无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。下面是我为大家精心推荐的无人机应用技术论文,希望能够对您有所帮助。
无人机航测技术的应用分析
【摘 要】以生产项目为例,以无人机航测的技术流程为主线,介绍了无人机航测技术方面的应用分析。
【关键词】无人机、航测技术
【Abstract】Production project as an example, the unmanned aerial technology process, introduced the UAV aerial application analysis.
【Key woerds】UAV、aerial surveying technology
中图分类号:V279+.2文献标识码:A 文章编号:
0 引言
无人机航测遥感技术是继卫星遥感、飞机遥感之后发展起来的一项新型航空遥感技术,在应急测绘保障、国土资源监测、重大工程建设等方面得到广泛应用。它是一种机动灵活、可以实现快速响应的一种航测技术。但也存在影像重叠度不规则、像幅小、影像倾角大、旋偏角大,影像有明显畸变等问题,这些情况都对现有无人机航测技术提出了挑战。
本文从生产案例出发,以无人机航测技术为主线,对生产过程中无人机航测出现的一些问题进行了分析探讨。
1 生产实践
1.1主要技术依据
《无人机航摄系统技术要求》(CH/Z3002-2010);
《低空数字航空摄影规范》(CH/Z3005-2010);
《低空数字航空摄影测量内业规范》(CH/Z 3003-2010);
《低空数字航空摄影外业规范》(CH/Z 3004-2010) ... ...
1.2 数据源及预处理
1.2.1 数据源
本测区选用无人机航空摄影获取的真彩色影像,航摄面积为10平方公里。航摄仪采用Canon EOS 5DMarkⅡ,焦距为:35mm,相幅大小为:5616×3744,像元分辨率为6.41um。影像地面分辨率为0.2米。
1.2.2遥感影像预处理
无人机航空摄影采用的相机为非量测型相机,因此,在进行空中三角测量恢复影像空中姿态时,需要对相机进行像片畸变差改正。(相机畸变改正在四维公司检校完成)
1.3 无人机航测总体作业流程
1.4无人机航空摄影
本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度。飞行质量和影像良好,影像清晰度高、色彩均匀、饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。
像片航向重叠度为75%,旁向重叠一般为35%-45%,旋偏角一般控制在12度以下。
1.5 像片控制测量
1.5.1 像控点精度要求
像控点对最近基础控制点的平面位置中误差不大于0.2米,高程中误差不大于0.2米。
1.5.2 像控点布点方案
项目布点方案确定为双模型布点,全部布设为平高点。
1.5.3 像控点测量
在像控测量之前,首先对测区内收集到的已知控制点进行联测,检核控制点情况;为满足后续像控测量,联测已知点的同时加密了2个控制点。联测采用GPS静态相对定位方式施测,采用边连式的布网形式。全网共联测已有已知点4个,新设控制点2个,观测时具体技术参数依据规范,像控点采用GPS实时动态定位(RTK)的方法进行测量,满足要求。
1.6 空中三角测量
本项目采用Virtuozo工作站进行空三加密,根据航飞及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,检查点平面中误差为0.3米,高程中误差为0.17米,最终加密成果符合1:2000数据采集要求。
1.7 数据采集
在空三完成后,利用空三成果进行单模型定向时我们发现有模型无法定向的情况,第一架次无法建立的模型有29个,占总模型数的4%。第二架次有67个无法建立的模型占总模型数的9%。主要原因为无人机航摄姿态不稳定导致的飞行倾角、旋偏角过大,航线弯曲、像片比例不一致等现象都是导致单模型定向精度差的原因。考虑到1:2000地形图精度要求,我们提出了如下解决方案:在测图定向超限点的周围进行野外实测用来检核分析数据并进行必要的修正。
