首页

> 学术论文知识库

首页 学术论文知识库 问题

如何分析毕业论文问卷数据

发布时间:

如何分析毕业论文问卷数据

一、学习背景

本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。

二、问卷编制+数据分析类论文框架

(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。

如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。

引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越...,B就越...”、“C的总体水平较低/高”、“D的....比E的....水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。

(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。

采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。

以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!

看你问卷上面有哪些类型题目选择统计方法

你的思路反了,你应该首先根据你做这个问卷的目的来确定一系列假设和分析思路,之后才能有针对性的选择分析方法。比如你想比较不同性别在某个量表维度是否有差异,那就用均值t检验如果你想分析 性别、年龄、学历等多个自变量对一个量表总体的影响,那就用回归分析

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

如何分析毕业论文调查问卷的数据

论文问卷数据的分析,看起来简单,好像每个人都会做。但是做起来还真的有点难度。很多初次使用问卷调查方法的人大多以为,问卷数据分析嘛,无外乎对单选题做做频率分析,看看选择不同的选项的人占比有多少。对于评分题目,看看均值是多少,不同性别,年龄段的人群均值是多少。对于一般的小调查,这样粗略的分析可能够了,但是对于学术论文中的问卷分析而言,以上所做的工作,只是其最简单的一部分,后面还有大量的工作要做。

51调查,让调查更简单方便!

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

1.设计问卷问题条款不要太多,多则调查效果不好。与你调研目的关联不大的项目都可不考虑,如性别、职业、旅游偏好等。每条问题的选项要符合完整性,几项选择要不重复、不遗漏、同等级。根据你的需求,至少需要有年龄段划分、旅游消费、停留天数等项目,应当考虑从旅游六要素细分游客花费结构。2.实施调查设计抽样调查实施方式、实施场所、样本空间等问题,力求保证调查的时空分布随机性、样本空间代表性。3.数据录入建议用excel,简单实用,功能足够,不建议用spss,华而不实,操作繁琐,不够灵活。4.数据处理初等数学就差不多够用了,求和、求均值、求差求比,简单的侧重于市场份额和市场增长率两方面就能得出很多有用的结论,若精力、技术足够,建议用一些稍微高级一点点地数据模型算法等等,然后制成图表。5.调研分析根据数据结果,结合相关的宏观旅游数据,提出自己的观点,引用自己的数据论证。说的有点简单,实际上是一门学问,作好了很难,做简单了很容易,如果会用数理统计,数据前期预处理做点数据标准化、信度效度校验,初步建模后作个误差校验,即便不做误差反馈,估计应付个硕博论文什么的是没什么问题的。

对比分析法、平均和变异分析法、综合评价分析法、结构分析法、平衡分析法、动态分析法、因素分析法、相关分析法层次分析法结构分析方程模型参数检验、非参数检验、相关分析、回归分析、聚类分析、判别分析、主成份分析(归一化除以各自标准差)、因子分析、关联分析、决策树分析、贝叶斯、时间序列。

