您当前的位置:首页 > 发表论文>论文发表

曲面面积毕业论文

2023-03-13 22:36 来源:学术参考网 作者:未知

曲面面积毕业论文

曲面面积是指一个图形或者是一个地方的大小,要用平方米,平方分米,平方厘米,平方毫米等国际标准计量单位名称表示。

曲面面积公式是:A=++Dyzxz22)()(1dxdy。曲面面积是指曲面表面的面积。所有这些投影的面积之和的极限(当所有S的直径趋于零时)存在。

曲面的面积。用曲线和曲线把曲面分成小块。每一小块在曲面的切平面上的投影的面积可以近似地表示为 就可当作的面积的近似值。可以用二重积分来计算曲面片的面积。具体的作法是,先将曲面划分成很小的一块块,在每一个小块上,用曲面的切平面片来近似曲面片的面积。

曲面面积计算公式为:A= + + D y z x z22)()(1dxdy。设A 点为曲面上一点,切平面为平面AGFE。dZ为FC。平面AGFE的面积dS×cosθ=dxdy θ为平面AGFE和平面ABCD的夹角。

曲面面积公式的推导,曲面微元/dxdy=cos微元法向量z轴夹角 欢迎收听考研高等数学的类最新章节声音“曲面面积公式的推导,曲面微元/dxdy=cos微元法。

6000字 的测绘毕业论文

我对测绘学的认识

学院:测绘学院 专业:测绘工程 班级:10级4班 姓名: 学号:

作为武汉大学测绘学院测绘工程专业的一名大一新生,我很有幸上了由几位著名的两院院士及教授主讲的《测绘学概论》,在这个课堂上,我不仅见到了在我国乃至世界都非常著名的院士、教授、专家,还在他们独道精辟的讲解下认识了测绘学这门学科,了解学习了很多关于测绘学的知识及其发展前景。作为专业的基础,我从课堂、图书、网络等各个方面积极的了解测绘学,拓宽了我的知识面,使我认识到测绘不是他们所说的“冷门专业”“辛苦专业”,获益匪浅,使我加深了对测绘的兴趣。下面我将从几个方面讲述我对测绘学的认识及感想。
测绘学古老而现代,绘学现在正在向一门刚兴起的学科—地球空间科学发展。测绘学是一门古老的学科,有着悠久的历史。测绘学的发展在世界上古史时代,就有利用测绘学智丽尼罗河泛滥后农田边界整理的传说。公元前7世纪,管仲在其所著《管子》一书中已收集了早期的地图27幅。公元前5世界至3世纪,我国已有利用磁石制成最早的指南工具“司南”的记载。公元前130年,西汉初期便有了《地形图》和《驻军图》,为目前所发现我国最早的地图。随着人类社会的进步和科学技术的不断发展,测绘学科的理论、技术、方法及其学科内涵也随之发生了很大的变化。尤其是在当代,由于空间技术、计算机技术、通信技术和地理信息技术的发展,测绘学的理论基础、工程技术体系、研究领域和科学目标与传统意义上的测绘学有了很大的不同。测绘学日益发展成为国内外正在兴起的一门新型学科——地球空间信息学(Geo-Spatial Information Science,简称Geomatics)
测绘学的主要研究对象是地球(当然再未来将发展到外太空,研究其他的星球)。人类对地球形状认识的逐步深化,要求精确测定地球的形状和大小,从而促进了测绘学发展。因此,测绘学可以说是地球科学的一个分支。测绘学的研究成果是以地图为代表的信息产品,地图的演变及其制作过程、方法是测绘学进步的一个主要标志。测绘学获取观测数据的工具是测量仪器,测量学的发展很大程度上取决于测绘方法和测绘仪器的创造和改革。测绘仪器的发展经历了早期的游标经纬仪到小平板、大平板仪、水准仪、航空摄影机、摆仪、重力仪、全站仪,测量机器人,数字绘图机。成果也原来的手绘地图到数字地图,由原来的二维地图到现在的三维地图,四维地图,最近由武汉大学测绘遥感信息工程国家重点实验室研制的“天地图”这一伟大成果就是一个很好的代表。
测绘学的科学地位和作用意义重大。在科学研究中的作用:测绘学在探索地球奥秘和规律、深入认识和研究地球的各种问题中发挥着重要的作用。现在的测量技术可以提供几乎任意时区域分辨率系列,具有检测瞬时地理事件如地壳运动,重力场的时空变化,地球的潮汐和自转等问题,这些观测成果可以用于地球内部物质的研究,尤其在解决地球物理方面可以起到辅助作用。测绘许饿在国民经济上的作用是广泛。丰富的地理信息是国民经济和社会信息化的重要基础,为构建“数字城市”“数字中国”提供了重要的资源。在现代化战争的今天,测绘学在武器的定位、发射、精确制导等方面发挥着不可代替的作用。另外在防灾减灾方面,测绘做出了不可磨灭的作用,2008年汶川特大地震中,测量所的的地图在救灾中起指导作用,减少了灾难等带来的重大损失。在以后的发展中,测绘在防灾、减灾上仍然将发挥它的作用,民政局非常重视测绘的作用。
测绘学的分类。随着测绘科技的发展和时间的推移,在发展过程中形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘和地图制图学等分支学科。大地测量学研究和测定地球的形状、大小和地球重力场,以及地面点的几何位置的理论和方法。普通测量学 研究地球表面局部区域内控制测量和地形图测绘的理论和方法。局部区域是指在该区域内进行测绘时,可以不顾及地球曲率,把它当作平面处理,而不影响测图精度。摄影测量学 研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量。工程测量学 研究工程建设中设计、施工和管理各阶段测量工作的理论、技术和方法。为工程建设提供精确的测量数据和大比例尺地图,保障工程选址合理,按设计施工和进行有效管理。海洋测绘 研究对海洋水体和海底进行测量与制图的理论和技术。为舰船航行安全、海洋工程建设提供保障。地图制图学 研究地图及其编制的理论和方法。下面我将就这几个分支按我理解简单叙述。
大地测量学

