您当前的位置:首页 > 发表论文>论文发表

数学作业论文格式

2023-03-12 19:28 来源:学术参考网 作者:未知

数学作业论文格式

数学系本科毕业论文格式规范

一、论文中句号全部用“.”,奇数页码在右下角,偶数页码在左下角。

二、打印:表格单面打印,论文部分正反面打印。

三、页边距:上下边距35mm,左右边距32mm,文字部分为1.5倍行距,有数学公式的内容为单倍行距。

四、正文层次格式按学校文件执行。

(1)论文的正文层次格式:

第1章 xxxx(三号黑体,段前24磅,段后18磅,单倍

行距,序号与题名间空1个汉字字符,居中)

1.1 xxxx(四号宋体加黑,段前24磅,段后6磅,左对齐,

不接排)

1.1.1 xxxx(小四号黑体,段前

12磅,段后6磅,左对齐,

不接排)

a. xxxx(小四号黑体)xxx(空

1个汉字字符,接排,小四号

宋体)

(1) xxxx(小四号黑体)xxx(空

1个汉字字符,接排,小四

号宋体)

1)xxxx(小四号黑体)xxx(空

1个汉字字符,接排,小四

号宋体)

(2)图表要求:图、表内容使用5号宋体。

图:图序一律采用阿拉伯数字分章编写,例如,第2章第3个图的图序为“图2.3”,图题应简明,图序与图题间空1个汉字字符,居中排于图的下方。

表:表序一律采用阿拉伯数字分章编写,例如,第2章第3个表的表序为“表2.3”,表序与表题间空1个汉字字符,居中排于表的上方。

五、基本格式与装订顺序 1、封皮

2、开题报告 3、任务书 4、中期检查表 5、答辩许可证 6、质量考核表 7、毕业论文封皮

8、(单独占一页)

中文题目(二号宋体加黑)(从此项开始双面打印)

中文摘要(摘要顶左边):

摘要(小四号宋体加黑,摘要的内容用小四号宋体,字数约

200-300字)

关键词(小四号宋体加黑,关键词的内容用小四号宋体),关键词3—5个(关键词之间用一个汉字空格隔开,最后一个关键词不加标点)。

9、(单独占一页)

英文题目(二号Times New Roman字体加黑)

Abstract(小四号Times New Roman字体加黑,内容用小四号Times New Roman字体)

Keywords (小四号Times New Roman字体加黑,内容用小四号Times New Roman字体),关键词3—5个(关键词之间用两个英文空格隔开,最后一个关键词不加标点)。

10、目录(小四号宋体加黑):章节不超过3级,标清页码,自动生成。 参考格式

目 录

引 言„„„„„„„„„„„„„„„„„„„„„„„„1 第1章„„„„„„„„„„„„„„„„„„„„„„„„„2 1.1„„„„„„„„„„„„„„„„„„„„„„„„„3 第2章„„„„„„„„„„„„„„„„„„„„„„„„„4 2.1 „„„„„„„„„„„„„„„„„„„„„„„„10 总 结„„„„„„„„„„„„„„„„„„„„„„„„„20 致 谢„„„„„„„„„„„„„„„„„„„„„„„„„22 参考文献„„„„„„„„„„„„„„„„„„„„„„„23 附 录„„„„„„„„„„„„„„„„„„„„„„„„„24

11、正文(字数在8000字以上)

12、参考文献 文章:作者,题目,期刊,年份,页面。 书:作者,书名,出版时间。 示范格式

参考文献(左对齐,小四号宋体加黑,具体的'文献为小四号宋体,篇

数在 10篇以上)

(1)期刊

[序号]主要负责者(两位以上作者中间用逗号分开).文献名[J].期刊名称(外文刊名可缩写,缩写后的首位字母应大写),出版年,卷号(期

8

号):起止页码.

[1]赖炎连,高自友,贺国平.非线性最优化的广义梯度投影法[J]. 中国科学(A),1992,(9):916-924.

[2] O. L. Mangasarian, Linear and nonlinear separation of patterns by linear programming [J]. Operation Research, 1965, 13: 444-452.

(2)专著、论文集,学位论文、报告

[序号]主要负责者(两位以上作者中间用逗号分开).文献题名[文献表示类型].出版地:出版者,出版年.起止页码.

[3]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997. [4]张筑生.微分动力系统的不变集[D].北京:北京大学数学系数学研 究所,1983.

数学论文的格式?