毕业论文纸质问卷数据分析

论文的前言也叫引言,是正文前面一段短文。前言是论文的开场白,目的是向读者说明本研究的来龙去脉,吸引读者对本篇论文产生兴趣,对正文起到提纲掣领和引导阅读兴趣的作用。在写前言之前首先应明确几个基本问题:你想通过本文说明什么问题?有哪些新的发现,是否有学术价值?一般读者读了前言以后,可清楚地知道作者为什么选择该题目进行研究。为此,在写前言以前,要尽可能多地了解相关的内容,收集前人和别人已有工作的主要资料,说明本研究设想的合理性。1、 引言应含概的内容引言作为论文的开头,以简短的篇幅介绍论文的写作背景和目的,缘起和提出研究要求的现实情况,以及相关领域内前人所做的工作和研究的概况,说明本研究与前工作的关系,目前的研究热点、存在的问题及作者的工作意义,引出本文的主题给读者以引导。引言也可点明本文的理论依据、实验基础和研究方法,简单阐述其研究内容;三言两语预示本研究的结果、意义和前景,但不必展开讨论。前言在内容上应包括:为什么要进行这项研究?立题的理论或实践依据是什么?拟创新点?理论与(或)实践意义是什么?首先要适当介绍历史背景和理论根据,前人或他人对本题的研究进展和取得的成果及在学术上是否存在不同的学术观点。明确地告诉读者你为什么要进行这项研究,语句要简洁、开门见山。如果研究的项目是别人从未开展过的,这时创新性是显而易见的,要说明研究的创新点。但大部分情况下,研究的项目是前人开展过的,这时一定要说明此研究与被研究的不同之处和本质上的区别,而不是单纯的重复前人的工作。2、 前言的写作方法(1)、开门见山,不绕圈子。避免大篇幅地讲述历史渊源和立题研究过程。(2)、言简意赅,突出重点。不应过多叙述同行熟知的及教科书中的常识性内容,确有必要提及他人的研究成果和基本原理时,只需以参考引文的形式标出即可。在引言中提示本文的工作和观点时,意思应明确,语言应简练。(3)、回顾历史要有重点,内容要紧扣文章标题,围绕标题介绍背景,用几句话概括即可;在提示所用的方法时,不要求写出方法、结果,不要展开讨论;虽可适当引用过去的文献内容,但不要长篇罗列,不能把前言写成该研究的历史发展;不要把前言写成文献小综述,更不要去重复说明那些教科书上已有,或本领域研究人员所共知的常识性内容。(4)、尊重科学,实事求是。在前言中,评价论文的价值要恰如其分、实事求是,用词要科学,对本文的创新性最好不要使用本研究国内首创、首次报道、填补了国内空白、有很高的学术价值、本研究内容国内未见报道或本研究处于国内外领先水平等不适当的自我评语。(5)、前言的内容不应与摘要雷同,注意不用客套话,如才疏学浅、水平有限、恳请指正、抛砖引玉之类的语言;前言最好不分段论述,不要插图、列表,不进行公式的推导与证明。(6)、前言的篇幅一般不要太长,太长可致读者乏味,太短则不易交待清楚,一篇3 000一5 000字的论文,引言字数一般掌握在200一250字为宜。1. 引言书写内容和格式(1)说明论文的主题、范围和目的。(3)预期结果或本研究意义。(4)引言一般不分段,长短视论文内容而定,涉及基础研究的论文引言较长,临床病例分析宜短。国外大多论文引言较长,一般在千字左右,这可能与国外内数期刊严格限制论文字数有关所谓的引言就是为论文的写作立题,目的是引出下文。一篇论文只有命题成立,才有必要继续写下去,否则论文的写作就失去了意义。一般的引言包括这样两层意思:一是立题的背景,说明论文选题在本学科领域的地位、作用以及目前研究的现状,特别是研究中存在的或没有解决的问题。二是针对现有研究的状况,确立本文拟要解决的问题,从而引出下文。一般作者在引言写作中存在这样两方面的问题。

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

问卷题目设计会直接影响数据质量,前期做好问卷设计很重要的。

如果希望研究差异关系,可使用卡方检验、方差分析等。如研究影响关系可能用到相关分析、回归分析等。如果想对样本分类,可能会用到聚类分析等方法。spssau的分析结果里支持智能文字分析,再结合你的专业知识扩展讨论部分。

