首页

> 学术论文知识库

首页 学术论文知识库 问题

2021双十一数据分析论文文献

发布时间:

2021双十一数据分析论文文献

现在还无法确切得知今年双11具体成交额。不过按照现在电商的表现来看,今年的双11成交额将不如往年。

突破了1亿元,看出了这几年的消费情况,了解了年轻人的消费观念,还有经济发展的趋势,消费者是充满了热情的,也看到了这几年电商的发展情况。

双十一的来临,众多商家都举行了不少的促销活动,举行活动之后总会有不一样的收获,写份总结回顾一下吧!以下是由我为大家整理的“2021双十一活动总结范文500字”,仅供参考,欢迎大家阅读。

在前期准备中,我们提前对一楼面员工进行了培训和动员,要求各品牌及时上架适销单品、全员下载xx,同时详细培训xx下单流程,使一线员工都能独立操作线上交易,并与相关部门沟通沟通,统一了开单格式、积分要求和发票开具流程,最大程度做好事前准备。

在活动组织上,我们吸取去年活动的经验,明确分工,优化流程,将下单区和兑卡区划分开,下单区由营业员及顾客自主操作网上下单,另有工作人员从旁协助,指导不熟悉操作的顾客完成下单流程,而兑卡区则独立出来只做兑卡工作,通过区域划分极大提高了兑卡的工作效率,活动当天未出现顾客长时间排队等候的情况。

在氛围营造上,我们将下单区和兑卡区的电脑做了统一样式的陈列,充分营造了良好的活动氛围。

但是通过活动也反映出来一些存在的不足:

一是员工专业度不够,虽然在活动之前我们组织促销班的员工进行了事前培训,但是在实际操作过程中还是存在员工网上操作不熟练、兑卡不规范等问题。

二是营业员开单不规范,未按要求开具销售单或商品编码、价格填写错误等问题均有发生,影响单据核对、输机效率。

三是xx手机客户端不完善,选取商品时不能直观判断所属店铺,造成顾客下单错误,购买了其他店铺的化妆品,后期又需要办理退款手续。

四是商品自提问题仍未得到解决,本次活动赠送的线上xx元电子券使用要求是xx减xx,因此很多顾客都是在柜台下单直接取货,且购买的商品价格在xx出头,但我们店内快递是xx包邮,金额不够要收取邮费,对此很多顾客有意见,为此我部临时将包邮政策调整为xx包邮,以满足顾客需求。

针对上述问题,我部会在后期活动操作中不断完善工作流程,并积极联系xx公司解决后台设置问题,以期为顾客提供更好的购物体验。

2021年x月x日--xx日开展了大型光棍节促销活动,由于占了一定的天时和人和,再加上有吸引力的季节性商品和促销活动,总体效果较好,给我们以后的工作开展留下了一个很好的教材。

本次企划案的前期准备十分充足,覆盖面很广,配合各商场店长及公司各部门的认真论证,形成了一套较完整的可操作性强的整体营销手册。

在促销方面,我们应用了针对家庭及主妇为主的消费群的促销活动,达到了应有的效果,消费者反响热烈,完全达到了聚集人气的目的。

商品方面,我们配合季节性进行了“劲爆生鲜,仅限1天”“疯狂特价,限时抢购”的商品促销活动,达到了即配合着整体xx收费的目的,又运用商品进行拉动人气和销售的目的。再加上商场的陈列配合,现场促销。我们制作的xx广播稿,使商场在执行宣传方面和渲染买场气氛和促销气氛方面有了新的突破。在视觉和听觉方面给了消费者很大的冲击力,为我们以后的工作留下了很好的借鉴。

大型文艺晚会把整个xx庆推上高潮,各商场的文艺表演可圈可点,供应商的邀请使我们公司的企业文化和经营思想宣传上了一个台阶。配着生日歌总经理切蛋糕的一幕使我们员工有了家庭的亲切归宿感。这是本次文艺晚会的几大重要亮点。

在天时人和方面我们也占到了一定的优势,x周年活动开始天气突然转凉使原本xx计划中的季节性商品热销,人气鼎沸。这和我们分析和组织商品的前瞻性分不开的,最后真的连老天都帮我们,再加上我们的勤奋努力和较好的分析执行能力,还有做不好的事情?

