首页

> 学术论文知识库

首页 学术论文知识库 问题

线性变换课程论文模板范文

发布时间:

线性变换课程论文模板范文

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

线性变换毕业论文

楼上好象是用软件翻译的吧本文在第一部分首先介绍了线性空间、线性变换、根子空间、半单线性变换和幂零线性变换的概念,This article introduced concepts of linear spaces, linear transformations, semi-simple linear transformations, nilpotent linear transformations and root subspaces in the first part. 然后对这些概念的一些基本性质进行了证明.The some basic properties of the concepts are proved. 在第二部分给出了本论文的主要结论.In the second part, we give the main conclusions of the paper. 利用关于根子空间、半单变换和幂零变换的一些性质,结合了矩阵的特征根与特征向量的基本运算,Using properties of the semi-simple linear transformations, nilpotent linear transformations and the root subspaces and associating the eigenvalues and the eigenvectors of the matrix ,证明了:we prove: 1. 线性空间的任意一个线性变换可唯一的分解为一个半单变换和幂零变换的乘积,且二者具有可交换性; 1. Any linear transformation of the linear space can be uniquely decomposed into a sum of the semi-simple linear transformation and the nilpotent transformation;2.线性变换的不同特征根的特征向量的线性无关性; 2. The eigenvectors of different engienvalues are orthogonal; 3. 线性变换的特征子空间的维数与它的特征根重数的关系.3. The relations between the dimensions of characteristic subspaces of linear transformations and the multiplicities of engienvalues.

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

Based on the first part introduces the linear space, linear transformations, root space, single-sex transform and nilpotent linear transformation of the concept, and then to some of the basic concepts of the nature of the evidence. In the second part of this thesis is the main conclusions. The root cause of the use of space, and transform single-nilpotent transform the nature, with the matrix eigenvalue and eigenvector of the basic operations proved : 1. arbitrary linear space of a linear transformation can only regarded as a single semi-Transform and nilpotent transform the product. and the two have exchangeable; 2. linear transformation-the different characteristics of the non-linear vector; 3. The linear transformation of the space dimension and its root weight of several relationships. 就这样

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

线性变换的性质论文文献

映射你懂吧?线性就是函数关系为一次函数。线性变换就是说把A以某种准则(一次函数)变换到B,这种变换就是线性变换。比如一组数(1,2,3)以3x+1这种准则进行线性变换的结果就是(4,7,10)。相反,若是以x的平方变换等非一次函数关系的变换就不叫线性变换了。明白了吧?