1.8 项目精度报告
根据1:2000精度要求对测绘产品检进行了精度的统计,统计了3幅地形图,其中高程精度中误差最大为0.36米,最小为0.27米,从统计的结果看,粗差率比较高,有的达到了5%,平面精度中误差为0.75米。
2 结 论
(1)无人机航空摄影测量技术应用于地形图的生产存在不确定性,比如,区域网整体加密精度评定良好,但单模型定向精度存在超限情况,在测图过程中表现为测图定向点和立体模型套合差大、接边误差大等,可以通过外业实测进行补充测量、验证。
(2)利用无人机航测进行航空摄影测量时,应采用试验区的作业方法,即在确定布点方案前选取一定面积的试验区进行布点方案试验,分析精度指标后确定作业方案。
(3)目前,无人机航测技术主要应用于载人飞机航测技术的补充方面,如多块小面积、危险场所、远离机场或没有可供其起降场地的区域,在载人机不便或无法完成的情况下,由无人机来完成。
参考文献:
[1] 范承啸,韩俊,熊志军,赵毅。 无人机遥感技术现状与应用[J] 测绘科学 2009,34(5):214-215;
[2] 崔红霞,李杰,林宗坚,储美华。非量测数码相机的畸变差检测研究[J] 测绘科学2005,30(1):105-107;
[3] 连镇华。无人机航摄相片倾角对立体高程扭曲的影响分析[J] 地理空间信息2010,8(1):20-22;
作者简介:徐锦前(1982-),男,辽宁铁岭人,工程师,主要从事摄影测量和地理信息系统建库等测绘工作。
点击下页还有更多>>>无人机应用技术论文
洋河流域遥感图像土地利用分类方法研究
【摘要】遥感影像分类方法的确定是LUCC研究中的关键步骤。文章以洋河流域为研究区,分别进行了非监督分类和监督分类。针对监督分类结果中存在的误差,对水域、植被、城镇与工矿用地三种类型地物的提取分别选择了综合阈值法、植被指数法、DEM数据辅助分析法进行了改进,结果表明改进后的提取结果较监督分类直接得到的结果有了很大的改善。
【关键词】遥感图像;监督分类;综合阈值法;植被指数法
【中图分类号】TP79 【文献标识码】A
【文章编号】1671-5969(2007)16-0164-03
一、研究区域概况及图像资料
(一)研究区域概况
洋河流域是张家口经济发展的中心地带,水资源相对丰富。洋河发源于山西省阳高县和内蒙古兴和县,是永定河上游的一大支流,流域面积约14600km2 。在张家口市流域面积为9762km2,流经万全县、怀安县、张家口市区、宣化县、宣化区、下花园区、怀来县等,干流全长106 km,在朱官屯于桑干河汇合后流至官厅水库,是官厅水库的重要水源。洋河流域形状东西向较长,南北向较短,地形总趋势西北高、东南低。流域的东北、北部和西北沿坝头一带海拔高程1200~1500m之间,西部和南部边界海拔高程一般在500~1000m之间。流域内80%以上为丘陵山区,绝大部分为荒山秃岭。流域内大部分为黄色沙壤土,并有部分砂砾土及黄粘土,沿河川地层厚且较肥沃[1]。
(二)信息源
遥感信息源的选择要综合考虑其光谱分辨率、空间分辨率、时间分辨率等因素, 这是利用遥感图像进行土地利用分类的关键问题。美国的Landsat TM 图像是当前应用最为广泛的卫星遥感信息源之一,它可提供7个波段的信息, 空间分辨率为30~120m。TM数据源各波段各有特点,可进行不同地物类型的信息提取。相关资料表明TM遥感数据各波段间的信息相关关系为:TM1与TM2,TM5与TM7高度相关,相关系数达0.95以上,信息冗余大,可以考虑不选取TM1波段。另外由于第6个波段的分辨率为120m,不利于地物信息的提取,所以亦不选取TM6波段。一般来说, 选择图像类型时,应考虑研究区域的大小、研究的目的,以及要达到的精度要求,另外不同时相遥感图像的选择对分类精度也具有很大的影响。为了能把水域、城市与工矿用地、林地、耕地、裸地区分开,以洋河流域1987年9月17日的TM图像为信息源进行研究。本文中所使用的遥感图像处理工具为美国ERDAS公司的ERDAS IMAGINE8.4软件,它是一个功能完整的、集遥感与地理信息系统于一体的专业软件,具有数据预处理、图像解译、图像分类、矢量功能、虚拟gis等多个功能。