但是我们在工作的计划、组织安排和活动控制过程中,仍然存在着许多不足之处:在本次x周年活动中间,有一些关于促销计划、活动及商品的工作没有落实到位,导致损失了一部分销售,这是值得我们去深思和深刻检讨的:

1、部分促销活动由于找不到供应商,被迫流产。

2、监督表格没执行,是本次x周年的一个遗憾。

3、商场的现场执行力度不够,

4、商场的及时跟踪检讨没有做到位。

5、商场在人力安排方面不合理,致使本次的个别活动没有得到充分的发挥。

6、新商品/敏感性商品开发,采购没有充分的执行,是本次x周年最大的遗憾。

7、商场在x周年活动中,在一些商品的创意陈列方面明显不足,有待改进。

8、商场在x周年商品活动中,现场促销作的不到位,有时有,有时没有,没有彻底的给现场促销人员培训和跟踪,这样致使一些消费者的反映得不到收集,不能为以后的工作借鉴。

9、商场在x周年活动中,人气有了,销售上去了,但卫生工作没有及时跟进,致使各商场门口及卖场的卫生不尽如意,象个垃圾场。

10、在x周年活动中,部分敏感性商品缺货严重,影响了消费者的购物情绪,这是生意中的大禁。要认真反思!总之,任何工作要不断进行总结和检讨,才能把下一次的xx工作作好。我们希望以后能够把整个xx营销的方案作得更好、落实得更好。

本次活动在时间从2021年x月x日到2021年x月x日,共x天活动时间,总销售额xx元,环比增长率xx%,除去节日期间xx%的自然增长,实际增长率也达到了x%,超过了活动前x%预计增长目标。

本次活动前期宣传费用,x月x日《xx刊》封底整版xxxx元,展板和X展架xx元,宣传费销售占比x%从礼品发放情况来看,单比消费额有所提升,但消费额集中。礼品发放数量比实际估计数量减少xx%。

在x日活动内销售xx体验卡xx张。与xx公司合作活动看,这种新型营销模式给消费者带来一些新意,尤其是xx公司在各主管营业厅悬挂“xx”和印刷的xx份宣传单页,“xx”不但给我们的活动进行了宣传,同时“强强联合”也让消费者感受到了实惠。

一、媒体选择

本次活动在媒体平台选择上存在不足,x日广告宣传打出,x日(周六)销售比上个周六却下降xx%,在xx前夕营业额应呈增长趋势,尤其是在促销活动的带动下,营业额增长应较明显。从数据上看,我们在媒体选择上存在宣传范围狭隘性和目标群体偏离性。

我们主打的是时尚休闲口号,目标定位在时尚女性和年轻群体,在媒体选择上同样应该选择在媒体中具有较高知名度的平台。符合商场和目标群体共性。

二、缺乏计划性

促销活动是在时间的迫使下组织实施的,虽然具备了一定市场基础,在单个活动或企业总体发展方向及年度规划上存在较大偏差。单次活动对企业品牌积累上轻则无力可施,重则影响到品牌积累步伐。如本次活动在奖品制定上是参考了畅销品牌的销售记录,然而在本次活动中几家畅销品牌却没有参加,不但影响到活动力度,还影响到了商场凝聚力。

三、营利部门与非营利部门工作协调性差

各楼层专厅促销活动,不能定期反馈给把这些信息宣传到外部去的企划部,专厅促销信息成了内销文件,不能起到增加品牌顾客的作用,薄利多销的目的也成了一相情愿。企划部失去了这些信息的支撑,在活动计划拟订上,不能将商场活动与专厅活动结合,不但存在独立性,更甚使活动被孤立,营业部与代理商或厂家洽谈活动承担比例时,失去立场。

四、活动执行力差

一项活动,无论大小,“策占三划占七”,可见活动实施重要性,即使再好的策略,没有人去实施,他还是等与零。员工对活动的促销知识了解不够,缺少服务热情,对促销活动促进上缺乏技巧和活力,在员工心目中没有“活动是在大量资金与人力投入下,营业额大幅度拔高的概念”。另外,活动在销售过程中也没有一个激进方案,销售任务没有进行细分,“笼统管理,大概销售”,也限制了销售额的增长。

