好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!
(1)n阶埃尔米特矩阵A为正定(半正定)矩阵的充要条件是A的所有特征值大于等于0。(2)若A是n阶埃尔米特矩阵,其特征值对角阵为V,则存在一个酉矩阵U,使AU=UV。(3)若A是n阶埃尔米特矩阵,其弗罗伯尼范数的平方等于其所有特征值的平方和。(4)斜埃尔米特矩阵为A的共轭转置为-A斜埃尔米特矩阵的特征值全是实数。更进一步,斜埃尔米特矩阵都是正规矩阵。因此它们是可对角化的,它们不同的特征向量一定是正交的。
埃尔米特矩阵就是Hermite阵。Hermite矩阵又称共轭矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。
hermitian矩阵:厄米特矩阵(Hermitian Matrix,又译作“埃尔米特矩阵”或“厄米矩阵”),指的是自共轭矩阵。矩阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。
n阶复方阵A的对称单元互为共轭,即A的共轭转置矩阵等于它本身,则A是厄米特矩阵(Hermitian Matrix)。
Hermite(矩阵的性质):
1、对角线元素是实数
2、Hermite矩阵是实对称矩阵的推广
推论:
(1)n阶厄米特矩阵A为正定(半正定)矩阵的充要条件是A的所有特征值大于(大于等于)0。
(2)若A是n阶厄米特矩阵,其特征值对角阵为V,则存在一个酉矩阵U,使AU=UV。
(3)若A是n阶厄米特矩阵,其弗罗伯尼范数的平方等于其所有特征值的平方和。
(4)主对角线元素皆为实数的埃尔米特矩阵的特征值均为实数, 斜埃尔米特矩阵的特征值为零或纯虚数。
扩展资料
矩阵 A=[aij]∈MnA=[aij]∈Mn 称为 Hermite 的,如果 A=A∗A=A∗;它是斜 Hermite 的,如果 A=−A∗A=−A∗.
对于 A,B∈MnA,B∈Mn,可得出很多简单明了的结论:
(1) A+A∗A+A∗, AA∗AA∗ 以及 A∗AA∗A 都是 Hermite 的
(2) 如果 AA 是 Hermite 的,那么对所有 k=1,2,3,⋯k=1,2,3,⋯, AkAk 都是 Hermite 的. 如果 AA 还是非奇异的,那么 A−1A−1是 Hermite 的
(3) A−A∗A−A∗ 是斜 Hermite 的
(4) 如果 AA 是 Hermite 的,那么 iAiA 是斜 Hermite 的;如果 AA 是斜 Hermite 的,那么 iAiA 是 Hermite 的
(5) 如果 A=C+iDA=C+iD, 其中 C,D∈Mn(R)C,D∈Mn(R)(AA 的实部与虚部),那么 AA 是 Hermite 的,当且仅当 CC 是对称的,且 DD 是斜对称的
(6) 实对称矩阵是复的 Hermite 矩阵
参考资料来源:百度百科—厄米特矩阵
(1)逐个输入矩阵,如:A=[1 3 2; 1/3 1 2; 1/2 1/2 1](2)用函数eig,如:[VA,DA]=eig(A)VA为特征向量矩阵,每列一个特征向量,DA为对角矩阵,每个对角线元素为一个特征值。(3)最大特征根是最大特征值吧?运算结果DA= + + + + + + + + - 所以A矩阵的最大特征根为.(4)其他矩阵类推。
一般使用初等行变换或者伴随矩阵方法,来求逆矩阵。
矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:
齐白石是画家,曾经干过木匠,华罗庚是数学家,曾经干过图书馆管理员
齐白石是画家,他画的虾很出名,是画国画的,华罗庚是数学家
奇异值分解定理:设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得:A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。说明:1、 奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。2、 奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。