1991.华北平原气候.北京:气象出版社
应用气象学报.997.第8卷增刊.全国气候模式学术研讨会专刊.北京:气象出版社
游性恬等.1992.数值天气预报基础.北京:气象出版社
于凤兰,钱金平,李恩庆.1994.海滦河水资源及其开发利用.北京:科学出版社
余志豪等.1996.地球物理流体动力学.北京:气象出版社
张金屯.1998.全球气候变化对自然土壤碳、氮循环的影响.地理科学,第5期
张卫东.1996.水资源与可持续发展研究.北京:地质出版社
张云峰等.1994.城市环境保护——太原市环境污染与防治植物.北京:中国科学技术出版社
中国科学院地质研究所编著.1977.数学地质引论.北京:地质出版社,159~195页
中国科学院动物研究所白洋淀工作站.1958.白洋淀生物资源及其综合利用初步调查报告.北京:科学出版社
中国科学院三峡工程生态与环境科研领导小组.1987.长江三峡工程对生态环境影响及其对策研究论文集.北京:科学出版社,106页
周雪猗.1995.计算水力学.北京:清华大学出版社
周玉.毛河流域降水、地表水、土壤水、地下水相互转化研究.水资源研究,第14卷第3期
85-913项目02课题论文编委会编.1996.气候变化规律及其数值模拟研究论文(三集),国家科委85-913 项目,02课题成果.北京:气象出版社
A.И.谢列日尼科夫等.1994.铵是地表水和地下水污染的标志.见:地质科技动态,1994年7月,刘吉成摘译
Fei views on water and sustainability research in China,“Proceedings of the International Symposium on Groundwater in Environmental Problems”,Chiba University,Japan,~106
James 著. Windows 程序员参考手册.北京:清华大学出版社
Mike McKelvy & Ronald Martinsen著. Basic 5开发使用手册.杨继平等译.康博创作室审校.北京:机械工业出版社,西蒙与舒斯特国际出版公司
Paul D Raskin et al.. and sustainability,global patterns and long-range problems,“National Resources Forum”,, ~15,Elsevier Sciences in Great Britain《数学手册》编写组.1979.数学手册.北京:高等教育出版社
高硼硅玻璃杯对身体无害。主要是通过先进的生产工艺制作而成,属于是一种耐高温以及低膨胀率的材料,平时在生活中可以用来盛热水,不会对身体健康造成影响。高硼硅玻璃杯的硬度比较高,高化学以及高透光率属于是比较稳定的,长时间接触热水或者是经常使用之后。
不会对健康造成影响,是一种利用玻璃的高温状态下所产生的导电特性。在生活中水的容器分为多种,比如塑料材质或者是不锈钢材质,还具有玻璃、瓷器等,比较安全的属于是高硼硅玻璃,可以减少对自身产生的创伤,瓷器也不会对身体造成损伤。
高硼硅玻璃特点
1、耐高温:高硼硅的应变温度差大约在520℃,耐高温的特点可以让其直接加热,所以常用高硼硅来制作微波炉里的转盘,并且耐高温和应变温度差的数值大的优点,使它在遇热后一般不会出现炸裂,增加了高硼硅玻璃杯的安全性。
2、高化学稳定性:高硼硅玻璃杯的主要成分是三氧化硼和二氧化硅,因此十分耐酸、耐碱,故其常用来被制作成化学试管,而且作为日常生活中饮水的杯子也较为安全,不会在饮水过程中析出有毒物质。
以上内容参考:百度百科-高硼硅玻璃
硼硅耐热玻璃属于“熟玻璃”的一种,造价相当昂贵,完全达到国际环保检测标准。由于其本身的耐热和抗瞬间温差的性能要求,采用高硼硅材料取代了“生玻璃”中大量铅、锌等有害重金属离子成分,所以其脆性和重量远远小于生活中常见的普通“生玻璃”,而且保证了在瞬间温差骤变的情况下不会发生炸裂现象,其在重量上要相比含有大量重金属离子的“生玻璃”要轻的多,在外观上看起来跟普通玻璃也有差别,视觉上脱离了“生玻璃”硬、脆的感觉。1、原料组成:高硼硅玻璃含三氧化二硼和二氧化硅的量普通玻璃较高,含硼量甚至能达到14%,含硅量达到80%。普通平板玻璃的含硅量大约在70%多,普通玻璃一般不加硼,但有时候也最多加1%2、玻璃特征:高鹏玻璃的膨胀系数低、软化点高、耐急冷急热性能好。其膨胀系数约为32~33*10(-7),普通玻璃约达到80-100*10(-7);耐急冷急热约能达到200~300摄氏度。3、用途:主要用于生产玻璃仪器,玻璃锅盖,化工设备等