五、前瞻性和时尚性表现不够

企划部成员应常走出去,了解最新市场信息,做好信息归整,并多了解时尚前沿时尚资讯。

克服种种困难规避以上情况,每项活动都具备以下5个要素:准确的市场背景;周密的计划;密切的结合;密切的配合;强悍的执行。

充满机遇与挑战的光棍节已经过去,回首今年整个节日期间的超市,在总部各中心领导的帮助和指导之下,加之全体管理人员以及优秀员工的合作与努力之下,各方面得以稳固磐实,商场工作得以顺利开展。在xx销售目标上,众人不可谓未尽之能事,且不论结果如何,此中显现之苗头,不可说不令人欣喜。对于光棍节节日期间的工作进行反思和总结如下:

一、盘点光棍节日期间的工作

A、加强卖场的人力资源、A类销售科别、A类商品的管理。

B、对本卖场竞争店的调研及附近消费情况的评估,在尽量做到差异化经营的情况下,避免商品同质化条件的价格竞争,对超市滞销商品进行清退,节日性商品的管理,尽一切可能做到不打无准备之仗。

C、积极组织管理岗员工的学习,加大对A类科别的帮扶力度,一切为销售服务。努力提高员工以及促销人员的工作积极性,并针对节日期间员工以及促销人员可能出现或之前经常出现的问题进行了分析。

二、存在的问题

超市在总部领导下,年度xx月份月合计销售:xx万于元,月度销售目标xx万元。超市业绩的影响主要来自于以下几个方面:

A:大环境:受国内整体经济环境,竞争店酒饮强势等影响,客单价、来客数相对减少,特别是在商品同质化的条件下,同种商品的价格往往高于竞争店,一线商品更为严重,购买力严重不足,因xx区店的主要消费层次为周边居住的中老年人群,顾客往往在购买来都货比三家、精挑细选,对于高单价商品的需求相对减少。

B:促销:场外促销活动以及有力的促销手段全无,在商品没有竞争力的同时,应加大场外促销活动,特别是节日前10-15天,这对于提高商场来客数、客单价起到了较大的推动作用,能起到了立竿见影的效果。大型促销活动每次都是一昧地特价促销活动,老生常谈,缺乏预见性和可行性。有的甚至只是形式性化,对于日益竞争的零售业没有起到攻城掠地的效果。

C:畅销商品缺货、堆头管理混乱与新品引进速度慢,光棍节节月份多为公历纪年中的9-10月份是食品、酒饮销售旺季时期,顾客需求量大。而畅销商品、特价促销商品经常出现备货不足,堆头陈列不丰满,有的堆头甚至只有外围一层商品,在顾客购物时缺乏商品可比性,造成业绩的流失。

D:商品质量问题和顾客投诉高:一旦商品发生质量问题,一方面承担卖场的品牌形象损失,另一方面商场还可能要承担商品死货的责任,严重影响卖场业绩及对外信誉度。顾客因商品质量引起的投诉率和抱怨普遍,如:小家电商品质量问题,和光棍节大闸蟹事件等。

E:人员流失率过高:员工入职时间一到两月或者半年时间对其负责的业务知识相对熟悉后出现辞职或自动离职,对商场的损失较大,一支稳定、高效的团队是商场参与竞争的根基。由于公司改革和薪酬体系的原因,员工流失比较严重。同时主管及员工的沟通、指导以及专管员干部的考核力度不够,员工的纪律观念强化有待升级。

针对以上问题,主要完善以下工作:

A、提升专业技能。不断学习和总结提高工作效率,以强化基础管理、狠抓xx服务质量、提升总体业绩为己任,以树立良好品牌形象、创建xx根据地为目标,在坚持行为影响、示范引导的前提下,尽我所能激发带动全体员工工作热情,加强对值班长、管理岗同仁的共同学习,贯彻制度的落实与执行,强化现场管理力度,处理好顾客的投诉与抱怨,把握好顾客的退换货制度,尽量让顾客高兴而来、满意而归。

B、商品管理。坚持对A类商品和C、Z类商品的追踪,努力提升商品陈列艺术,做到主力商品的位置,体现较强的季节性陈列、关联性陈列等。认真分析商品结构及市场需求,及时调整商品结构并合理控制库存,避免积压资金。做好竞争分析,与竞争者形成差异优势,使商品在完善消费市场的同时,进一步展示卖场连锁优势。