matlab奇异值分解函数 svd格式 s = svd (A) %返回矩阵A的奇异值向量[U,S,V] = svd(A) %返回一个与A同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列[U1,S1,V1]=svd(X,0) %产生A的“经济型”分解,只计算出矩阵U的前n列和n×n阶的S。说明:1.“经济型”分解节省存储空间。2. U*S*V'=U1*S1*V1'。2 矩阵近似值奇异值分解在统计中的主要应用为主成分分析(PCA),它是一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面。PCA算法的作用是把数据集映射到低维空间中去。数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。3 应用在很长时间内,奇异值分解都无法并行处理。(虽然 Google 早就有了MapReduce 等并行计算的工具,但是由于奇异值分解很难拆成不相关子运算,即使在 Google 内部以前也无法利用并行计算的优势来分解矩阵。)最近,Google 中国的张智威博士和几个中国的工程师及实习生已经实现了奇异值分解的并行算法,这是 Google中国对世界的一个贡献。
齐白石(1864-1957),湖南湘潭人,二十世纪中国画艺术大师,二十世纪十大书法家,画家之一,世界文化名人。画家生平 齐白石1864年元旦(清同治二年癸亥十一月二十二日)出生于湘潭县白石铺杏子坞,1957年9月16日(丁酉年八月二十三日)病逝于北京,终年九十四岁。宗族派名纯芝,小名阿芝,名璜,字渭清,号兰亭、濒生,别号白石山人,遂以齐白石名行世;并有齐大、木人、木居士、红豆生、星塘老屋后人、借山翁、借山吟馆主者、寄园、萍翁、寄萍堂主人、龙山社长、三百石印富翁、百树梨花主人等大量笔名与自号。 齐白石家道贫寒,少时读书一年,牧牛砍柴之余读书习画。1877年做木匠学徒,次年改学雕花木工,曾习摹《芥子园画传》并据以作雕花新样。1888年起始学画,曾任龙山诗社社长。1890年二十六岁时转从萧芗陔、文少可学画像,二十七岁始从胡沁园、陈少蕃习诗文书画。三十七岁拜硕儒王闿运为师,并先后与王仲言、黎松庵、杨度等结为师友。齐白石在家乡先后居出生地星斗塘、梅公祠借山吟馆、茹家冲寄萍堂。自四十岁起,离乡出游,五出五归,遍历陕、豫、京、冀、鄂、赣、沪、苏及两广等地,饱览名山大川,广结当世名人,樊樊山、夏午诒、郭葆荪等皆为挚友。画风由工转写,书法由何绍基体转学魏碑,篆刻由丁、黄一路改学赵之谦体。五十五岁避乱北上,两年后定居北京。时与陈师曾、徐悲鸿、罗瘿公、林风眠等相过从。 1926年,齐白石任国立北平艺术专科学校名誉教授、北平美术作家协会名誉会长、中央美术学院名誉教授、中央文史馆研究馆员、中国人民对外文化协会理事、中国画院名誉院长、北京中国画研究会主席、全国美术家协会主席;1949年7月、1953年9月两次出席中华全国文学艺术工作者代表大会,连续当选为全国文联委员;1954年8月当选第一届全国人民代表大会代表;与毛泽东主席交谊甚深并受到过接见;1953年1月文化部授予其荣誉奖状及“人民艺术家”称号;1955年12月德意志民主共和国艺术科学院授予其通讯院士荣誉状;1956年4月世界和平理事会授予其1955年度国际和平奖金,9月举行授奖仪式;1963年被世界和平理事会推举为世界文化名人。抗日战争期间,表示“画不卖与官家”。1946年重操卖画治印生涯,同年赴南京、上海举办个展,并任北平艺专名誉教授。著有《借山吟馆诗草》、《白石诗草》、《白石印草》、《白石老人自传》等。出版有《齐白石全集》等各种画集近百种。七十四岁游蜀,与黄宾虹、金松岑相见。艺术风格与主张 齐白石主张艺术“妙在似与不似之间”;衰年变法,绘画师法徐渭、朱耷、石涛、吴昌硕等,形成独特的大写意国画风格,开红花墨叶一派,尤以瓜果菜蔬花鸟虫鱼为工绝,兼及人物、山水,名重一时,与吴昌硕共享“南吴北齐”之誉;以其纯朴的民间艺术风格与传统的文人画风相融合,达到了中国现代花鸟画最高峰。篆刻初学丁敬、黄小松,后仿赵撝叔,并取法汉印;见《祀三公山碑》、《天发神谶碑》,篆法一变再变,印风雄奇恣肆,为近现代印风嬗变期代表人物。其书法广临碑帖,历宗何绍基、李北海、金冬心、郑板桥诸家,尤以篆、行书见长。诗不求工,无意唐宋,师法自然,书写性灵,别具一格。其画印书诗人称四绝。一生勤奋,砚耕不辍,自食其力,品行高洁,尤具民族气节。留下画作三万余幅、诗词三千余首、自述及其他文稿并手迹多卷。其作品以多种形式一再印制行世。齐白石作品的艺术特色 齐白石在绘画艺术上受陈师曾影响甚大,他同时吸取吴昌硕之长。