您当前的位置:首页 > 发表论文>论文发表

应用光学论文模板

2023-03-14 04:40 来源:学术参考网 作者:未知

应用光学论文模板

光学专业毕业论文提纲模板

光学专业毕业论文提纲怎么写?下面我以《在胡克参考球观念下诞生的新理论》论文提纲为例,为大家介绍论文提纲的写作技巧。

论文题目: 在胡克参考球观念下诞生的新理论

在光学的发展历史上,曾经有几位学者做出过杰出贡献。其中,依萨克-牛顿(I. Newton1642--1727)[1] 认为,光是发光体发射的一种微粒,人们通常说的粒子性。 到公元二十世纪初,爱因斯坦等人[2] 认为,光是一份一份的,每一份被称为光量子。综合牛顿与爱因斯坦的研究思想,作者经过详细思考后认为,一份光量子为一个独立的能量体,它是由更细微的能量颗粒按照某种方式集合而成的一个能量体,是一个具有空间形态的几何体。作者为了不再引进更多的新名称而称它为基本能量单元体。这种能量单元体颗粒也有学者称它为亚光子[3]。波动性代表人物惠更斯(C.Huygens,1629-1695)[4] 提出了光的球面波观点,作者不能理解的是:一个光粒子是怎样产生的一个球面波,一个子波的能量又是多少?恐怕科学巨匠和高手也不理解他的具体描述。

1 自然条件下的光辐射

一份光量子能量的大小,我们不可能将一份光量子的内部结构分拆开进行测量和计算至少在当前这个时代是这样。接下来我们只有间接地使它与粒子(实物体)发生相互作用后所产生的效应进行描述。

如示,设想,这些实物粒子在常温下处于稳定状态(只有温度处在绝对零度或附近时的实物粒子才可能处于基态),当它没有吸收外来能量时,也就不存在能量的外泻(辐射),这时它处于临时稳定状态。在中,从S 发出的光经透镜L 后照射一透明物质,光子-1从实物粒子之间的狭小空隙(真空区域)中穿刺而过,光子-2 被实物粒子所吸收;我们构想,这个理想化粒子具有吸收一切能量段光子的能力,将吸收的每份光子又完全彻底地辐射出去(在粒子中不作任何残留)。即是,认为实物粒子辐射出去的光子与它所吸入光子的能量完全相同。显然,粒子在这一过程中经历了两个阶段:它吸收一份光子便从初始的稳定状态跃升至高的能量状态,这过程即为能量的上涨阶段;而高能态的它是极不稳定的,?即开始泻能,从高能态辐射光子而回落到原有的初始状态。粒子所经历吸能和泻能这一过程的两个阶段,就认为是粒子完成了一次能量的上涨和回落,简称粒子能量的一次涨落。粒子能量的一次涨落总会经历一段时间过程(哪怕很短)。

在中我们假设粒子在发射光子-1 后又吸收相同能量的光子,然后再辐射出光子-2;这一过程所经历的时间称为粒子能量的一次涨落(称为一个周期),用符号T 表示。 在这个涨落周期内光子(在真空中)所运动的路程为CT, 即是:光子-1 和光子-2 之间的距离就称为一个涨落光程(为了直观,这里假定两份光子是在同一直线上),用符号λ0 表示。

为了与经典理论相对应,便将涨落光程另名为涨落长度,光的涨落长度对照成经典概念的光波[5] 波长λ0 。 由于不同能量光子与实物粒子发生相互作用的涨落周期各异,因而涨落长度λ也不相同。显然,光子能量与涨落长度成为一一对应。涨落周期T 的倒数称为涨落频率(将光的涨落频率对照理解成经典概念光波频率), 用符号у表示, у = 1?T 。为此,作者将新旧概念对照列表:

显然,不同颜色(或称为能量)的光,它涨落一次的时间不相同,涨落光程也不相同。即是,光的涨落长度不相同。光子能量与涨落长度成为单值对应。

2 新建概念和观点

2.1 胡克参考球

当一份光子从粒子中辐射出去以后,作者假想,光量子是沿实物粒子的自旋切线方向辐射出去的,所以它离开粒子时刻就具有一速度C 。在科学史上,胡克(R.Hooke,1635-1703)[6] 认为:光是由快的振动所组成, 可于刹那之间,或者说以非常大的速度,传播过任何距离;在均匀媒质中每一个振动都将产生一个圆球,这个圆球将恒稳地向外扩大。 胡克认为,光的行为如同声音在空气中的传播。 而现代研究认为,光是一种粒子,光子的运动方向是任意地自由取向, 即是:光子的运动方向有可能是OA、OB、OE 和 OF … 等方向的任意一个。 一份光子不可能同时射向两个或两个以上的几个方向,由于光子运动方向的不确定性,所以,作者为此设计一个数学模型半径为R = Ct 的参考球,并坚信它(光子)肯定会出现在这个圆球球面上的某一点,这个光子参考球如所示。

作为一个向外辐射能量(光子)的实物粒子O ,它不可能同时辐射出两份或两份以上的多份光子,因此,一个参考球的球面上就只有一份光子出现。由于它是不受我们的具体操控,也就不能确定它的具体方向,所以,它的运动方向是自由取向。经考证,最先提出扩散圆球概念的是胡克,作者构想的这个数学模型虽然与胡克所描述的物理意义大不相同,但提议将这个光子参考球命名为光子胡克参考球,简称为胡克参考球或胡克球。

2.2 惠更斯包络面

惠更斯(C.Huygens,1629-1695)提出的包络面概念及惠更斯原理:波所到达的每一点都可以看作是新的波源,从这些点发出的波叫做子波;而新的波面就是这些子波在同一时刻所到达位置的包迹。 惠更斯所称的子波,其实应该理解成胡克提出的扩散圆球 [6] 。

但惠更斯原理对客观?物的描述是不准确的,比如,在真空中运动的光子,是以发射源为参考点的。它不是按照惠更斯包络面形式向外部空间扩散, 而是以胡克参考球方式向外部空间扩散,如所示。只有当这份光子被空间某一实物粒子完全吸收以后,又被完全辐射出去并产生了一个胡克圆球,实物粒子就是这个胡克参考球的中心。显然,包络面是由很多个胡克参考球包络而形成的,于是我们得到:

跟包络面相互作用的每一个质点,都可以看着是新的'发射源或扰动中心,从这些点发出的胡克球叫做次圆球; 而新的包迹就是这些次圆球在同一时刻所到达位置的重叠。

3 综述与讨论

早期的胡克和惠更斯理论说的都是一个一个脉冲,而不是具有一定波长的波列。后来,数学家欧勒(L. Euler,1707-1783)[5]认为, 光谱里每一种颜色必与某一定光波波长相对应。这就是最早提出波动光学的基本模式。不难看出,光波一词,是人为的一种假设。

虽然后来有实验支持,但本文作者应用胡克参考球模型和惠更斯包络面概念相结合,同样对光的干涉、衍射、折射、反射、偏振及全息[7-11]等实验结果作出了更合理的解释。

包络面的物理意义:作者对惠更斯包络面的分析,设有包络面从点O 以速度C 向四周扩散,已知t 时刻的包络面是半径为R1 的球面S1。 用惠更斯原理杨发成理论来求(t + T )时刻的包络面。S1 面上的各点都可以看作新的扰动源,它们在T 时间内发出半径为Ct 的胡克球,这些胡克参考球的包迹, 便成为新的包络面S2 和S3 ,并且S2 和S3的扩展方向相反(由于光子能量作用在粒子上的涨落时间非常小,在此处讨论可以忽略它)。

4 结论

在真空中,一份光粒子出现在以源点为中心、半径为光速与时间乘积的球面上,这个数学模型称为胡克参考球; 两个或两个以上的多个胡克参考球球面在同一时刻所到达位置的包迹,称著包络面。

参考文献

[1] I . Newton , Phil . Trans . No .80 (Feb .1672) , 3075 .

[2] A . Einstein , Ann .d . Physik . (4) .17 (1905) , 132 ;20 (1906) , 199 .

[3] Chong An Zhang, Wide Existence of Wave with the Non- Medium Transmission in the Nature, MatterRegularity 12 (3) 207-214 (2003).

[4] Chr . Huygens , Traite de La Lumiere , Brighton Press, 1690 .