《线性代数与解析几何》PDF版 北方交通大学出版社 By陈治中 WP: ZL: 理工教材/线性代数与解析几何-陈治中-北京交通大学出版社.pdf 内容简介 · · · · · · 《线性代数与解析几何》将线性代数与空间解析几何有机地融合在一起,用代数方法解决几何问题,同时空间几何又为代数理论提供几何背景。全书共分8章:行列式、矩阵、空间解析几何、n维向量、线性方程组求解、相似变换与二次型、二次曲面、线性空间与线性变换、基本代数理论。每一章都配套有相应数量的例题和习题,以适应分层次教学的需求,也为其他课程提供数学基础。线性代数与解析几何是高等学校理工科和经济管理学科的一门重要基础课。《线性代数与解析几何》可作为高等院校理工、经济、管理等专业的教材或教学参考书,也可供科技人员或自学人员使用。 目录 · · · · · · 第一章 向量与复数 向量的线性运算 向量及其表示 向量的线性运算 向量的共线与共面 坐标系 仿射坐标系 向量的坐标运算 直角坐标系 向量的数量积 数量积的定义与性质 直角坐标系下数量积的计算 向量的向量积 向量积的定义与性质 直角坐标系下向量积的计算 向量的混合积 混合积的定义 直角坐标系下混合积的计算 二重向量积 . 复数 复数的四则运算 复数的几何表示 * 数域 求和符号 习题一 第二章 空间解析几何 直线与平面 直线的方程 平面的方程 点到直线的距离 点到平面的距离 两直线的位置关系 两平面的位置关系 直线与平面的位置关系 空间曲线与曲面 曲线与曲面的方程 柱面 锥面 旋转面 二次曲面简介 * 坐标变换 坐标系的平移 坐标系的旋转 一般坐标变换 习题二 第三章 线性方程组 gauss消元法 gauss消元法的矩阵表示 一般线性方程组的gauss消元法 算法描述 线性方程组解的属性 习题三 第四章 矩阵与行列式 矩阵的定义 矩阵的运算 加法与数乘 矩阵的乘法 逆矩阵 转置、共轭与迹 分块运算 初等变换 行列式 行列式的定义 行列式的展开式 行列式的计算 cramer法则 秩与相抵 秩与相抵的定义 秩的计算 相抵标准形的应用 习题四 第五章 线性空间 数组空间 线性相关与线性无关 极大无关组与秩 子空间、基与维数 线性方程组解集的结构 线性方程组解的存在性与唯一性 齐次线性方程组解集的结构 非齐次线性方程组解集的结构 一般线性空间 一般线性空间的定义 一般线性空间的理论 * 线性空间的同构 予空间及其运算 子空间 * 子空间的交 * 子空间的和 * 子空间的直和 习题五 第六章 线性变换 线性变换的定义与性质 线性变换的定义 线性变换的性质 线性变换的蛔咋 线性变换在一组基下的矩阵 * 线性变换与矩阵的一一对应 * 线性变换的运算 矩阵的相似 线性变换在不同基下的矩阵 矩阵的相似 特征值与特征向量 特征值与特征向量的定义 特征值与特征向量的计算 矩阵的相似对角化 矩阵相似于对角矩阵的充要条件 * 特征值的代数重数与几何重数 相似于上三角形矩阵 * 若尔当标准形简介 习题六 第七章 欧几里得空间 定义与基本性质 欧几里得空间的定义 欧几里得空间的性质 内积的表示与标准正交基 * 欧几里得空间的同构 欧几里得空间中的线性变换 正交变换与正交矩阵 对称变换与对称矩阵 实对称矩阵的对角化 * 欧几里得空间的子空间 * 酉空间 酉空间的基本概念 酉空间的基本性质 酉变换与酉矩阵 hermite变换与hermite矩阵 规范变换与规范矩阵 酉变换和hermite变换的对角化 习题七 第八章 实二次型 二次型的矩阵表示 二次型的标准形 相合不变量与分类 二次曲线与曲面的分类 正定二次型 习题八 *附录应用案例 桁架的静力分析 电网络分析 多项式公因子与方程求解 组合与图论问题 多元函数的极值 计算机绘图与图形变换 最小二乘法与奇异值分解 数字图像的压缩 投人产出模型 markov矩阵 google搜索排序 层次分析法 参考文献

1、先将二次型配方,然后化简(合并同类项)。

2、使用变量替换,将向量x替换为向量y。

3、根据向量y与x之间的关系,写成变换矩阵。

4、具体,可参看下列例子:

扩展资料:

线性变换的性质:

线性空间V上的一个变换A称为线性变换,对于V中任意的元素α,β和数域P中任意k,都有

A(α+β)=A(α)+A(β)

A (kα)=kA(α)

线性变换是线性代数研究的一个对象,即向量空间到自身的保运算的映射。例如,对任意线性空间V,位似是V上的线性变换,平移则不是V上的线性变换。

对线性变换的讨论可借助矩阵实现。σ关于不同基的矩阵是相似的。Kerσ={a∈V|σ(a)=θ}(式中θ指零向量)称为σ的核,Imσ={σ(a)|a∈V}称为σ的象,是刻画σ的两个重要概念。