大地测量学是测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料。
大地测量学的基本任务是1、研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。2、 确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及其重力场。3、建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。4、研究为获得高精度测量成果的仪器和方法等。5、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。6、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。
几何大地测量学。19世纪起,许多国家都开展了全国天文大地测量工作,其目的并不仅是为求定地球椭球的大小,更主要的是为测制全国地形图的工作提供大量地面点的精确几何位置。为达此目的,需要解决一系列理论和技术问题,这就推动了几何大地测量学的发展。首先,为了检校天文大地测量的大量观测数据,消除其间的矛盾,并由此求出最可靠的结果和评定观测精度,法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。高斯于1828年在其著作《曲面通论》中,提出了椭球面三角形的解法。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
物理大地测量学。法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
卫星大地测量学。到了20世纪中叶,几何大地测量学和物理大地测量学都已发展到了相当完善的程度。但是,由于天文大地测量工作只能在陆地上实施,无法跨越海洋;重力测量在海洋、高山和荒漠地区也仅有少量资料,因此地球形状和地球重力场的测定都未得到满意的结果。直到1957年第一颗人造地球卫星发射成功之后,产生了卫星大地测量学,才使大地测量学发展到一个崭新的阶段。
摄影测量学
摄影测量学研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量摄影测量学。根据地面获取影像时,摄影机安放的位置不同,摄影测量学可以分为航空摄影测量学、航天摄影测量与地面摄影测量。航空摄影测量:将摄影机安放在飞机上,对地面进行摄影,这是摄影最常用的方法。航空摄影测量所用的是一种专门的大幅面的摄影机又称航空摄影机。航天摄影测量学:随着航天、卫星、遥感技术的发展而发展的摄影测量技术,将摄影机安装在卫星上。近几年来,高分辨率卫星摄影的成功应用,已经成为国家基本地图测图、城市、土地规划的重要资源。近地摄影测量是将摄影机安装在地面上进行的摄影测量。
摄影测量学的一些基本原理包括影象与物体的基本关系、影象与地图的关系、摄影机的内方位元素、外方位元素、共线方程、立体观测方法等。在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。
摄影测量学的研究方向。1、数字摄影测量:以航空影像和卫星米级高分辨率影像为数据源,扩展计算机立体相关理论与算法,发展立体几何模型确定和精化的新方法,以及研究困难地区数字立体测图的新技术;研究近景(地面)摄影测量中的数字相机的快速检校新算法,数字影像精确匹配问题,以及在工业生产过程自动监测和土木工程建筑物(如桥梁和隧道)形变监测中的问题。2.遥感技术及应用以多光谱、多分辨率和多时相卫星影像为数据源,研究地表变迁及地质调查的遥感新方法;研究地球资源(如土地利用)变化检测的有效方法,发展半自动或全自动化的遥感监测手段;开发监测城市环境污染和自然灾害(如洪水与森林、农作物病虫害)的实用遥感系统,等等。基于合成孔径雷达图像,开展干涉雷达(InSAR)等技术的地表三维重建、大范围精密地表形变(包括滑坡、城市沉降和地壳形变)探测和气象变化监测的研究。3.3S技术及应用研究车载CCD序列影像测图的方法和算法,为线性工程勘测和调查提供快速而有效的地面遥感测量手段;研究包括遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)在内的3S技术集成的模式和方法,为我国西部大开发的铁路、公路建设探索全新的勘测设计手段。
地图制图学
地图制图学是研究地图及其编制和应用的一门学科。它研究用地图图形反映自然界和人类社会各种现象的空间分布,相互联系及其动态变化,具有区域性学科和技术性学科的两重性,亦称地图学。