[5] L. Euler, Opuscula varii argumenti, Berlin (1746), 169 .

[6] R . Hooke , Micrographia . (1665) , 47 .

[7] D. Gabor, Nature, 161(1948),777; Proc. Roy. Soc., A, 197(1949),454; Proc. Roy. Soc., B, 64(1951),449.

[8] D. Gabor, Rev. Mod. Phys., 28(1956), 260.

大学光学小论文

光的干涉应用的新进展
光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。
光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。
一、全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。

从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。
二、光学千涉生物传感器的建立及其在多种生物分子识别中的应用
1.光学千涉生物传感器系统的设置
(1)光学干涉生物传感器的硬件构成
(2)聚荃乙烯薄膜厚度与光学常数的测定及软件的编译
2.光学干涉生物传感器敏感膜的构建
3.光学干涉生物传感器在多种类型分子识别中的应用
(1)酶标记的表面抗原一表面抗体相互作用
(2)寡核昔酸分子杂交实验
(3) L一天冬酞胺酶B细胞表位的筛选
(4)不同细胞与固定化凝集素的相互作用
三、当前光刻技术的主要研究领域及进展
1.光学光刻
光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。
2.极紫外光刻(EUVL)
极紫外光刻用波长为10-14纳米的极紫外光作 光源。虽然该技术最初被称为软X射线光刻,但实际上更类似于光学光刻。所不同的是由于在材料中的强烈吸收,其光学系统必须采用反射形式。如果EUVL得到应用,它甚至可能解决2012年的0.05微米及以后的问题,对此发展应予以足够重视。
总的来说,随着科学技术的迅速发展,在科学和技术领域中人们不断地利着光的干涉原理解决了许多复杂的实际问题。让我们更加深刻的认识光的干涉现象,以便日后更好的利用光的干涉知识解决生产及生活中的问题

写关于光学功能材料的论文,知道的给我一篇,没有的给我些资料,加图片,谢谢了。

  稀土掺杂氟化物多波长红外显示材料的研究
  摘 要
  本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。
  关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+
  Abstract
  This paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.
  Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+
  目 录
  摘要
  Abstract
  第一章 绪论 1
  1.1 稀土元素的光谱理论简介 1
  1.1.1 稀土元素简介 1
  1.1.2 稀土离子能级 1
  1.1.3 晶体场理论 2
  1.1.4 基质晶格的影响 2
  1.2 上转换发光材料的发展概况 3
  1.3 上转换发光的基本理论 4
  1.3.1 激发态吸收 4
  1.3.2 光子雪崩上转换 4
  1.3.3 能量传递上转换 5
  1.4 敏化机制与掺杂方式 6
  1.4.1 敏化机制 6
  1.4.2 掺杂方式 7
  1.5 上转换发光材料的应用 8
  1.6 本论文研究目的及内容 8
  第二章 红外激光显示材料的合成与表征 10
  2.1 红外激光显示材料的合成 10
  2.1.1 实验药品 10
  2.1.2 实验仪器 10
  2.1.3 样品的制备 11
  2.2 红外激光显示材料的表征 12
  2.2.1 XRD 12
  2.2.2 荧光光谱 12
  第三章 结果与讨论 14
  3.1 基质材料的确定 14
  3.2 助熔剂的选择 15
  3.3 烧结时间的确定 15
  3.4 烧结温度的确定 16
  3.5 掺杂浓度的确定 17
  结 论 21
  参考文献 22
  致 谢 23第一章 绪论
  1.1 稀土元素的光谱理论简介
  1.1.1 稀土元素简介
  稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。
  稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。
  稀土发光材料具有许多优点:
  (1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;
  (2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;
  (3)荧光寿命跨越从纳秒到毫秒6个数量级;
  (4)吸收激发能量的能力强,转换效率高;
  (5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。
  1.1.2稀土离子能级
  稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。
  稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。
  1.1.3 晶体场理论
  晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。
  稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。
  1.1.4 基质晶格的影响
  基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:
  (1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。
  1.2 上转换发光材料的发展概况
  发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。
  60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。
  从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。
  目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。
  迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。
  1.3 上转换发光的基本理论
  通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。
  1.3.1激发态吸收
  激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。

  图1-1 上转换的激发态吸收过程
  1.3.2 光子雪崩上转换
  光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。

