毕业论文自己剔除无效问卷可以删除无效问卷:预先设计用于测试问卷的题目,具体是设计两个以上的含义相近的题目;最终通过问题过滤问卷问道网可以进行问卷在线编制与发放,对于无效问卷也有多种过滤办法,可根据填写问卷时间进行过滤,也可以就问题本身相似程度进行问卷过滤。
不需要,无效问卷不需要附在论文里面。
你好,具体分析如下,希望可以帮到您:可以算是有效问卷。市场调研是活的,不管被访回答几道问题,只要他提供的信息是真实的,是对我们有用的,就可以算是有效信息。在数据分析过程中每道题得母体是可以不一样的
我觉得无效问卷应当附在论文里面,这可以帮助读者了解整个调查流程,以及问卷的结构和内容。这样可以让读者更好地评估研究结果的可靠性和有效性,从而深入了解调查结果。此外,将无效问卷附在论文中也有助于提高可信度,并使论文更具有可靠性和可读性。
本科的毕业论文问卷调查一般是:300到500份,比较合适。
在正式发放问卷收集数据之前,通常都会先进行小范围的预调查。预调查对调查人数和调查对象的要求相对不高,主要目的是为了获得问卷填写者针对问卷的反馈信息,以便及时对问卷的题目描述、顺序设置、措词等进行优化。
同时,也可以对预调查得到的数据进行探索性因子分析和可靠性检验,确保最终调研问卷的信度和效度。
因此,这部分主要汇报预调查的过程、发现的问题及修订举措、信效度分析结果及是否对量表进行了相应的调整。
调查对象、样本特征如下:
这部分主要介绍问卷调查的具体对象是谁,由哪些人组成,为什么选择他们作为调查对象,他们是否有代表性,还可以介绍抽样对象占目标人群或抽样范围多少。
同时还要对有效样本的数据进行描述,通常包括性别、年龄、学历、职业、婚育状况,等受访者人口统计信息及行为特征。这部分通常会附一个简单的三线表进行描述,说明各分类群体的人数和占比。
最后,总结出正确可靠的数据。
一般问卷都不会是100%有效 因为中间有前后矛盾啊 还有什么没有完整的各种原因,会导致问卷不可能是100%的有效。我的毕业论文也有问卷调查,老师总说这部分不够满意,,,,,,,都不知道怎么才算好的~~
问卷有效率要达到多少问题一:调查问卷的有效率为多少才有效?90%问题二:问卷调查的回收率应该是多少,才算有效的调查?回收率很重要吗?我发出10万份问卷,回收1万,回收率10%你发出50份问卷,回收50份,回收率100%回收的问卷够抽样母体需求就好了。主要还是看问卷的有效率。如果问卷的可辨有效率不足90%,那就说明我们的调揣方法有问题,调研数据就失去价值了。问题三:调查问卷一般多少问题比较合适?问卷的题目数量是要控制的,过长的问卷会使被试厌烦,降低信度和效度。此外,在做问卷时,送给被试一份小礼物,调查者的合适着装、言语表达、态度和相似的年龄,都可以获得被试的好感,得到较好的配合。从我们曾经做过的几次问卷调查看,如果是公司在内部进行的调查,问题数量可以多一点,但也不能无限制,同时还要根据问卷内容,一般设置50题以内。如果是对社会进行问卷调查,那更要减少问题数量,经验告诉我们30道题目就会让被调查对象厌烦。如果你做电话问卷调查,10道题目以内比较好,自己感觉3-5道题目最好。参考资料:问题四:问卷回收率多少才好?回收率=(实际完成询问的个案数/计划完成的样本总个案数)×100%可接受的回收率,以及很好的回收率的标准是什么呢?对此学界目前还没有统一的认识。纳克米亚斯等人指出:“要确定一种可接受的回答率标准并不是一件容易的事情,因为科学家在最低回答率的标准上意见不一致”(Nachmias&Nachmias,2000:213)。美国社会学者巴比提出过一个简单的等级规则:“要进行分析和报告撰写,问卷回收率至少要有50%才是足够的,要至少达到60%的回收率才算是好的;而达到70%就非常好。”但他同时也明确指出:“要记住,以上数据都只是概略指标,并没有统计上的基础”(巴比,2000:331)。查看更多答案>>问题五:调查问卷一般要有多少份才行5分100份。问题六:调查问卷的回收率和有效率有效率:、回收率:。你这回收率及有效率有点高,一般回收率在20%左右。
这个是要看你具体研究课题而定的。如果研究不同个体的差异一般严谨点的话100份左右差不多,如果想偷点懒的话,五六十份也可以。这里面有效样本要在90%的样子,如果你预测有效样本率低的话,应该适当加大问卷发放量。
在论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。 较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。
信度是一份问卷的可信性的程度,就是指多次测量得到结果是否是大体一致的,而不是每次结果出入都很大!效度是指这份问卷是否真实的测量了它要测量的东西。
信度(reliability)即可靠性,它指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。从另一方面来说,信度就是指测量数据的可靠程度。
信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。
系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不一致性,从而降低信度。
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。
效度是测量的有效性程度,即测量工具确能测出其所要测量特质的程度,或者简单地说是指一个测验的准确性、有用性。效度是科学的测量工具所必须具备的最重要的条件。
在社会测量中,对作为测量工具的问卷或量表的效度要求较高。鉴别效度须明确测量的目的与范围,考虑所要测量的内容并分析其性质与特征,检查测量的内容是否与测量的目的相符,进而判断测量结果是否反映了所要测量的特质的程度。