二、现有遥感图像土地利用分类的主要方法及其分析
遥感图像土地利用分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,并用一定的手段将特征空间划分为互不重叠的子空间,然后将图像中的各个像元划归到各个子空间中以实现分类[2]。按照是否有已知训练样本的分类数据,将其分为非监督分类和监督分类。它们最大的区别在于监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来确定。
(一)非监督分类
非监督分类是在多光谱特征空间中通过数字操作搜索像元光谱属性的自然群组的过程,这种聚类过程生成一副有m个光谱类组成的分类图。然后分析人员根据后验知识将光谱类划分或转换成感兴趣的专题信息类[3]。洋河流域内有很多山地,在图像上会产生大量的阴影,导致了像元灰度值的空间变化,这对分类结果有很大的影响。为此可以通过比值运算来去除阴影的影响,使向阳处和背阴处都毫不例外地只与地物的反射率的比值有关。常用算法:近红外波段(TM4)/红外波段(TM3),这样所得到的效果比较好,从原始图像和比值运算后的图像(图像略)中,可以清楚地看到山体阴面的阴影得到了有效的去除。经过比值运算后, 就可以对图像进行非监督分类。得到的分类结果如图1所示。非监督分类只根据地物的光谱特征进行分类,受人为因素的影响较少,不需要对地面信息有详细的了解,但由于“同物异谱、异物同谱”等现像的存在,其结果一般不如监督分类令人满意。比如官厅水库旁边的大量建筑物被分到水体一类。是因为在TM3波段上,水体和建筑物的灰度值相近, 同样在TM7波段上,裸山和建筑物的灰度值也相近。总之,在TM的6个波段上,无论采用哪个波段进行非监督分类,总有几种地物的光谱值接近,因此单纯依靠计算机自动分类取得很好的效果是非常困难的。
我对测绘学的认识
学院:测绘学院 专业:测绘工程 班级:10级4班 姓名: 学号:
作为武汉大学测绘学院测绘工程专业的一名大一新生,我很有幸上了由几位著名的两院院士及教授主讲的《测绘学概论》,在这个课堂上,我不仅见到了在我国乃至世界都非常著名的院士、教授、专家,还在他们独道精辟的讲解下认识了测绘学这门学科,了解学习了很多关于测绘学的知识及其发展前景。作为专业的基础,我从课堂、图书、网络等各个方面积极的了解测绘学,拓宽了我的知识面,使我认识到测绘不是他们所说的“冷门专业”“辛苦专业”,获益匪浅,使我加深了对测绘的兴趣。下面我将从几个方面讲述我对测绘学的认识及感想。
测绘学古老而现代,绘学现在正在向一门刚兴起的学科—地球空间科学发展。测绘学是一门古老的学科,有着悠久的历史。测绘学的发展在世界上古史时代,就有利用测绘学智丽尼罗河泛滥后农田边界整理的传说。公元前7世纪,管仲在其所著《管子》一书中已收集了早期的地图27幅。公元前5世界至3世纪,我国已有利用磁石制成最早的指南工具“司南”的记载。公元前130年,西汉初期便有了《地形图》和《驻军图》,为目前所发现我国最早的地图。随着人类社会的进步和科学技术的不断发展,测绘学科的理论、技术、方法及其学科内涵也随之发生了很大的变化。尤其是在当代,由于空间技术、计算机技术、通信技术和地理信息技术的发展,测绘学的理论基础、工程技术体系、研究领域和科学目标与传统意义上的测绘学有了很大的不同。测绘学日益发展成为国内外正在兴起的一门新型学科——地球空间信息学(Geo-Spatial Information Science,简称Geomatics)
测绘学的主要研究对象是地球(当然再未来将发展到外太空,研究其他的星球)。人类对地球形状认识的逐步深化,要求精确测定地球的形状和大小,从而促进了测绘学发展。因此,测绘学可以说是地球科学的一个分支。测绘学的研究成果是以地图为代表的信息产品,地图的演变及其制作过程、方法是测绘学进步的一个主要标志。测绘学获取观测数据的工具是测量仪器,测量学的发展很大程度上取决于测绘方法和测绘仪器的创造和改革。测绘仪器的发展经历了早期的游标经纬仪到小平板、大平板仪、水准仪、航空摄影机、摆仪、重力仪、全站仪,测量机器人,数字绘图机。成果也原来的手绘地图到数字地图,由原来的二维地图到现在的三维地图,四维地图,最近由武汉大学测绘遥感信息工程国家重点实验室研制的“天地图”这一伟大成果就是一个很好的代表。