  图1-2 光子雪崩上转换
  1.3.3能量传递上转换
  能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。

  (a)普通能量传递 (b)多步连续能量传递

  (c)交叉弛豫能量传递 (d)合作发光能量传递

  (e)合作敏化上转换能量传递
  图1-3 几种能量传递过程的示意图
  稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:
  Itamin ∝ Iexcitationn
  其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。
  1.4 敏化机制与掺杂方式
  1.4.1 敏化机制
  通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:
  Dexc+A→D+Aexc
  D表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。
  (1)直接上转换敏化
  对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。

  图1-4 直接上转换敏化
  (2)间接上转换敏化
  由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。

  图1-5 间接上转换敏化
  1.4.2 掺杂方式
  表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。
  表1-1 常见的掺杂体系
  稀土离子组合 激发波长 基质材料 敏化机制
  单掺杂 Er3+ 980nm ZrO2纳米晶体 —
  Nd3+ 576nm ZnO–SiO2–B2O3 —
  Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —
  双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化
  Yb3+:Ho3+ 980nm YVO4 直接敏化
  Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化
  Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化
  Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化
  Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化
  Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化
  三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化
  Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化
  Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化
  1.5 上转换发光材料的应用
  稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。
  1.6 本论文研究目的及内容
  Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。
  本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。
  第二章 红外激光显示材料的合成与表征
  经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。
  本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。
  2.1 红外激光显示材料的合成
  2.1.1 实验药品
  (1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。
  (2)ErF3、YbF3的配制
  制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。
  实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:
  Er2O3+6HNO3→2Er(NO3)3+3H2O
  Yb2O3+6HNO3→2Yb(NO3)3+3H2O
  再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:
  Er(NO3)3+3HF→ErF3↓+3HNO3
  Yb(NO3)3+3HF→YbF3↓+3HNO3
  生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。
  2.1.2 实验仪器
  SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)
  PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)
  202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)
  SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)
  WGY-10型荧光分光光度计(天津市港东科技发展有限公司)
  DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)
  1064nm半导体激光器(长春新产业光电技术有限公司)
  4-13型箱式电阻炉(沈阳市节能电炉厂)
  2.1.3 样品的制备
  (1)实验方法
  本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。
  高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。
  (2)实验步骤
  根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:

  图2-1 实验流程图
  2.2 红外激光显示材料的表征
  2.2.1 XRD
  X射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo M.Rietveld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。
  本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

求一篇关于大学物理光学论文 不要一搜网上出现一大片的那种不要学术性的、太专业的

《大学物理-光学》百度网盘资源免费下载

链接:

大学物理-光学|3.偏振.mp4|2.干涉.mp4|1.衍射.mp4

求一篇有关信息光学论文,比如激光全息技术研究进展什么的

引言
   光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你.
  
  利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束
  全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。
  1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。
  当代光全息学发展主要课题有:
  1. 球面透镜光学系统
  2. 光源和光学技术
  3. 平面全息图分析
  4. 体积全息图衍射
  5. 脉冲激光全息学
  6. 非线性记录,散斑和底片颗粒噪声
  7. 信息储存
  8. 彩色全息学
  9. 合成全息图
  10. 计算机产生全息图
  11. 复制,电视传输和非相干光全息图
  而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。
  本论文将就当代光全息学的研究与应用两大课题进行学术研究
  
  一. 当代光全息学研究
   球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象
   由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。
  从单一光源取得物波和参考波有如下图所示两种普通方法:
  A. 分波前法
  B. 分振幅法
  在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。
  激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。
  平面全息图分析
  用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。
  在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。
  正弦强度分布的周期d可以由下式决定:
  2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d
  式中当θ=15°,λ=0.5微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。
  体积全息图衍射
  基本的体积全息图对相干照明的响应可以用偶合波理论来描述。
  假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有
  sin /sin =sin /sin =n
  n为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。
  布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式:
   2dsinθ= /
  体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。
  
  
  二.光全息学典型应用
  高分辨率成像
  当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。
  当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。
  特征识别
  由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。
  匹配滤波与概念,形成与应用可由下图说明
  
  
  
  
   当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为
  
  这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。
  
  信息储存与编码
  全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。
  
  现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页