地图制图学的理论与技术。地图编制研究制作地图的理论和技术。主要包括:制图资料的选择、分析和评价,制图区域的地理研究,图幅范围和比例尺的确定,地图投影的选择和计算,地图内容各要素的表示法,地图制图综合的原则和实施方法,制作地图的工艺和程序,以及拟定地图编辑大纲等。地图整饰研究地图的表现形式。包括地图符号和色彩设计,地貌立体表示,出版原图绘制以及地图集装帧设计等。地图制印研究地图复制的理论和技术。包括地图复照、翻版、分涂、制版、打样、印刷、装帧等工艺技术。此外,地图应用也已成为地图制图学的一个组成部分。它主要研究地图分析、地图评价、地图阅读、地图量算和图上作。
地图制图学的发展趋势随着现代科学技术的发展,地图制图学也进入了新的发展阶段,其主要特点和趋势为:①地图制图学作为区域性学科,其重点已由普通地图制图转移到专题地图制图,并向综合制图、实用制图和系统制图的方向发展。②地图制图学作为技术性学科,正在向机助制图方向发展,有可能逐步代替延续几千年的手工编图的作业方法。③随着地图制图学同各学科间的相互渗透,产生了一些新的概念和理论。例如,以地图图形显示、传递、转换、存储、处理和利用空间信息为内容的地图信息论和地图传输论;研究经过地图图形模式化建立地图数学模型和数字模型的地图模式论;研究用图者对地图图形和色彩的感受过程和效果的地图感受论;研究和建立地图语言的地图符号学,等等。
工程测量学
工程测量学是研究工程建设和自然资源开发中各个阶段进行的控制和地形测绘、施工放样、变形监测的理论和技术的学科。测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。
工程测量学的理论平差理论。最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。
海洋测绘
海洋测绘是以海洋水体和海底为对象所进行的测量和海图编制工作。主要包括海道测量、海洋大地测量、海底地形测量、海洋专题测量,以及航海图、海底地形图、各种海洋专题图和海洋图集等的编制。
海洋测绘的基本理论与方法。测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。基本测量方式包括:①路线测量。即剖面测量。了解海区的地质构造和地球物理场基本特征。②面积测量。按任务定的成图比例尺,布置一定距离的测线网。比例尺越大,测网密度愈密。在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。海洋测量的基本理论、技术方法和测量仪器设备等,同陆地测量相比,有它自己的许多特点。主要是测量内容综合性强,需多种仪器配合施测,同时完成多种观测项目;测区条件比较复杂,海面受潮汐、气象等影响起伏不定;大多为动态作业,测者不能用肉眼通视水域底部,精确测量难度较大。一般均采用无线电导航系统、电磁波测距仪器、水声定位系统、卫星组合导航系统、惯性导航组合系统,以及天文方法等进行控制点的测定和测点的定位;采用水声仪器、激光仪器,以及水下摄影测量方法等进行水深测量和海底地形测量;采用卫星技术、航空测量以及海洋重力测量和磁力测量等进行海洋地球物理测量。
现代测绘中的新技术
随着电子信息技术、通信技术、网络技术等的飞速发展,测绘学也迎来发展的机遇与挑战。测量理论,测量方法,测量仪器的改进推动了测绘学科的发展,现在的测绘不但测量精度大大提高,测量时间大大的减少,劳动强度降低,测绘工作者也不再是人民眼中“农民工”。这些新技术包括:1、卫星导航定位技术。以美国的GPS,俄罗斯的GLONASS,中国的北斗以及在建的欧盟的GALILES为代表的的定位系统为测绘工作带来极大的方便,而且提高了精度。2、RS(遥感),他是一种不通过接触物体本身,用传感器采集目标的电磁波信息,经过处理、分析后识别目标物的现代科学技术。我们武汉大学在遥感方面实力强大,遥居亚洲第一。3、数字地图制图技术。4、GIS(地理信息系统)GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。5、3S集成技术。即GPS、GIS与RS技术的集成,是当前国内外发展的趋势。在3S技术的集成中,GPS主要用于实时快速的提供物体的空间位置;RS用于实时快速的提供大面积的地表物质及其环境的几何与物理信息,以及他们的各种变化;GIS则是对多种来源时空数据的综合处理分析和应用的平台。6、虚拟现实摸型技术,他是由计算机构成的高级人机交换系统。
测绘学博大精深,我们对它的了解还很肤浅,但我相信在我们回在今后的学习工作中对它有更深的了解,并且,在不久的将来我们必将献身测绘事业,献身祖国的建设事业,成为一个21世纪合格的测绘工作者和祖国的建设的接班人!