测绘学的科学地位和作用意义重大。在科学研究中的作用:测绘学在探索地球奥秘和规律、深入认识和研究地球的各种问题中发挥着重要的作用。现在的测量技术可以提供几乎任意时区域分辨率系列,具有检测瞬时地理事件如地壳运动,重力场的时空变化,地球的潮汐和自转等问题,这些观测成果可以用于地球内部物质的研究,尤其在解决地球物理方面可以起到辅助作用。测绘许饿在国民经济上的作用是广泛。丰富的地理信息是国民经济和社会信息化的重要基础,为构建“数字城市”“数字中国”提供了重要的资源。在现代化战争的今天,测绘学在武器的定位、发射、精确制导等方面发挥着不可代替的作用。另外在防灾减灾方面,测绘做出了不可磨灭的作用,2008年汶川特大地震中,测量所的的地图在救灾中起指导作用,减少了灾难等带来的重大损失。在以后的发展中,测绘在防灾、减灾上仍然将发挥它的作用,民政局非常重视测绘的作用。
测绘学的分类。随着测绘科技的发展和时间的推移,在发展过程中形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘和地图制图学等分支学科。大地测量学研究和测定地球的形状、大小和地球重力场,以及地面点的几何位置的理论和方法。普通测量学 研究地球表面局部区域内控制测量和地形图测绘的理论和方法。局部区域是指在该区域内进行测绘时,可以不顾及地球曲率,把它当作平面处理,而不影响测图精度。摄影测量学 研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量。工程测量学 研究工程建设中设计、施工和管理各阶段测量工作的理论、技术和方法。为工程建设提供精确的测量数据和大比例尺地图,保障工程选址合理,按设计施工和进行有效管理。海洋测绘 研究对海洋水体和海底进行测量与制图的理论和技术。为舰船航行安全、海洋工程建设提供保障。地图制图学 研究地图及其编制的理论和方法。下面我将就这几个分支按我理解简单叙述。
大地测量学
大地测量学是测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料。
大地测量学的基本任务是1、研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。2、 确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及其重力场。3、建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。4、研究为获得高精度测量成果的仪器和方法等。5、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。6、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。
几何大地测量学。19世纪起,许多国家都开展了全国天文大地测量工作,其目的并不仅是为求定地球椭球的大小,更主要的是为测制全国地形图的工作提供大量地面点的精确几何位置。为达此目的,需要解决一系列理论和技术问题,这就推动了几何大地测量学的发展。首先,为了检校天文大地测量的大量观测数据,消除其间的矛盾,并由此求出最可靠的结果和评定观测精度,法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。高斯于1828年在其著作《曲面通论》中,提出了椭球面三角形的解法。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
物理大地测量学。法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