他专长花鸟,笔酣墨饱,力健有锋。但画虫则一丝不苟,极为精细。他还推崇徐渭、朱耷、石涛、金农。尤工虾蟹、蝉、蝶、鱼、鸟、水墨淋漓,洋溢着自然界生气勃勃的气息。山水构图奇异不落旧蹊,极富创造精神,篆刻独出手眼,书法卓然不群,蔚为大家。齐白石的画,反对不切实际的空想,他经常注意花、鸟、虫、鱼的特点,揣摩它们的精神。他曾说:为万虫写照,为百鸟张神,要自己画出自己的面目。他的题句非常诙谐巧妙,他画的两只小鸡争夺一条小虫,题曰;“他日相呼”。一幅《棉花图》题曰:“花开天下暖,花落天下寒”。《不倒翁图》题“秋扇摇摇两面白,官袍楚楚通身黑。”齐白石作品的市场行情 齐白石一生创作勤奋,作画极多,一天不画画心慌,五天不刻印手痒,创作多得惊人,好得出奇,仅1953年一年,大小作品就有600多幅。1922年,陈师曾把齐白石的画介绍到东京,参加中日联合会绘画展览会,结果大受欢迎。全部以高价卖出,但当时在国内他的画作价却很低。20年代,齐白石得到徐悲鸿的提携,作品逐渐被收藏家所认识,价格稳步提高。现在,国内一级市场已难见到齐白石作品进行公开出售,书画商店见到他的真迹自会以高价收购,而标价出售则极少能见到。在香港和纽约市场,每年固定拍卖齐白石作品,他是作品被拍卖最多的现代画家。在香港市场,他的最新价格大约是30-100万港元,较高价格是1989年创造的,达120万港元。国内拍卖市场中,齐白石的价格最高,最高记录是嘉德拍卖公司拍卖的一件《山水》册页,为517万元。后来嘉德公司又搞了一次齐白石作品专场拍卖,效果虽然较好,但此后齐白石作品的价格一直处于较低状态。生活中的两三事 抗日战争时期,北平伪警司令、大特务头子宣铁吾过生日,硬邀请国画大师齐白石 (1863一1957年)赴宴作画。 齐白石来到宴会上, 环顾了一下满堂宾客,略为思索,铺纸挥洒。 转眼之间,一只水墨螃蟹跃然纸上。 众人赞不绝口,宣铁吾喜形于色。 不料,齐白石笔锋轻轻一挥,在画上题了一行字--“横行到几时”,后书“铁吾将军” , 然后仰头拂袖而去。 一个汉奸求画,齐白石画了一个涂着白鼻子,头戴乌纱帽的不倒翁,还题了一首诗: 乌纱白扇俨然官, 不倒原来泥半团, 将妆忽然来打破, 浑身何处有心肝? 1937年,日本侵略军占领了北平。 齐白石为了不受敌人利用,坚持闭门不出,并在门口 贴出告示,上书:“中外官长要买白石之画者,用代表人可矣, 不必亲驾到门,从来官 不入民家,官入民家,主人不利,谨此告知,恕不接见。” 齐白石还嫌不够,又画了一幅画来表明自己的心迹。 画面很特殊,一般人画悲翠时,都让它站在石头或荷径上,窥伺着水面上的鱼儿;齐白 石却一反常态, 不去画水面上的鲟鱼,而画深水中的虾,并在画上题字:“从来画悲翠 者必画鱼,余独画虾,虾不浮,悲翠奈何? ”齐白石闭门谢客,自喻为虾,并把作官的 汉奸与日中人比作裴翠,意义深藏,发人深思。 齐白石70多岁的时候,对人说:我才知道,自己不会画画。人们齐声称赞老人的谦逊。老画家说,我真的不会画。人们越发称赞,当然没有人相信他.华罗庚于1910年生于江苏省金坛县一个小商人家庭。 1925年,初中毕业后就因家境贫困无法继续升学。1928年,18岁的华罗庚在他的数学老师王维克的推荐下,到金坛中学担任庶务员。然而不幸,他在这年患了伤寒症,卧床达五个月之久,从此左腿瘫痪。但他并不悲观、气馁,而是顽强地发奋自学。有一次,他发现苏家驹教授关于五次代数方程求解的一篇论文中有误:一个十二阶行列式的值算得不对,于是他把自己的计算结果和看法写成题为《苏家驹之代数的五次方程式解法不能成立的理由》的文章,投寄给上海《科学》杂志社。1930年,此文在《科学》杂志上发表,这时华罗庚年仅20岁。就是这篇论文,完全改变了华罗庚以后的生活道路。 当时正在清华大学担任数学系主任的熊庆来看到了这篇论文后,大为赞赏。到处打听华罗庚是哪个大学的教授,大家都说不知道。碰巧数学系有位教员名叫唐培经,知道华罗庚这个人。他告诉熊庆来,说华罗庚并不是什么大学教授,而只是一个自学青年。熊庆来爱才心切,并不在乎学历,当即托唐培经邀请华罗庚来清华大学工作。1931年,唐培经拿着华罗庚寄来的照片到北京前门火车站去接由金坛北上的华罗庚。华罗庚,这位未来的大数学家,当时就是这样拖着残腿、柱着拐仗走进了清华园。起初,他在数学系当助理员,经管收发信函兼打字,并保管图书资料。他一边工作,一边自学。熊庆来还让他经常跟学生一道去教室听课。勤奋好学的华罗庚只用了一年时间,就把大学数学系的全部课程学完了,学问大有长进。