曲面面积怎么求?

是指曲面表面的面积。把光滑曲面S分成没有公共内点的n块S1,... , Sn,且每一块仍是光滑曲面,在每个S上取一点P,过P作S的切平面T,将s投影到T上,所有这些投影的面积之和的极限(当所有S的直径趋于零时)如果存在,就是曲面S的面积,对有界简单光滑曲面而言,这样的极限总是存在的,而且与曲面的光滑等价的参数表示的选择无关。
设空间有界曲面

其中


面上的投影区域,

上具有连续的偏导数,下面讨论曲面
的面积的计算问题。
现用平行于x轴和y轴的两组平行直线分割投影区域
,任取其中的一块记作
,其面积也记作
,则当
的直径很小时,

表示以
的边界为准线,母线平行于z轴的柱面截得的曲面
上的那部分,设

上的任一点,根据条件,曲面
在点P处有切平面,则可用柱面截得切平面上的那一小片平面的面积dS近似地代替
的面积
,则
其中,
是切平面与
面的夹角,也就是切平面的法向量n与
面的法线
轴的夹角,由曲面
的方程可知
所以
代人式(1)得
则曲面的面积微元为
将dS在投影区域
上积分,便得计算曲面面积的二重积分公式

怎样求曲面的面积?

注意极坐标面积微元:1/2r^2d\theta,具体过程如下图:

在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。

扩展资料:

曲面面积(area of a surface)是指曲面表面的面积。把光滑曲面S分成没有公共内点的n块S1,... , Sn,且每一块仍是光滑曲面,在每个S上取一点P,过P作S的切平面T,将s投影到T上,所有这些投影的面积之和的极限。

当所有S的直径趋于零时,如果存在,就是曲面S的面积,对有界简单光滑曲面而言,这样的极限总是存在的,而且与曲面的光滑等价的参数表示的选择无关。

参考资料:百度百科——曲面面积

运用极限的无穷小表达式分析说明函数的导数,微分以及微分中值定理之间的关系

这个可以写一篇本科毕业论文的。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页