卫星大地测量学。到了20世纪中叶,几何大地测量学和物理大地测量学都已发展到了相当完善的程度。但是,由于天文大地测量工作只能在陆地上实施,无法跨越海洋;重力测量在海洋、高山和荒漠地区也仅有少量资料,因此地球形状和地球重力场的测定都未得到满意的结果。直到1957年第一颗人造地球卫星发射成功之后,产生了卫星大地测量学,才使大地测量学发展到一个崭新的阶段。
摄影测量学
摄影测量学研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量摄影测量学。根据地面获取影像时,摄影机安放的位置不同,摄影测量学可以分为航空摄影测量学、航天摄影测量与地面摄影测量。航空摄影测量:将摄影机安放在飞机上,对地面进行摄影,这是摄影最常用的方法。航空摄影测量所用的是一种专门的大幅面的摄影机又称航空摄影机。航天摄影测量学:随着航天、卫星、遥感技术的发展而发展的摄影测量技术,将摄影机安装在卫星上。近几年来,高分辨率卫星摄影的成功应用,已经成为国家基本地图测图、城市、土地规划的重要资源。近地摄影测量是将摄影机安装在地面上进行的摄影测量。
摄影测量学的一些基本原理包括影象与物体的基本关系、影象与地图的关系、摄影机的内方位元素、外方位元素、共线方程、立体观测方法等。在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。
摄影测量学的研究方向。1、数字摄影测量:以航空影像和卫星米级高分辨率影像为数据源,扩展计算机立体相关理论与算法,发展立体几何模型确定和精化的新方法,以及研究困难地区数字立体测图的新技术;研究近景(地面)摄影测量中的数字相机的快速检校新算法,数字影像精确匹配问题,以及在工业生产过程自动监测和土木工程建筑物(如桥梁和隧道)形变监测中的问题。2.遥感技术及应用以多光谱、多分辨率和多时相卫星影像为数据源,研究地表变迁及地质调查的遥感新方法;研究地球资源(如土地利用)变化检测的有效方法,发展半自动或全自动化的遥感监测手段;开发监测城市环境污染和自然灾害(如洪水与森林、农作物病虫害)的实用遥感系统,等等。基于合成孔径雷达图像,开展干涉雷达(InSAR)等技术的地表三维重建、大范围精密地表形变(包括滑坡、城市沉降和地壳形变)探测和气象变化监测的研究。3.3S技术及应用研究车载CCD序列影像测图的方法和算法,为线性工程勘测和调查提供快速而有效的地面遥感测量手段;研究包括遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)在内的3S技术集成的模式和方法,为我国西部大开发的铁路、公路建设探索全新的勘测设计手段。
地图制图学
地图制图学是研究地图及其编制和应用的一门学科。它研究用地图图形反映自然界和人类社会各种现象的空间分布,相互联系及其动态变化,具有区域性学科和技术性学科的两重性,亦称地图学。
地图制图学的理论与技术。地图编制研究制作地图的理论和技术。主要包括:制图资料的选择、分析和评价,制图区域的地理研究,图幅范围和比例尺的确定,地图投影的选择和计算,地图内容各要素的表示法,地图制图综合的原则和实施方法,制作地图的工艺和程序,以及拟定地图编辑大纲等。地图整饰研究地图的表现形式。包括地图符号和色彩设计,地貌立体表示,出版原图绘制以及地图集装帧设计等。地图制印研究地图复制的理论和技术。包括地图复照、翻版、分涂、制版、打样、印刷、装帧等工艺技术。此外,地图应用也已成为地图制图学的一个组成部分。它主要研究地图分析、地图评价、地图阅读、地图量算和图上作。
地图制图学的发展趋势随着现代科学技术的发展,地图制图学也进入了新的发展阶段,其主要特点和趋势为:①地图制图学作为区域性学科,其重点已由普通地图制图转移到专题地图制图,并向综合制图、实用制图和系统制图的方向发展。②地图制图学作为技术性学科,正在向机助制图方向发展,有可能逐步代替延续几千年的手工编图的作业方法。③随着地图制图学同各学科间的相互渗透,产生了一些新的概念和理论。例如,以地图图形显示、传递、转换、存储、处理和利用空间信息为内容的地图信息论和地图传输论;研究经过地图图形模式化建立地图数学模型和数字模型的地图模式论;研究用图者对地图图形和色彩的感受过程和效果的地图感受论;研究和建立地图语言的地图符号学,等等。
工程测量学