数学论文格式范文
【时间:2010-10-06 10:52 来源:未知】
题目要求:引人注目,一般不超过20个字。字体要求:小2号黑体,居中。空一行写摘要。
页面设置要求:页边距上、下、右都为2.5厘米,左边距为3厘米。装订线位置为左。

中学数学与高等数学的和谐接轨
(小二黑体,不加粗)

摘要(小三黑体,不加粗):从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。领悟到这一点,再结合中学数学的相关知识去学高等数学,就不会觉得艰涩难懂。站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。所以如何实现中学数学和高等数学的和谐接轨,如何在两者之间架一座桥梁是至关重要的。本文从特例分析、数学内容(代数、几何)、数学思想方法等三个方面就接轨问题进行了简要论述。(小四楷体,200字以上)
关键词(小三黑体,不加粗):中学数学 高等数学 数学思想 接轨
(小四楷体,不多于5个)
一般说来,数学史家把数学的发展分成四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期或五个时期(再加上“当代高等数学时期)。
(正文,小四宋体,字数不少于3000字)

参考文献:(小三黑体,不加粗)( 收集整理原创论文)
[1] 唐国庆.湘教版初中数学教案(七年级上册)[M].湖南教育出版社.2008年.
[2] 张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978年.
(小四宋体,参考文献不少于4个)

论文内容必须是有关数学方面的,专业或教学方面的。
西藏大学(初号隶书加黑居中)
本科生毕业论文(设计)
(小初楷体加黑居中)
题目:(字号二号,宋体,加黑,居中,下划线)
----副标题:(字号三号,宋体,加黑,居中,下划线)

院(部) 专业年级
姓 名 学 号
指导教师 职 称

标准的数学论文的格式是什么?顺便再给几个例文

  楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.

  这里的一篇是偏向交作业的

  下面一个是正式发表的双语版本

  张彧典人工证明四色猜想 山西盂县党校数学高级讲师

  用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。

  最后特别感谢英国兰开斯特大学A.lehoyd、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。

  附:论文

  用“H·Z—CP“求解赫伍德构形

  张彧典 (山西省盂县县委党校 045100)

  摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。

  关键词:H—CP Z—CP H·Z—CP

  《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。
  为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。
  如图1所示:
  四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。
  在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。
  现在具体确立赫伍德构形的不可避免集。
  在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。
  如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。
  其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。
  如图3:设图1中有C1-D2链、D1-C2链存在时。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
  如图4:设图1中有C1-D2链、B2-A2链存在时。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
  如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。
  如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。
  如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
  如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
  图9:设图8中有B2-A2链与A1-D1环相交。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。
  如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。
  对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:
  若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。
  若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。
  下面从理论上证明图2—10组成的不可避免集的完备性。
  在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:
  B1-A2、B1-D2、B2-C2、B2-A2
  B1-A2、B1-D2、B2-C2、D1-C2
  C1-D2、B1-D2、B2-C2、B2-A2
  C1-D2、B1-D2、B2-C2、D1-C2
  而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:
  A-B与C-D、A-C与B-D、A-D与B-C;
  还有12组可相交组合:
  A-B与A-C、A-D、B-C、B-D;
  A-C与A-D、B-C、C-D ;
  A-D与B-D、C-D;
  B-C与B-D、C-D;
  B-D与C-D。
  我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。
  到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。
  参考文献:
  〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

  附英文版

  Using H·Z-CP Solves Heawood Configuration
  Zhang Yu-dian
  Yu Xian Party School, Yu Xian 045100, Shanxi, China

  Abstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H·Z-CP.

  Key words: H-CP Z-CP H·Z-CP

  Introduce
  Thesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.
  For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.
  As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.
  In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.
  As follows, the detailed Heawood configuration’s inevitable sets is given.

  Result
  It is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.
  As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):
  Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.
  As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
  As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
  As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.
  Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.
  As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.
  As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
  As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
  As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.
  In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].
  For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.
  If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into being.then B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).
  If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).
  The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.
  In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:
  B 1-A2、B 1-A2、B2-C2、B2-A2
  B 1-A2、B 1-D2、B2-C2、D1-C2
  C 1-D2、B 1-D2、B2-C2、B2-A2
  C 1-D2、B 1-D2、B2-C2、D1-C2
  There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:
  A-B and C-D、A-C and B-D、A-D and B-C;
  Otherwise there are 12 kinds of intersectant combinations:
  A-B and A-C、A-D、B-C、B-D;
  A-C and A-D、B-C、C-D ;
  A-D and B-D、C-D;
  B-C and B-D、C-D;
  B-D and C-D。
  Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.
  By this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.