如果没有问卷设计或分析思路,可以参考SPSSAU里的问卷设计思路模板。

问题一:如何用数据分析方法对调查问卷进行分析 看图演示。 其中开始新建了一个叫“汇总”的表,作为模板,然后复制这个表,改名叫1,输入第一张问卷结果,再复制一张表,输入第二张问卷结果。。。直至输入完毕。 然后在汇总表输入求和公式。 B2公式如下: =SUM('汇总 (2):汇总 (4)'!B3) 其中汇总 (2)是第一张问卷结果表名,汇总 (4)是最后一张问卷表名,我这图为了简便就做了3个结果表,然后复制公式到所有单元格。 问题二:如何用Excel来进行调查问卷的整理、统计和分析? 2007版 数据――数据分析 97-2003版 好像是工具里忘了 你用帮助搜索一下, 问题三:如何处理问卷调查数据进行统计分析 你提到了统计分析表格,这个提法是错误的 没有这个说法 你可以先设计研究目的,做出研究假设,然后根据假设做分析,然后制作成表格 我经常帮别人做这类的数据统计分析 问题四:问卷调查,“数据分析”具体指什么 就是对进行问卷调查后,回收回来的问卷数据进行分析。 首先你要明确数据分析的目的,也可以说是这个问卷调查的问题。 然后根据目的 并结合问卷,来构思分析思路,通过怎么样的分析能够实现目的 之后就是用软件对数据进行分析 以实现目的 问题五:录入好的调查问卷,该如何进行数据分析? 在设计时就需要考虑到统计方便,才能便于汇总。用excel就可以。 问题六:如何用Excel分析调查问卷数据 看图演示。 其中开始新建了一个叫“汇总”的表,作为模板,然后复制这个表,改名叫1,输入第一张问卷结果,再复制一张表,输入第二张问卷结果。。。直至输入完毕。 然后在汇总表输入求和公式。 B2公式如下: =SU哗('汇总 (2):汇总 (4)'!B3) 其中汇总 (2)是第一张问卷结果表名,汇总 (4)是最后一张问卷表名,我这图为了简便就做了3个结果表,然后复制公式到所有单元格。 问题七:如何写调查问卷的数据分析 这个你要根据设计的问卷、然后结合你的分析思路,也就是你要通过问卷得出什么结论 这个就是数据分析 问题八:发布了百度问卷调查,怎么看数据 首先登陆我要调查网账号,然后进入会员中心点击会员中心的问卷列表,点击问卷右下角的统计分析按键,即可实时查看数据结果可以在页面上查看各个状态的数据,同时可以直接以Excel和Csv形式导出数据进行分析可以通过筛选功能,筛选出符合设置条件的数据 问题九:问卷调查如何分析和整理 从你的提问,是要了解如何分析和整理调查得来的数据。 通常使用表格“整理数据”,用“条形图”、折线图或“扇形图”等来“描述数据”。 用表格整理数据时,要注意列表,第一列是你要了解的情况“分类”,第二列就是“划记”,第三列是“人数”,第四列是“百分比”。 用划记法记录数据时,通常用“正”字,一笔代表一个数据。 分类的人数统计表做好后,就可以利用“条形图”或折线图或“扇形图”来“描述数据”,也可以用“频率分布直方图”来分析数据。 问题十:问卷调查所能用的统计方法 50分 1. 调查的样本量太小,计算出的结论可靠性不高。 例如看到一些研究生的论文,只发了几十份问卷调查表,就根据统计到的百分比写下十分肯定的结论。其实,是有问题的。 例如:调查“你对××活动喜欢的程度”,调查了45人。调查结果:非常喜欢2人,喜欢5人,一般10人,不太喜欢13人,不喜欢15人。作者统计出:喜欢和非常喜欢的共7人占调查人数45人的,不太喜欢和不喜欢的共28人,占。并根据和来进一步写结论。 但是,他忽略了调查的样本计算出率以后,还应该计算率的标准误和置信区间。如本例喜欢率为。还应该计算率的标准误Sp。 _________ _________________ 本例,喜欢率的标准误 Sp =√P(1-P)/n = √()/45 = % 按样本量n,查t值表上, n-1的和 的值,查得= , =, 根据喜欢率 %、标准误 % 和的值,可计算出: 95% 置信区间:±×=~。(置信区间上下限的差值高达)。 95% 置信区间的含义是,如果用样本的喜欢率来估计总体的喜欢率时,有95%的可能是在~的区间之间。这样高达的区间意味着是不太可信的。 但是,如果扩大样本量到450人,4500人,而统计出的喜欢率也是。由于调查的样本量扩大了,标准误 Sp会缩小,计算出的95% 置信区间也就缩小为~和~。这时用样本率估计总体率时,上下限的差值很接近,才是可信的。 2. 调查数据的统计分析过于简单。 目前看到的调查数据统计分析大都比较简单。只是计算各个问卷指标的百分比,如上面举例的喜欢率等等。 要避免统计分析过于简单,首先,在做调查表设计时,就事先要考虑好调查数据的统计分析方法。例如同样是调查“你对××活动喜欢的程度”,除了要扩大调查样本量外,在调查表中增加调查性别和年龄。这样就可以采用一种较为复杂的方法――交叉分析。交叉分析是分析“年龄”、 “性别”和“对××活动喜欢程度”三个变量之间的关系。假设不分类统计时,喜欢率是。交叉分析后就会发现由于性别的不同,年龄段的不同喜欢率是不同的。 例如:2005年国民体质监测问卷调查中,对“睡眠时间”的统计分析,如果只是简单地计算某市成年男子2473人的问卷,只能统计出:睡眠6小时以下的人为,睡眠6~9小时的,睡眠9小时以上的13%。但是,如果增加年龄因素,分年龄段进行统计就可以看到,各年龄段的百分比是不同的(统计表略)。利用分年龄段的百分比还可以画出折线图(图略)。从图上更可以清楚的显示出:随着年龄增加,睡眠时间逐渐减少的趋势。 上述统计分析方法比较简单。但是,仅靠简单的统计方法来处理问卷调查数据是十分可惜的,因为大量的数据信息还没有充分利用。所以,设计问卷时,就应该注意到,让收集到的调查数据能做多因素统计分析(如:回归分析,因子分析等)。下面是我帮助或指导有关单位做过的统计分析实例: 例1:2005年国民体质监测的调查问卷内容中,包括了各人的文化程度,职业,工作、生活和体育锻炼等方面的许多问题。为了分析这些调查内容和各人的体质有什么关系,找出哪些因素对体质的好......>>