对于欧几里得空间,若σ关于标准正交基的矩阵是正交(对称)矩阵,则称σ为正交(对称)变换。正交变换具有保内积、保长、保角等性质,对称变换具有性质:〈σ(a),β〉=〈a,σ(β)〉。

在数学中,线性映射(也叫做线性变换或线性算子)是在两个向量空间之间的函数,它保持向量加法和标量乘法的运算。术语“线性变换”特别常用,尤其是对从向量空间到自身的线性映射(自同态)。

在抽象代数中,线性映射是向量空间的同态,或在给定的域上的向量空间所构成的范畴中的态射。

特征:

(1)设A是V的线性变换,则A(0)=0,A(-α)=-A(α);

(2)线性变换保持线性组合与线性关系式不变;

(3)线性变换把线性相关的向量组变成线性相关的向量组。

注意:线性变换可能把线性无关的向量组变成线性相关的向量组。

参考资料来源:百度百科--配方法

参考资料来源:百度百科--线性变换

设V与U是二个线性空间,T是从V到U的一个映射,若这个映射保持线性运算规则不变:即 T(α+β)=T(α)+T(β)、T(λα)=λT(α),那么就称T是从V到U的线性变换。线性变换之前的物向量与线性变换之后的像向量具有1-1对应的关系。线性变换从纯代数符号理解较抽象,从具体数值理解很容易。看下面例子。

综述性课程论文模板

规范的 毕业 论文格式有助于准确表达科研成果,便利信息交换与处理及学术成果的评价,并使行文简练、版面美观。你下面是我为大家精心推荐的综述论文格式 范文 ,仅供大家参考。

标准论文综述格式及写法

1、综述的格式

综述一般都包括题名、著者、摘要、关键词、正文、参考文献几部分。其中正文部分又由前言、主前言 用200~300字的篇幅,提出问题,包括写作目的、意义和作用,综述问题的历史、资料来源、现状和发展动态,有关概念和定义,选择这一专题的目的和动机、应用价值和实践意义,如果属于争论性课题,要指明争论的焦点所在。

主体主要包括论据和论证。通过提出问题、分析问题和解决问题,比较各种观点的异同点及其理论根据,从而反映作者的见解。为把问题说得明白透彻,可分为若干个小标题分述。这部分应包括历史发展、现状分析和趋向预测几个方面的内容。①历史发展:要按时间顺序,简要说明这一课题的提出及各历史阶段的发展状况,体现各阶段的研究水平。②现状分析:介绍国内外对本课题的研究现状及各派观点,包括作者本人的观点。将归纳、整理的科学事实和资料进行排列和必要的分析。对有创造性和发展前途的理论或假说要详细介绍,并引出论据;对有争论的问题要介绍各家观点或学说,进行比较,指问题的焦点和可能的发展趋势,并提出自己的看法。对陈旧的、过时的或已被否定的观点可从简。对一般读者熟知的问题只要提及即可。②趋向预测:在纵横对比中肯定所综述课题的研究水平、存在问题和不同观点,提出展望性意见。这部分内容要写得客观、准确,不但要指明方向,而且要提示捷径,为有志于攀登新高峰者指明方向,搭梯铺路。主体部分没有固定的格式,有的按问题发展历史依年代顺序介绍,也有按问题的现状加以阐述的。不论采用哪种方式,都应比较各家学说及论据,阐明有关问题的历史背景、现状和发展方向。

2、综述主体部分的写法

(1)纵式写法 “纵”是“历史发展纵观”。它主要围绕某一专题,按时间先后顺序或专题本身发展层次,对其历史演变、目前状况、趋向预测作纵向描述,从而勾划出某一专题的来龙去脉和发展轨迹。纵式写法要把握脉络分明,即对某一专题在各个阶段的发展动态作扼要描述,已经解决了哪些问题,取得了什么成果,还存在哪些问题,今后发展趋向如何,对这些内容要把发展层次交代清楚,文字描述要紧密衔接。撰写综述不要孤立地按时间顺序罗列事实,把它写成了“大事记”或“编年体”。纵式写法还要突出一个“创”字。有些专题时间跨度大,科研成果多,在描述时就要抓住具有创造性、突破性的成果作详细介绍,而对一般性、重复性的资料就从简从略。这样既突出了重点,又做到了详略得当。纵式写法适合于动态性综述。这种综述描述专题的发展动向明显,层次清楚。