C:员工管理。努力提升全体员工士气,用多种方式激励员工。强化领导班子对优秀员工的培养和指导、考核,认真贯彻师徒帮带体系,以及对专管员干部的考核力度,配合采购部对商品的各项管理及各类商品的追踪。认真落实卖场环境、卫生,让员工养成良好的习惯,积极配合公司开展各项现场管理节日促销活动,改善卖场氛围,提升卖场业绩。

D、服务管理。加强员工服务意识培训,贯彻便民、利民、为民、亲民的宗旨,把服务看成企业文化的外在表现和综合竞争力的体现。我和我的管理团队定将自上而下不懈努力,向着这个目标步步迈进,完善服务体系、全程跟踪服务,全面进行客户渗透。

我志努力做好一名超市店长,坚持系统地学习了专业知识、加强沟通、做好顾客消费分析、做好人员的培训,带出一支具有竞争力的超市管理团队。

衷心感谢各位领导一直以来对我工作的支持、指导、监督及对我个人的帮助。我将认真地总结经验,发扬成绩,克服不足,以百倍之信心,饱满之工作热情,与公司和我的团队一起,勤奋工作,顽强拼搏,为xx的发展做出应有的贡献。

2021年双十一数据是:

数据显示,2021年双十一全网交易额为亿元,同比增长,未突破万亿大关。两大头部平台交易额占全网交易额的。

从交易份额来看,2021年双十一交易份额前三平台为阿里巴巴、京东、拼多多,交易份额占比分别为、、。

2021年“双十一”消费者预售不用再熬夜,两波预售时间提前,包裹数量有所分流,但丝毫不影响快件的“爆仓”。数据显示,2021年双十一当日全网包裹数达亿个。

双十一的起源及意义:

双十一起源于光棍节,是一种流传于年轻人的娱乐性节日,以庆祝自己仍是单身一族为骄傲(“光棍”的意思便是“单身”)。

11月11日,光棍节,源于这一天日期里有四个阿拉伯数字“1“形似四根光滑的棍子,而光棍在中文有单身的意思,所以光棍节是单身一族的一个另类节日,这个日子便被定为“光棍节”(One's Day)。

光棍节产生于校园,并通过网络等媒介传播,逐渐形成了一种光棍节的文化。如今越来越多的人选在光棍节结婚,于此同时,也是各大商家以脱光为由打折促销的时期。

光棍节的起源有多种说法,广为认可的一种是说它起源于1990年代南京高校的校园趣味文化。

当年在南京大学“卧谈”的4个男生可能怎么也没想到,一句玩笑话“11月11日就叫光棍节吧!”,竟然在今天如此火爆。

从最初的玩笑、到校园内细细碎碎的自嘲活动、再到孤独的上班族借口小聚,最后成为商家眼中的新锐“节日”,经历一步步的推波助澜,“光棍节”脱颖而出,竟与圣诞节、情人节并肩。

双十一消费者行为分析论文

首先从我的角度出发,我是在萌牙电动牙刷公司工作的,主要工作内容就是推广,通俗一点就是在产品的销售。为什么有人购买你的产品?我觉得原因是多种多样的,但是你必须意识到人们购买产品是出于自身理由,而不是根据那些真正能激发客户行动的原因,你要做的就是满足用户的关键需求。

每当每年双十一的时候人们都会疯狂的添加自己的购物车等到零点的那一刻按下结算的按钮。因此每年双十一,淘宝和其他的电商平台都会做好相应的准备。防止这一刻因为故障的发生而导致人们支付的失败。所以双十一又被称为抢购行为,这种行为是商家通过薄利多销的方式吸引顾客购买更多的商品,以保持自身的利润。当然,我们能够在淘宝上看见许多商品都有或多或少的打折以及满减的优惠。这其实是基于一种众多人购买商品的基础上。因此双十一也是一种大众能够通过价位便宜的价格去购买更多的商品的现象。

淘宝创造双十一抢购这种行为目的就是增加其商铺之间的销量同时吸引人们的注意力。双十一之所以众多商家会参与其中,并且有相应的打折处理,这是因为双十一作为一种隐性的节日,使得众多的顾客进行购买。那么购买的基数变大了,所以销量就会变多,就可以相应的降低价格进行促销处理。无论是对于顾客而言,还是对于商家而言都是非常有利的,这是一种共赢的局面,因为顾客能够买到更多的廉价产品。而商家通过降低售价而大幅度提高销量的行为,也能赚取相当可观的利润。也正是因为这样,双十一才会有疯狂抢购的行为出现。