问卷分类:
按调查方式分,问卷可分为:自填问卷和访问问卷。
自填问卷是由被访者自己填答的问卷。访问问卷是访问员通过来访被采访音.由访问员填答的问卷。自填式问卷由于发送的方式不同而又分为发送问卷和邮寄问卷两类。发送问卷是由调查员直接将问卷送到被访问音手中,并由调查员直接回收的调查形式。
而邮寄问卷是由调查单位直接邮寄结被访者,被访者自己填答后,再邮寄回调查单位的调查形式。
这几种调查形式的特点是:访问问卷的回收率最高,填答的结果也最可靠,但是成本高,费时长,这种间卷的回收率一般要求在90%以上;寄间卷,回收串低,调查过程不能进行控制,因此可信性与有效性都较低。
而且由于回收率低.会导致样本出现偏差,影响样本对总体的报断。一般来讲,邮寄问卷的回收率在50%左右就可以了;发送式自填问卷的优缺点介于上述两者之间,回收率要求在67%以上。
今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400
答:两个。硕士论文送审两个人,一般是两个教授审核。硕士毕业论文盲审,一般通常会邀请同行业内的两位专家来审核
请8位专家对问卷的内容和结构效度进行检验。有5位专家认为合理,3位专家认为基本合理,问卷具有较高的结构效度。
是啊,q我,我帮你
信度一般用阿尔法系数做检验效度一般用T检验,显著性差异指数P检验。一般应该先用小样本做信度和效度,但是做效度的样本也不应该低于60人。然后再做推广。还有你这种量表是否应该在做效度时用校标关联系数呢,但这又需要你有新的校标。因为不太了解具体情况,所以先这么说,在做的时候你要遇到什么问题,你在问我哈。还有建议关于怎么做信度和效度,你还是看一下相关书籍。我觉得这还是很有必要的。 一、信度系数与信度指数 大部分情况下,信度是以信度系数为指标,它是一种相关系数。常常是同一被试样本所得到的两组资料的相关,理论上说就是真分数方差与实得分数方差的比值,公式为: r(xx)=r^2(xt)=S^2(t)/S^2(x) 公式中r^2(xt)是真分数标准差与实得分数标准差的比值,称作信度系数,公式为: r(xt)=S(t)/S(x) 可见信度指数的平方就是信度系数。 二、测量标准误 信度系数仅表示一组测量的实得分数与真分数的符合程度,但并没有直接指出个人测验分数的变异量。我们可以用一组被试两次测量结果来代替对同一个人的反复施测,于是有了信度的另一个指标,公式为: SE=S(x)√1-r(xx) 公式中SE为测量的标准误,S(x)是所得分数的标准差,r(xx)为测验的信度系数,从公式我们可以看出测量的标准误与信度之间有互为消长的关系:信度越高,标准误越小,信度越低,标准误越大。p value 和t value 我在百度百科上没看到,你自己再找找吧
做满意度调查问卷的信度、效度分析可以用SPSS。问卷调查建议选择问卷星,问卷星通过制定详细周密的在线问卷,要求被调查者据此进行回答以收集资料,支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等。提高问卷调查的信度在设计问卷的时候,需要对问题本身做到逻辑严密、易懂,确保不同的人看到它不会产生不一样的理解,导致结果偏差;提高效度必须做到核心的问题不漏,可有可无的问题不留,无关的问题不设,每一道题目,都是会对主要的研究目的分析有帮助的。想要了解更多关于调查问卷的问题,推荐咨询问卷星 问卷星调查系统支持多种题型,可以设置跳转、关联和引用逻辑。支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等;同时拥有49种题型,应有尽有;同时单选、多选、矩阵、排序、量表、比重、表格、文件上传等多种题型,让你的调查问卷一目了然!
今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400
(一)信度分析 本研究得出整体问卷与各构面之Cronbach's α值分别为及服务补救整体品质构面为,而其各构念分别为沟通()授权()解释()补偿()回馈()有形性();满意反应构面为;行为意向构面为,由此可知各构面的信度都在以上,符合Nunally(1978)及Wortzel(1979)有关具高信度之判断准则(Cronbach's α值大於),此显示本研究量表中的问项均具有高程度的内部一致性,因此在信度上仍具可信. (二)效度分析 1.内容效度 问卷之发展乃由文献探讨整理出相关问项后,再透过问卷调查,将问卷以传真,邮寄或e-mail方式与专家,学者讨论问卷中各问项之适当性,再对他们所提出的意见,修正问卷之内容,即形成本研究之最后的正式问卷.因此,本研究认为经过此一严谨的程序所发展之问卷应以具有相当程度的内容效度.
效度分析用于研究定量数据(尤其是态度量表题)的设计合理性。第一:首先分析KMO值; 如果此值高于,则说明效度高;如果此值介于之间,则说明效度较好;如果此值介于,则说明效度可接受,如果此值小于,说明效度不佳(如果仅两个题;则KMO无论如何均为);第二:接着分析题项与因子的对应关系;如果对应关系与研究心理预期基本一致,则说明效度良好;第三:如果效度不佳;或者因子与题项对应关系与预期严重不符,也或者某分析项对应的共同度值低于(有时以为标准);则可考虑对题项进行删除;第四:删除题项共有常见标准;一是共同度值低于(有时以为标准);二是分析项与因子对应关系出现严重偏差;第五:重复上述1~4共4个步骤;直止KMO达标;以及题项与因子对应关系与预期基本吻合,最终说明效度良好;第六:对分析进行总结。具体可以查看在线spss分析spssau里的方法说明,还有输出的智能文字分析,帮助理解。