(2)横式写法 “横”是“国际国内横览”。它就是对某一专题在国际和国内的各个方面,如各派观点、各家之言、各种 方法 、各自成就等加以描述和比较。通过横向对比,既可以分辨出各种观点、见解、方法、成果的优劣利弊,又可以看 出国 际水平、国内水平和本单位水平,从而找到了差距。横式写法适用于成就性综述。这种综述专门介绍某个方面或某个项目的新成就,如新理论、新观点、新发明、新方法、新技术、新进展等等。因为是“新”,所以时间跨度短,但却引起国际、国内同行关注,纷纷从事这方面研究,发表了许多论文,如能及时加以整理,写成综述向同行报道,就能起到借鉴、启示和指导的作用。

(3)纵横结合式写法在同一篇综述中,同时采用纵式与横式写法。例如,写历史背景采用纵式写法,写目前状况采用横式写法。通过“纵”、“横”描述,才能广泛地综合文献资料,全面系统地认识某一专题及其发展方向,作出比较可靠的趋向预测,为新的研究工作选择突破口或提供参考依据。无论是纵式、横式或是纵横结合式写法,都要求做到:一要全面系统地搜集资料,客观公正地如实反映;二要分析透彻,综合恰当;三要层次分 总结 ,主要是对主题部分所阐述的主要内容进行概括,重点评议,提出结论,最好是提出自己的见解,并提出赞成什么,反对什么。

参考文献写综述应有足够的参考文献,这是撰写综述的基础。它除了表示尊重被引证者的劳动及表明 文章 引用资料的根据外,更重要的是使读者在深入探讨某些问题时,提供查找有关文献的线索。综述性论文是通过对各种观点的比较说明问题的,读者如有兴趣深入研究,可按参考文献查阅原文。因此,必须严肃对待。

3、综述的写作步骤

选定题目选定题目对综述的写作有着举足轻重的作用。选题首先要求内容新颖,只有新颖的内容才能提炼出有磁石般吸引力的题目。选题还应选择近年来确有进展,适合我国国情,又为本专业科技人员所关注的课题,如对国外某一新技术的综合评价,以探讨在我国的实用性;又如综述某一方法的形成和应用,以供普及和推广。选题通常有几种:一种是与作者所从事的专业密切相关的选题,对此作者有实际工作 经验 ,有比较充分的发言权;一种是选题与作者专业关系不大,而作者掌握了一定的素材,又乐于探索的课题;还有一种是医学科学情报工作者的研究成果。

题目不要过大,过大的题目一定要有诸多的内容来充实,过多的内容必然要查找大量的文献,这不但增加阅读、整理过程的困难,或者无从下手,或顾此失彼;而且面面俱到的文稿也难以深入,往往流于空泛及一般化。实践证明,题目较小的综述穿透力强,易深入,特别对初学写综述者来说更以写较小题目为宜,从小范围写起,积累经验后再逐渐写较大范围的专题。此外,题目还必须与内容相称、贴切,不能小题大作或大题小作,更不能文不对题。好的题目可一目了然,看题目可知内容梗概。

化学实验教学资源是指有利于实现化学教学目标,在实验教学设计、实施、评价过程中可以利用的各种资源的总和。下面是我为大家推荐的化学综述性论文,供大家参考。

化学综述性论文 范文 一:开放式无机化学实验教学研究

摘要:针对无机化学实验课程教学中存在的问题,为适应21世纪科技发展对人才素质的要求,以开放式实验教学的模式代替传统式实验教学的模式。以学生为主导地位,让学生进行开放式实验,使学生由被动学习转为主动学习,从而提高学生综合素质和实际操作能力。