同时双十一的出现目的也是增加其电商平台。在人们眼中的吸引力目的就是提高人们在该消费平台的消费水平。有特别多的满减项目,目的就是吸引顾客进行更多的消费。人们常常会希望能够凑减,相应的金额已达到满减,这也成为了人们对于某些并不需要的物品的购买。也正是因为这种消费心理,使得双十一的销量会大幅度的增加。这种抢购的行为对于商品的销售而言是有一种促进的作用。

每年的双十一都能看到官方公布的数据。交易额通常都在非常高的数字。这种疯狂抢购的行为对于商家和购买者也是一种共赢的结果。

我觉得利用双11赚钱的人都是很有头脑的人,但是在双11花钱的人都是比较贫穷的人,总想在这特殊的节日里为自己省钱。

我觉得这种行为也没什么错,双十一有的东西确实便宜了储存一一些也不错,像卫生纸、食用油、米面等,可以有计划的买但不要乱买。

双十一购物节现状分析毕业论文

我觉得这个现象很不错,说明越来越多的人开始选择国货,国货已经慢慢崛起了,现在的国货确实很不错,特别值得购买。

今年的双11数据比以往有所下降,可能是疫情导致的。

这是一个很正常的现象。看出很多人在生活中还是非常喜欢网上购物的,网上购物的东西特别便宜。也可以买到质量好的东西,我也很喜欢这样的现象。

今年的双11在成交额以及数量方面上,都有了大幅度的下降。可以说本年度的双11,已经不是前几年的双11了。

我国网络科技正在不断的进步,人民的生活水平以及购物方式都有了很大的变化。究竟是随着购物平台的出现,大多数中国居民已经开始选择在网络上购物。因为在网络上购物能够带来更多的便利,可以做到足不出户,在网络上购买到自己所想要的商品。

每当到了一年一度的双11时期,也是各家购物平台的巅峰时期。因为购物平台总是会将双11定为购物节,不仅仅是平台,还有很多商家也是会选择推出一些促销活动。所以在双11时期能够吸引到大量的顾客,但是随着近几年的发展。再加上双11内部黑幕的爆料,直接导致很多民众对于双11失去了原有的热衷。今年的双11基本上告别了数据至上的时代,回归到了商业的本质。

在本年度之前的双11,销售额度以及数量都达到了一个非常恐怖的数值。但是其实在这背后,大部分都是由虚假数字作为支撑的。尤其是这几年的网络科技发展,用数字作为平台的双11销量,已经根本得不到用户的认可。再加上双11期间,很多商家的打折活动,其实并没有优惠多少。所以这也直接导致了本年度的双11,在销售数量以及成交额度方面上,比往年下降了许多。

截止目前为止,本年度的双11已经开始进入尾期。最主要的原因在于,疫情导致民众的购买能力大幅度下降。除此之外,很多参与双11促销活动的商家,并不愿意真正做到降低自己的利益。所以双11已经开始逐渐落伍,民众对于双11期间的购买热衷大幅度削弱。

数据挖掘论文数据分析

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

论文供应链数据分析

论文供应链数据分析,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM),目前有几项重大中断正在影响供应链。以下分享论文供应链数据分析,一起来看看。

数据挖掘技术在供应链精细化管理中的应论文

摘 要:对企业大量的历史数据,采用SQL Serve的OLAP技术,建立了供应链数据的挖掘模型,对现库存结构、呆废账和供应周期进行了分析,找出了存在问题,提出了相应的解决方法;对现系统提出了二次开发具体目标。

关键词:数据挖掘 精细化 大物流 供应链

一、前言

生产管理信息系统运行5年来,形成了了大量的历史数据,如生产主计划、备件计划、供应商、供货信息、质检信息和入库、领用信息等。

但该系统只是一个顶层数据逐级向下单向透明、注重出入库管理的平台,丰富的历史数据只是偶尔备查,没有把已有庞大的数据转化为知识,从全局上辅助企业决策,使公司在计算机软硬件的开发、维护上的巨大投资,只在局部管理上取得了改进,总体成效并不显著。