工程测量学是研究工程建设和自然资源开发中各个阶段进行的控制和地形测绘、施工放样、变形监测的理论和技术的学科。测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。
工程测量学的理论平差理论。最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。
海洋测绘
海洋测绘是以海洋水体和海底为对象所进行的测量和海图编制工作。主要包括海道测量、海洋大地测量、海底地形测量、海洋专题测量,以及航海图、海底地形图、各种海洋专题图和海洋图集等的编制。
海洋测绘的基本理论与方法。测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。基本测量方式包括:①路线测量。即剖面测量。了解海区的地质构造和地球物理场基本特征。②面积测量。按任务定的成图比例尺,布置一定距离的测线网。比例尺越大,测网密度愈密。在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。海洋测量的基本理论、技术方法和测量仪器设备等,同陆地测量相比,有它自己的许多特点。主要是测量内容综合性强,需多种仪器配合施测,同时完成多种观测项目;测区条件比较复杂,海面受潮汐、气象等影响起伏不定;大多为动态作业,测者不能用肉眼通视水域底部,精确测量难度较大。一般均采用无线电导航系统、电磁波测距仪器、水声定位系统、卫星组合导航系统、惯性导航组合系统,以及天文方法等进行控制点的测定和测点的定位;采用水声仪器、激光仪器,以及水下摄影测量方法等进行水深测量和海底地形测量;采用卫星技术、航空测量以及海洋重力测量和磁力测量等进行海洋地球物理测量。
现代测绘中的新技术
随着电子信息技术、通信技术、网络技术等的飞速发展,测绘学也迎来发展的机遇与挑战。测量理论,测量方法,测量仪器的改进推动了测绘学科的发展,现在的测绘不但测量精度大大提高,测量时间大大的减少,劳动强度降低,测绘工作者也不再是人民眼中“农民工”。这些新技术包括:1、卫星导航定位技术。以美国的GPS,俄罗斯的GLONASS,中国的北斗以及在建的欧盟的GALILES为代表的的定位系统为测绘工作带来极大的方便,而且提高了精度。2、RS(遥感),他是一种不通过接触物体本身,用传感器采集目标的电磁波信息,经过处理、分析后识别目标物的现代科学技术。我们武汉大学在遥感方面实力强大,遥居亚洲第一。3、数字地图制图技术。4、GIS(地理信息系统)GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。5、3S集成技术。即GPS、GIS与RS技术的集成,是当前国内外发展的趋势。在3S技术的集成中,GPS主要用于实时快速的提供物体的空间位置;RS用于实时快速的提供大面积的地表物质及其环境的几何与物理信息,以及他们的各种变化;GIS则是对多种来源时空数据的综合处理分析和应用的平台。6、虚拟现实摸型技术,他是由计算机构成的高级人机交换系统。
测绘学博大精深,我们对它的了解还很肤浅,但我相信在我们回在今后的学习工作中对它有更深的了解,并且,在不久的将来我们必将献身测绘事业,献身祖国的建设事业,成为一个21世纪合格的测绘工作者和祖国的建设的接班人!
我给些选题,你自己看下,
1.多功能语音小车 2.智能小车 3.防噪音耳机 4.儿童益智产品—算术遥控赛车 5.智能后车雷达 6.多充电方式手电筒 7.简易数字存储示波器 8.神州六号模拟系统 9.家庭智能控制与报警系统 10.PC控制终端 11.多功能逆变器 12.超声波测距系统测距机应用——迎宾系统 13.智能壁障机器人 14.客车超载控制系统 15.智能温控风扇 16.新世纪车载必备系统 17.远程智能电话门铃的设计 18.PID水温测量控制系统 19.模拟锅炉加热控制系统 20.智能防盗报警电话 21.三指机器手 22.多功能数字钟 23.智能语音显示娃娃 24.人行横道交通灯 25.暖气控制系统 26.基于单片机的家庭绿色管家 27.超声波测距 28.具有语音播报功能的水温控制系统