关键词:开放式无机化学实验教学改革

化学是以实验为基础的科学,而实验教学又是化学理论教学的重要组成部分,要学好化学就必须做好实验教学。化学的四大分支学科之一的无机化学是以无机化学实验为基础的一门学科。无机化学实验是长江师范学院化学化工学院和生命科学与技术学院各专业跨入大学校园后所接触的第一门基础实验课程,是老师与学生在教学科研相结合所要经历的一个阶段。无机化学实验具有独特性:一是所用仪器设备、药品种类等都很多;二是需要学生掌握的基本操作虽然简单但是多样化;三是实验现象复杂。为了提高学生的综合能力,让学生有机会多练习实验操作,必须对以往传统的实验教学模式进行改革,让实验由封闭式转向开放式,让学生开展多开放性、设计性实验,以达到培养高素质人才来适应社会发展的需要。

1传统实验教学模式

无机化学实验经过多年的教学实践改革后,形成了一套比较成熟的传统实验教学模式。正是这种传统的实验教学模式使得实验教学存在很多难以解决的教学问题,比如在实验教学过程中,教学形式是单一的讲解式,而且所讲内容也是沿用了好多年的陈旧内容;教学课件使用多年,没有一点创新;学生也只是按老师的要求照方抓药,没有一点学习热情,也没有学习主动性,更谈不上在做实验的过程中有创造性思维了;实验中能力培养差;实验设备利用不合理;培养出来的学生根本不能达到当今社会对人才需要的要求。随着社会的发展需要,高综合素质人才需要越来越多,那么,还按传统的实验教学模式是培养不出当今社会所需的高素质人才的。所以,为了能够满足当今社会人才的需要,就必须打破传统的实验教学模式,改变这种扼杀学生 创新思维 能力培养的教学模式,尽快实现改革创新,以便能更好地给学生以发展空间。

2开放式的教学模式

为了培养高素质、高能力的创新型人才,本课题组对化学化工学院2012级、2013级、2014级一年级学生的无机化学实验课程的教学模式进行了改革。主要从实验内容、实验时间、组织方式、教学评价等方面进行开放。

实验内容的开放

传统的实验教学内容都是由老师指定的单一的基础类实验,这样就不利于学生的个性化发展。实行教学改革后,开放式实验教学内容发生很大的变化。老师将根据新的课程目标提出多个实验模块,包括基础类、验证类、综合类、设计类、自主类等等。基础类和验证类实验是每位学生必须做且必须掌握的实验项目,主要是对学生进行基本能力的训练,为综合类、设计类、自主类奠定基础的。综合类和设计类包括必选和任选实验,必选实验是在教师提出的必选实验项目中,学生自己选择若干个实验,自己设计实验方案并完成实验;任选实验模块是由教师提出一些解决实际问题的综合实验,教师只是提出问题而不提供具体的解决方案,学生在综合运用所学知识的基础上,根据实验室的实验资源拟定切实可行的解决方案并独立完成实验,从而激发学生的学习热情,发展创新思维。自主类实验是由学生根据自己的情况,自己选题,自己拟定实验方案,自主完成的实验,很具有个性化发展。

实验时间的开放

时间上的开放分为定时开放和预约性开放:定时开放是指学生在工作时间进入实验室做实验;预约性开放是指周末和寒暑假时学生采用集体预约和个人预约相结合的方式进入实验室做实验。

教学组织的开放

开放式实验教学成功与否,关键在于指导教师的组织。具体方案是:首先给学生分成若干小组,每组选派一名组长,组长负责管理本小组成员并分配任务。各小组查阅大量文献后提出问题,接着同小组讨论问题,最后自拟题目提出实验设计方案并交由老师审核。老师审核如果实验方案没新意就不能通过,学生将重新立定方案;如果有新意,审核通过,学生再与老师预约实验时间并完成实验,提交实验 报告 。整个组织实验过程都由学生自己完成,学生占主导地位,老师只起到引导作用。但是有一点是老师必须及时了解和掌握学生实验的整体情况,保证师生之间的信息反馈。