本文以半成品库供应链为主体,从计划、采购、外协厂商、质检等多维度分析供货周期及库存的相互关系,以减少冗余环节,降低供应链成本;同时对信息系统的二次开发提出了具体目标。

二、库存结构和供应链分析

我集团的半成品采购,采取多外协厂家的定点生产、每年对价格招标、每月下达采购数量的策略,由外协厂家按照我方提供的设计图纸生产,需要开模或使用专业机具加工,更换厂家有一定的难度。做好供应商的考核和选取,对保质按时完成生产,就显得尤为关键。

我用半成品的相关历史数据,按照关系型数据库第三范式,建立雪花形数据仓库,在其逻辑结构中,将数据表划分为存储实际数据的事实表;以及存储测评指标的维度表,如供应链上的采购、质检、结账周期、质量符合度等。

数据准备

以系统后台采用的sql server 2005数据库中自带程序Business Intelligence Development Studio为挖掘工具。数据准备如下:获取和供应链相关的完整历史数据,从2013年2月到2015年3月的基本信息:批量、计划数、厂家。

下达日期、返回数量和日期、质检完成日期和合格数量,点收入库数量和日期,以及非结构化的返回日期要求等数据。剔除了试制新品等异常数据;建立了相应的维度数据库,转换所有的日期为考核的维度,以精确分析供应链周期。

数据挖掘结果和分析

库存分析:平均月入库为1373万,出库为1399万,库存金额平均为802万,比原库存下降400万以上,比例为34%,逐步消化了存货,有效地降低了半成品库存。

呆废账分析:我们重点对三年(74万元)及五年以上(24万元)无动态的呆账进行了分析,其产生的原因如下:

(1)BOM表中已经不存在此类备件。

(2)产品设计发生了变更。

(3)对应的产品已经淘汰停产。

(4)配套的产品仅在部分支线上使用,存量过多、过久。

(5)订单变更、采购的半成品不配套,部分出现冗余。针对以上原因,我们提出如下解决方法:

(1)全面清理此类半成品,做好外观和质量检测,不符合要求的申请报废。

(2)尽可能替换使用、降级使用。

(3)按材质、规格制定改制表,按需对半成品改制,减少呆废料。

(4)除少量必须备件外,多余部分调拨给可能生产此类产品的`子分公司待用。

供货期分析:期间平均供货总周期为天;其中外协厂家生产期天,到公司后质检期天,入库天,供货后到发票开具天。在提前期为半个月的采购模式下,数据表明大部分半成品在每月初就基本入库,占用了大量库房,并在当月末转化为财务付款压力。

针对外协厂家大多位于省外,重点分析了供应商区域、数量、重量、采购品种和供货周期的关系,对锻铸件类产品的挖掘结果分析如下:

(1)为减轻库房压力,本省市的外协厂家按需分批次组织运送,期供货周期和质检周期存在人为失真。

(2)外省市供货周期和区域距离成正比。

(3)供货周期与采购的数量和重量无关,表明生产能力和运力现阶段充沛。

(4)质检周期短的供货商,其一次到货率和合格率较高。

三、供应链管理新模式

基于供应周期分析结论1,我们可以把所有的外协厂商作为外围库房,按大数据模式下的机器学习法,自动计算不同外协厂家、不同半成品的提前期,借助第三方物流,由生产流水线上主导产品的需求,决定其配送日期;包装用数量就近选择厂家,第三方质检合格后,直接发到施工现场。

为实现此设想,信息系统必须互联互通、信息共享,实时采集需求和获取外协厂商的生产、库存情况,建设一条敏捷的供应链。系统可做如下改进:

(1)对供应商做出科学考核评价:资质;产品质量(尺寸、外观、表面的目视检查合格率;化学成分等合格率;力学性能参数、内部的超声无损检测缺陷值等)、退货率,降级接收率、及时完成率、交货紧迫性、变更配合度、售后服务等指标进行动态考核。按指标得分高低对外协厂家优胜劣汰,在任务分配时优先向优秀供应商倾斜。