毕业论文问卷设计和数据分析

调查问卷又称调查表或询问表,是以问题的形式系统地记载调查内容的一种印件。问卷可以是表格式、卡片式或簿记式。设计问卷,是询问调查的关键。完美的问卷必须具备两个功能,即能将问题传达给被问的人和使被问者乐于回答。要完成这两个功能,问卷设计时应当遵循一定的原则和程序,如时间顺序、类别顺序等,回答方式可以分为量表应答式、开放式、封闭式。

1.  明确你们研究的主题是什么

2.  明确设计者(即研究主体:你们)想通过问卷调查获取的信息有哪些

这点必须通过阅读文献来进行查漏补缺:  如果通过文献阅读就能够获知想要的信息,那么就  根本不必进行问卷调查; 因为你想获取的信息并不都是必须要通过问卷调查来获取的,要清  楚一点,你是站在学术共同体内已有的研究经验上展开研究的,  前人所作的工作某种意义上  就是为你服务的。

具体进行问卷内容设计时,  我们分两部分进行讲述,即问题和选项的设计。

51调查,让调查更简单方便!

一、问卷类型

问卷调查分为两大类:即量表问卷和非量表问卷。

量表问卷通常更多用于学术研究,其特点在于更多的态度认知题项,体现样本人群对于某事物的态度看法态度情况等,通过对各研究变量的关系研究,找出其中内涵逻辑关系。

非量表问卷更多体现对某现状的事实情况和基本态度调研,比如样本进行网购的原因,不进行网购原因,网购平台的使用现状情况等。此类问卷更多在于分析思路的逻辑和现状情况的了解分析,以及样本的基本态度情况。

二、分析方法

从分析方法上,量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。以及可以使用信度、效度、因子分析等方法。

非量表题其最大的特点为大部分为单选题、多选题或者排序填空题等,但很少 有出现量表题(是量表题是指类似答项为“非常不同意”,“比较不同意”,“中立”,“比较同意”和 “非常同意”之类的问题)更多是使用基本频数分析和交叉分析等,同时使用图形和表格进行多样化展示。

三、分析结果

问卷数据一般使用SPSS进行分析即可,分析基础比较薄弱,可使用SPSSAU进行分析。SPSSAU分析结果生成的是“类三线表”的格式,系统会自动生成指标解读报告。

SPSSAU智能分析

四、撰写调研报告

根据问卷分析顺序将分析结果写成有逻辑性的报告,并且在结论基础上对应提出有意义有价值的建议措施等。

关于数据报告的撰写,单独从数据分析角度上看,建议以实际需求出发,比如研究差异关系,那么首先得需要知道有没有差异,接着有了差异,具体差异情况如何。有了差异或者没有差异时,对应的建议措施应该如何。按照这样的思路,相信数据研究报告的撰写并非难事。

研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。

参考资料:

论文答辩问如何使用数据分析

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

1、获取数据

获取数据也有两种途径,要么就是手上有的或者是能直接使用到的现成数据,还有一种就是二手数据。现在的数据分析库主要分为了调查数据和政府数据。

2、整理数据

整理数据就是对观察、调查、实验所得来的数据资料进行检验与归类。得出能够反映总体综合特征的统计资料的工作过程。并且,对已经整理过的资料(包括历史资料)进行再加工也属于统计整理。

3、呈现数据

当数据收集充分且真实过后,研究者可运用数据,但要清楚的说明数据来源以及如何对原始的数据进行加工的。需要尽可能的描述获取数据的过程,提供足够多的细节,以便同行能重复研究过程,并保障原生作者的创作性。

数据可从网上搜索,统计年鉴及各大数据库都有,再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型。

推论统计学被用来将资料中的数据模型化,计算它的机率并且做出对于母体的推论。这个推论可能以对/错问题的答案所呈现(假设检定)。

对于数字特征量的估计(估计),对于未来观察的预测,关联性的预测(相关性),或是将关系模型化(回归)。其他的模型化技术包括变异数分析(ANOVA),时间序列,以及数据挖掘。

为了实际的理由,我们选择研究母体的子集代替研究母体的每一笔资料,这个子集称做样本。以某种经验设计实验所搜集的样本叫做资料。

资料是统计分析的对象,并且被用做两种相关的用途:描述和推论。描述统计学处理有关叙述的问题:资料是否可以被有效的摘要,不论是以数学或是图片表现,以用来代表母体的性质?基础的数学描述包括了平均数和标准差。图像的摘要则包含了许多种的表和图。

相关百科

热门百科

首页
发表服务