教学评价的开放

开放式实验教学,考试形式应该多种多样。实验成绩的评定不再是单一的平时实验报告的成绩总评,而是平时成绩和每次项目考核相结合。具体的评价方式是:学期课程总成绩=平时成绩(20%)+项目考核总成绩(80%)。平时成绩按统一标准从实验态度、出勤情况、预习等方面进行评定。每次项目考核成绩由实际操作、数据记录、回答问题、实验结果、完成书面报告等方面评定。每次项目操作过程中及操作完毕后,老师根据学生实验操作情况、回答老师提出的有关实验内容的问题情况和实验结果成功与否即时给出每次项目操作成绩。书面报告成绩给出以实验报告为依据。所占分值为:每次项目考核成绩=项目操作成绩(60%)+书面报告(40%)。项目考核总成绩等于多次项目考核成绩的平均值。

3结语

通过对2012级,2013级,2014级连续三年的各专业的无机化学实验教学模式进行改革,在无机化学实验教学上取得了很好的效果。整个教学在教学主体、教学内容、 教学 方法 和教学目的等方面都发生了翻天覆地的变化。整个改革过程学生是最大的收益者,学生成为了教学的主体,不再是机械式的操作者,这样就使得学生的协作能力、设计能力、创新能力以及团队合作精神等综合素质都有很大程度的提高。这一教学模式的改革,很好的培养了大一学生的独立思考的能力,使得学生在从高中到大学阶段的过渡期发生了一个质的飞越,让学生明白了学习不是被动而是主动的,同时也很好的发展了学生的个性,为学生的以后学习阶段打下了良好的基础。

参考文献:

[1]史锐,成冰.浅谈无机化学实验教学改革与实践[J].辽宁中医药大学学报,2007,9(4):206.

[2]曹高娟,蒋文静.农林院校《实验化学》教学改革初步建议[J]. 教育 改革,2011,9(24).

[3]赵新华主编.无机化学实验(第四版)[M].高等教育出版社,2014.

[4]戚洪彬,梁树平,姜浩.大学化学实验课程体系的建设[J].实验技术与管理,2011,28(10):122.

化学综述性论文范文二:药物化学教学使用案例式教学法研究

摘要:药物化学是药学专业的重要专业课,对药物化学的学习,不仅可以对现有化学药物理论依据进行有效合理的运用,还能奠定从事新药研究的理论基础。目前,药物化学的教学法面临着新的挑战,因为全国高等学校本科教学质量和教学改革在不断的向前推进。笔者认为在药物化学的教学中运用案例式教学法有一定的可行性,并且有一定的进步意义。本文对案例式教学法在药物化学教学中应用的意义和如何在药物化学教学中运用案例式教学法进行了探讨。

关键词:案例式教学法;意义;应用分析

0引言

我国在医学教育改革中较常采用的两种新型教学方法分别是以问题为基础学习的教学法和案例式教学法。这两种教学法都是以致力于以学生主动学习代替以教师教授为主的学习作为中心,把发展培养学生的综合能力当做学习的主要任务。世上没有两片完全相同的叶子,这两种教学法也存在一定的差异:教师角色的差异和对学生自主学习能力要求的差异。经过医学界多年的对比分析,更适于在我国医学教育中广泛运用的是案例式教学法。