(2)拉伸供应链,把各生产部门、库房、供应商作为一个整体,对内实现数据的全透明,共享主计划、车间旬计划、采购计划,做好内部关键工序的报工和外协厂商的数据采集,使相关人员能从数据流中自动获取到所需数据,实时监控所需半成品,及时协调相关生产;在任务繁重时,对外适度开放采购信息,有利于外协厂家安排生产。

(3)领用定额只获取BOM表中的组装数量,包装用备件可由外协厂商直发施工现场。

(4)多粒度获取半成品需求,多层次规划生产。在销售部门取得合同后,按照交货期汇总其总量,和外协单位的产能对比,做好生产分配和预测;按旬计划汇总需求,精准组织半成品的到货时间。

四、结论

建立数据透明的信息系统,充分利用挖掘数据技术,动态获取需求和产能,借助第三方物流,可以精准地满足生产和施工需求,同时优化控制库存结构,可以减少库存量,降低对流动资金和库房的占用。在实际应用中,还需要发挥人的主观能动性,按实际情况调整采集信息量和透明度,提升供应链管理水平。

参考文献:

[1]王桂从,姜兆亮,李兆前.协同供应下的库存控制及供应商选择[J].现代制造工程,2007(11).

[2]王晶,唐玲,张在晓.供应商共享POS信息时的信息挖掘策略与方法[J].工业工程,2008(07).

大数据分析对供应链有什么影响

如今,从物流到客户偏好的各种数据的持续增长正在迅速改变企业的经营方式,并突出了对加强数据管理和分析的强烈需求。大数据分析(指大型和复杂的数据集)的好处是显而易见的:大数据可以完全改变组织的工作方式,在效率、成本、可见性和客户满意度方面产生巨大差异。

大数据来源广泛:

-如今的技术和社交平台允许企业以评级、评论和博客评论的形式获得直接的客户反馈。

-来自移动通信、社交平台和电子商务的数据正在与来自企业系统的数据集成。

-随着物联网和机器对机器通信的引入,制造业正在从基于事件的计划转变为实时感测。

-不断发展的传感器技术可提供实时设备和产品状况数据,从而实现自动维护和过程调整。

数据在数量上、种类上和速度上都有所增长,如果以正确的方式加以利用,可以带来巨大的价值。

研究显示,企业已经在推动整个企业供应链的生产力,但在供应链功能中使用大数据分析在全球企业中并不普遍或协调得很好。受益于大数据分析的公司有三个共同点:它们拥有强大的企业级分析战略,它们将大数据分析嵌入供应链运营,它们拥有合适的人才库,能够从大数据中产生可操作的见解。

有必要雇用、培训和扶持能够帮助企业从大数据分析中受益的领导者。从人力资本的角度来看,大多数公司的定位尚不足以接受数字化供应链转型。我们分析了各行各业的50多位高级供应链高管的个人资料,以了解他们在供应链数字化方面的定位。在涉及所谓的“数字防备连续性”方面,各行各业的公司中绝大多数高管都普遍缺乏。

调研机构采访了各行各业的商界领袖,以探讨当今日益数字化的世界对首席供应链官的角色以及供应链领导者与高级管理人员中其他高管人员之间互动的影响。通过这些访谈,我们发现了供应链领导者应具备的四个关键特征,以便能够从大数据分析中获得收益:

1、对数据和系统技术有深刻的了解。当今的企业可以通过数据分析和通过数字方式收集数据来深入了解客户行为。尽管不需要首席供应链官成为信息技术(IT)专家,但他们应该对数据收集、技术和分析有足够的了解,以引导对话并为高级领导者及其供应链团队提供数字化愿景。

供应链领导者应认识到如何实施和利用相关平台和流程以及数据来自何处,并应表现出对来自各种渠道的数据范围和规模的扎实理解。重要的是,领导者必须准备好对数据采取明智的行动。

2、具有影响力的协作方法。如果首席供应链官在孤岛工作,将无法从大数据分析中获得收益。在内部,供应链领导者必须能够与首席技术官进行沟通和协作,以帮助确定适合组织的技术和政策;

与首席数据官一起了解如何最佳地捕获和使用数据;与首席营销官一起,评估供应链如何能够更专注于客户和需求驱动,并与首席执行官具体沟通更广泛的创造价值的机会。最终,供应链执行官将需要能够与内部利益相关者和外部供应商建立桥梁。