熊庆来对这位年轻人十分器重,有时碰到了复杂的计算也会大声喊道:“华罗庚,过来一下,帮我算算这道题!”两年后,华罗庚被破格提升为助教,继而升为讲师。后来,熊庆来又选送他去英国剑桥大学深造。1938年,华罗庚回国,任西南联大教授,年仅28岁。 华罗庚后来成为世界著名的数学家,在数论、矩阵几何学、典型群、自守函数论、多个复变数函数论、偏微分方程等很多领域都作出了卓越的贡献。他著有论文二百余篇、专著十本,成为美国科学院国外院士,法国南锡大学与香港中文大学荣誉博士。他的名字已进入美国华盛顿斯密司一宋尼博物馆,并被列为芝加哥科学技术博物馆中当今八十八个数学伟人之一。 1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。 1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。 新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。 华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。 据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。 从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。
证明: 设a1,a2,...,an是A的n个不同的特征值.则存在可逆矩阵P, 使 P^-1AP=diag(a1,...,an)=B(记为B)即有 A=PBP^-1.又 f(λ)=|λE-A|=(λ-a1)(λ-a2)...(λ-an).所以 f(A)=(A-a1E)(A-a2E)...(A-anE) =(PBP^-1-a1E)(PBP^-1-a2E)...(PBP^-1-anE) =P(B-a1E)(B-a2E)...(B-anE)P^-1 =P0P^-1 =0[注意此处 B-aiE 是对角矩阵, 第i行第i列位置是0, i=1,2,...,n 对角矩阵的乘积是主对角线上对应元素相乘 而B-a1E,B-a2E,...,B-anE分别在a11,a22,...,ann位置为0 故其乘积等于0矩阵]呵呵 你也没分可加了!
[证明] 因为n阶矩阵A具有n个两两不同的特征值, 令这些特征值为λ1, λ2, …, λn, 则f(λi) = |λiE - A| = 0, i = 1, 2, …, n. 又因为对应于不同的特征值的特征向量是线性无关的, 所以A具有n个线性无关的特征向量, 令这些特征向量为p1, p2, …, pn. 于是有可逆矩阵P = (p1, p2, …, pn)使得 P^{-1}AP = [λ1 0 … 00 λ2 … 0... ... ... ...0 0 ... λn] = D, 而且P^{-1}f(A)P = f(P^{-1}AP) = f(D) = [f(λ1) 0 … 0 0 f(λ2) … 0 ... ... ... ... 0 0 ... f(λn)] = O. 由此可得 f(A) = POP^{-1} = O. [参考文献] 张小向, 陈建龙, 线性代数学习指导, 科学出版社, 2008. 周建华, 陈建龙, 张小向, 几何与代数, 科学出版社, 2009.
设矩阵A的特征值为λ则|A-λE|=1-λ2221-λ2221-λ第1行减去第2行=-1-λ1+λ021-λ2221-λ第2列加上第1列=-1-λ0023-λ2241-λ按第1行展开=(-1-λ)(λ²-4λ-5)=0解得λ=5,-1,-1当λ=5时,A-5E=-4222-4222-4第1行加上第2行×2,第3行减去第2行~0-662-4206-6第1行加上第3行,第2行加上第3行×3/2,第3行除以6~00020-201-1第2行除以2,交换次序~10-101-1000得到特征向量(1,1,1)^T当λ=-1时,A+E=222222222第2行减去第1行,第3行减去第1行,第1行除以2~111000000得到特征向量(1,-1,0)^T和(0,1,-1)^T所以矩阵的特征值为5,-1,-1对应的特征向量(1,1,1)^T,(1,-1,0)^T和(0,1,-1)^T
我也给你提供一些提示.如果A是非奇异的,则A的伴随矩阵与其逆矩阵仅差一个常数倍(即行列式的值),故A的伴随矩阵的特征值应是矩阵A的逆矩阵的特征值,即A的矩阵的特征值的倒数.如果A是奇异的,且A的秩