1案例式教学的内涵

哈佛法学院在1870年最早提出案例式教学,主要注重培养高素质、创新型、实用型的人才,在国际上被广泛运用。案例式教学在20世纪80年代末期传入我国,最先在医学和法学学科中运用,后来在管理和其他学科教育中也有所运用。案例式教学法自从传入我国100多年以来,开始被越来越多的高校接受和广泛运用。我国的案例式教学在经过多年的实践探索后已经逐渐趋于规范,并对教师和教学环境提出了比较高的要求。案例式教学在我国高校教学的改革和发展中起到的作用是不可忽视的,理论与实践相结合的互动式教学是它最主要的本质。案例式教学是一种注重培养学生独立思考能力和解决具体问题能力的教学方式。案例教学会在特定的情景中通过真实事例进行模拟,让学生来进行体验、分析、决策。案例式教学具体的操作方法是授课教师根据自己提出的相对比较典型的案例抛出几个问题,学生通过阅读、分析、思考和讨论的方法对教师提出的问题进行分析回答,最后教师会对学生的回答进行 总结 。这一过程旨在提高学生的逻辑推理和处理问题的能力,充分调动学生的学习积极性和创造性。案例式教学不仅对学生的创造能力和解决实际问题的能力会有所提升,它同时对教师的业务素质和创新能力也会有所提高,更好的实现教学相长。

2案例式教学法在药物化学教学应用中的意义

案例式教学的先导是突出病例,基础是问题,主体是学生,原则是教师主导。对案例式教学合理的运用对我国医学教育务必会产生深远的影响,案例式教学对目前我国医学教育中关于加强对医学学生实践能力培养的要求十分符合,要知道案例式教学不仅仅是一种医用教学方法,它更是一种教学思想以及对学生的高明培养方式。

案例式教学法在药物化学教学应用中对学生的意义

在我国有很多学习药物化学的学生,在这些学生中普遍反映的一个现象是对药物化学缺乏学习热情,因为药物化学知识点非常多,覆盖面大,与有机化学、药理学、药物分析等学科均有紧密的联系。药物的结构,药物的命名,药物的合成,药物的理化性质,药物的代谢和用途等构成都是需要学习的内容,这些知识点内容关联性不高,致使学生学起来印象不够深刻,思维能力差。而现在的教学活动基本上可以概括为结构式课堂教学,采用的还一直是前苏联的教学模式,不重视学生的参与,重视教师教授的传授;不重视实践工作,重视理论体系,因此,在教学中加强学生的印象,引导学生去主动的理解和掌握相关的理论知识就是在药物化学的教学中首先需要解决的问题。经过大量实验证明案例式教学对解决以上问题非常有效。

案例式教学能够激发学生的学习兴趣

案例式教学有助于使学生由学习的被动性向学习的主动性转变。案例式教学对学生学习的目的性要求更强,学生对于不明白的问题会积极主动的去寻求答案,及时的查阅资料,所以学生的学习积极性会更高。另外,在案例的讨论中,学生可以互相交流讨论来实现知识的共享,增强学生的沟通能力和团队精神,这些可使学生终生受益,由此看来案例式教学对激发学生的学习兴趣非常有帮助。

案例式教学有助于提高学生的综合素质

案例式教学通过典型病例和在案例中分析思考问题以及讨论发言,注重把问题作为向导,对提高学生把医学理论知识在临床实践中运用的能力和分析问题解决问题的能力非常有帮助,案例式教学还能够很好的锻炼学生的快速反应能力和语言表达能力。

案例式教学法在药物化学教学应用中对教师教授的意义

采用案例式教学不仅可以按照传统的模式教授学习的内容,还可以把案例作为补充内容。案例式教学不仅可以丰富教学内容,还有利于学生积极探讨隐含于案例背后的专业知识及技能,案例式教学将课堂设置到有意义的案例情景中,真正实现教学相长。案例式教学可以更好的实现教学相长还因为案例式教学要求教师要具备丰富的理论知识和实践 经验 ,不仅如此,教师教授灵活的应变能力的具备也是非常有必要的。