3、跨职能经验。如今的供应链管理人员具有跨部门的'经验,并且能够理解和与来自多个业务部门的人员进行交流。重要的是,首席供应链官员还必须具有销售、财务或技术方面的知识。

4、发展新技能和培训他人的能力。当今的首席供应链官必须紧跟最新技术,以确保组织适当地吸收数字技能和分析人才。企业犯的最大错误之一是在没有适当准备组织的情况下实施大数据分析项目。建立内部计划以确保在整个供应链中采用技能至关重要。

要从整个供应链或整个组织的大数据分析中获取所有好处,不仅需要技术和IT。从首席执行官和执行委员会开始,企业必须准备好支持一种全新的思维方式,培养一种对创新和技术开放的文化,并愿意挑战关于供应链管理方式的惯例。

大数据分析对供应链有什么影响、中琛魔方大数据分析平台表示由于供应网络上数十亿的连接设备提供关于服务需求、位置和库存分布的实时信息,甚至实现预期的需求,理解和接受大数据的执行领导层、数字颠覆和这些趋势的人力资本方面对未来企业的优势至关重要。

供应链案例分析的方法

一、供应链案例的类型

供应链案例可以是从原材料供应一直到最终产品送到最终用户手中的整个供应链的案例,也可以是只涉及供应链一个环节或只关注于单一的物流活动的案例。无论哪一种案例,在分析时都应该从供应链整体的角度进行,要考虑单一环节的变化对供应链中其他环节产生的影响。

二、供应链案例分析的目标

提高客户服务水平和降低总的运作成本是供应链管理的两大目标,在案例分析时,必须牢记这两大目标。

三、供应链案例分析的方法

供应链案例分析可分为这样几步进行:

第一,分析供应链现状。

首先分析供应链的结构,在分析时可绘制一个从原材料或零配件供应的起点开始,通过生产制造环节和分销配送环节,直到最终用户手中的货物流动示意图,示意图目的是为了描述供应链中各固定节点(如工厂、仓库)的结构和货物在这些节点之间的流动模式。即货物流。

然后分析支撑货物移动的信息流和信息系统,包括订单信息处理、需求预测信息、管理信息和计算机系统。其次对现行的供应链绩效进行分析,这对改进措施的提出是非常有效的,绩效分析可包括供应链的总体绩效、供应链的相对绩效和单项物流功能的绩效。

第二,在现状分析的基础上找出问题。

这常常是案例分析最困难的也是最重要的一步。因为如果无法正确地鉴别出主要问题,也就无法作出正确的选择。在分析时要注意症状与原因的区分,通常在分析时症状是比较容易明确的。

例如,经理可能认为仓储能力短缺是一个问题,实际上,这可能仅仅是一个症状,造成的原因可能是库存管理不良或生产安排不合理而使得库存的大大超过了实际需求。因此在分析时,必须找到真正造成问题的原因。

第三,设想并提出解决问题方案

解决方案的提出是和现状分析紧密联系在一起的,一个好的现状分析能够对主要问题进行清晰的确定,从而指出正确的解决问题或行动路线。提出解决问题方案时通常可从三个层面上考虑:具体功能部门层面;公司层面,在公司内实行跨部门的改革;供应链层面,同一供应链上的公司间相互配合上进行改革。

最后对提出的方案应当做全面的说明。

以上是对分析供应链问题提供一个思考分析的框架,这不是一个应用于所有供应链问题的万能方法,而是列出了在分析问题时可考虑的因素,案例分析时应根据实际问题确定相关的研究因素。

数据挖掘与数据分析论文

浅谈数据挖掘技术在企业客户关系管理的应用论文

摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技

关键词:客户关系管理毕业论文

高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。

关键词:客户关系管理毕业论文

一、数据挖掘技术与客户关系管理两者的联系

随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的.结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。

二、数据挖掘技术在企业客户关系管理实行中存在的问题

现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。

1.客户信息不健全

在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。

2.数据集中带来的差异化的忧虑

以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。

3.经营管理存在弊端

从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。

三、数据挖掘技术在企业的应用和实施

如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。

1.优化客户服务

以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。

2.利用数据挖掘技术建立多渠道客户服务系统

利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。

四、数据挖掘技术是银行企业客户关系管理体系构建的基础

随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

相关百科

热门百科

首页
发表服务