3如何在药物化学教学中运用案例式教学法

案例式教学对于我国药物化学的发展来说是一次挑战和变革,案例式教学法被大部分的学生所接受和喜爱。因此,如何在药物化学教学中运用案例式教学法也是一个需要探讨的问题。

案例引入

根据教学进程并结合教学内容来选择合适的时机进行案例的引入,当然教师也要选择合适的案例。案例的引入不仅可以穿插在各章节的课堂教学中,还可以选择在某一个单元结束后进行,当然,也可以采取多种方式交叉式进行案例式教学。这样,不仅可以对学生的自学能力和分析解决问题的能力进行有效的培养,还可以检查学生对单元理论知识的掌握、综合运用能力。

案例探讨

案例式教学要多鼓励学生积极的去思考问题,注意培养学生的 发散思维 和创新理念,所以案例式教学应该把教师作为教学的引导者,把学生作为讨论的主题。学生探讨的方式可以是小作讨论,也可以是分组 辩论 ,还可以单独推荐一名学生作为代表进行发言,总之,学生的讨论方式是多样化的,不必拘泥于一种形式。

概括总结

学生把问题讨论完以后,教师要及时的进行归纳点评查漏补缺,理清案例分析的思维和脉络。教师的总结要使学生能够把所学到的知识基本化为己用,案例式教学的效果评价可以采取考试或问卷调查这两种形式进行,以便确保学生在以后的工作学习中能够在头脑中形成一种牢固的知识网络。

4总结

综上所述,案例式教学的开展运用是一次教学方式和教学观念的转变,通过具体的教学实践,结论是案例式教学方式适合病理学这门理论性和实践性都很强的学科。案例式教学想要获得更好的教学效果,还需要广大药物化学工作者不懈的努力。

参考文献:

[1]王世盛,高志刚,宋其玲等.药物化学教学中多层次案例教学法的运用初探[J].教育教学论坛,2015(15):114-115.

[2]周军,王爽,刘腾飞.案例式教学法在病理学教学中的应用[J].基础医学教育,2014(07):497-500.

[3]王茵,赵宝珍,蔡珠虹等.案例式教学法在八年制医学生超声诊断教学中的应用[J].海军医学杂志,2015(04):375-376.

[4]杨春江,王荞,何莹等.问题导向结合案例式教学在超声诊断实践课程中的持续改进[J].重庆医学,2015(16):2290-2291.

论文线性流程图模板下载

用亿图图示流程图软件,里面有很多自带的流程图模板。直接下载软件打开就可以用了,还可以保存PPT,pdf,Word多种工作格式。

就是觉得好看才用的!

直接百度迅捷流程图制作软件,然后进入官网,就可以在“模板下载”中使用漂亮的模板了。

也可以在软件中,点击“文件”—"新建"按钮,在“精品模板”中选择模板制作。

好看的流程图模板有很多,下面是在迅捷画图网站中下载的几款流程图模板分享给你希望可以带来帮助。

1. Kmaster技术架构流程图

该流程图为Kmaster技术架构流程图,通过使用一些简单的流程图图形组合而成。

2. 市场活动业务流程图

该市场活动业务流程图通过对活动前,活动中以及活动后的三个进程进行展开,每个进程中所涉及的事件也都总结在内。

3. 产品经理工作流程图

该流程图为产品经理工作流程图,通过对项目需求,设计,研发,发布四个不同阶段所具备的能力进行总结归纳绘制而成。

4. 需求分析过程流程图

这是一个完整的需求分析过程流程图,通过使用流程图对某一问题进行剖析从而得到自己想要的结果,该需求分析过程流程图配色鲜明使用简单。

5. 公司发展历程时间轴流程图

该流程图为公司发展历程时间轴流程图, 将在不同时间段所发生的事情进行总结归纳绘制而成。

希望上述的模板可以给你带来帮助,想要查看更多模板,可以在迅捷画图网站中进行查看使用。

可以去怪人网看看 做了两年的PPT一直都在怪人网上下载模板怪人网上有很多不错的毕业论文答辩PPT模板自己需要哪个下哪个关键是不要钱

相关百科

热门百科

首页
发表服务