  Bibliography:
  〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

数学论文选题与写作方法

关于数学论文选题与写作方法

关于数学论文选题与写作方法是怎样的呢?了解关于数学论文选题与写作方法是撰写数学论文的重要的前提。欢迎阅读我整理的关于数学论文选题与写作方法,希望能够帮到大家。

引言

在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。

数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。

1撰写数学论文应具有原则

1.1创新性

作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。

1.2科学性

科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。

1.3规范性

规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。

2撰写数学论文忌讳

2.1大题小作

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。

2.2关门写稿

一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。

2.3形式思维混乱

科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。

3关于数学论文选题

数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:

(1)需要性选题应从社会需要和科学发展的需要出发。

(2)创新性选题应是国内外还没有人研究过或是没有充分研究过的问题。

(3)科学性选题应有最基本的科学事实作依据。

(4)可行性选题应充分考虑从事研究的主客观条件,研究方案切实可行。

4关于数学论文文风

4.1语言表达确切

从选词,造句,段落,篇章,标点符号都应正确无误。

4.2语言表达清晰简洁

语句通顺,脉络清楚,行文流畅,语言简洁。

4.3语言朴实

语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。参考文献(略)

知识扩展:数学论文范文

题目:浅谈平面向量的教学设计

向量的基础知识较多,且与其他很多部分知识都有联系,如向量与函数的联系、向量与三角函数的联系、向量与立体几何的联系、向量与解析几何的联系等。因此,有必要加强对向量这一章节的进一步研究和总结。

一、从运算的角度来讲,向量可分为三种运算

(一)几何运算

本章教材给出了三角形法则,平行四边形法则,多边形法则。利用这些法则,可以很好地解决向量中的几何运算问题,从中去体会数形结合的数学思想。

(二)代数运算

1、加法、减法的运算法则;2、实数与向量乘法法则;3、向量数量积运算法则。

(三)坐标运算

在直角坐标系中,向量的坐标运算有加、减、数乘运算、数量积运算。通过向量的坐标运算将向量的几何运算与代数运算有机结合起来,充分体现了解析几何的思想,让学生初步利用"解析法"来解决实际问题,也为以后学习解析几何及立体几何相关知识打下了基础,作好了铺垫。

二、教学内容、要求、重点与难点

(一)本章教学内容可分成两块:第一向量及其运算,第二解斜三角形。

1、平面向量基本知识,向量运算。具体教学内容有:向量(5.1节)、向量的加法与减法(5.2节)、实数与向量的积(5.3节)、平面向量的数量积及运算律(5.6节)。

2、平面向量的坐标运算,联结几何运算与数量运算的桥梁。具体教学内容体有:平面向量的坐标运算(5.4节),向量加减运算、实数与向量的积运算、平面向量的数量积的坐标表示(5.4节、5.7节)。

3、平面向量的应用,具体教学内容有:线段的定比分点(5.5节),平移(5.8节),正弦定理,余弦定理(5.9节),解斜三角形应用举例(5.10节),实习作业。

(二)教学要求

1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法。

3、掌握实数与向量的积,理解两个向量共线的充要条件。

4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式。

7、掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

(三)教学重点

向量的几何表示,向量的加、减运算及实数与向量的积的运算,平面向量的数量积,向量的坐标运算,向量垂直的条件,平面两点间的距离公式及线段的定比分点和中点坐标公式,平移公式,正、余弦定理。

(四)教学难点

向量的概念,向量运算法则及几何意义的理解和应用,解斜三角形等。

三、本章的.特点

教材编排的特点决定了在教学中处理本章时,有别于其它章节。

1、教材在本章处理上,充分体现了数形结合的思想。首先教材通过求小船由A地到B地的位移来引入向量,根据学生思维特点,由具体到抽象,以平面几何知识为背景。在概念、法则及例题的编辑上都尽量配了图形,并安排了较多的作图练习、看图练习及作图验证练习等,为学生积极参与教学活动提供了条件,为发挥学生学习的主体作用提供了条件,这样既抓住了平面向量的特点,又使学生通过操作性练习达到对新概念的理解。其次,本章各节的例题、练习、习题等配备量适中,可以使教学有较充分的自主空间,为教学提供了师生互动的空间,为学生提供了探究、发现与归纳的机会,也为教师根据教学目标,对教材进行再加工提供了可能。2、利用"向量法"解决实际问题是本章的显著特点之一。向量与几何之间存在着密切联系;向量又有加、减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能联系几何与代数,从而给了我们一种新的数学方法——向量法;向量法能将技巧性解题化成算法性解题,正、余弦定理的推导就采用了向量法,为以后学习解析几何与立体几何打下了基础。

4、强化数学能力是本章的另一显著特点。由于本章的向量法的精髓就是将技巧性解题思路化成算法性解题思路;利用所学知识解决实际问题的能力作为本章的重要教学要求;为了更好地培养学生应用数学知识解决实际问题的能力和实际操作能力,教材还安排了"实习作业",通过实际测量,使学生能运用正、余弦定理来解决实际问题,既体现了数学的工具作用和应用性,又从另一个方面促进了学生对知识的理解与掌握。以此来强化学生根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算,即运算能力。以此来强化学生能综合应用所学数学知识、思想和方法解决问题,能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明,即实践能力。

四、教学体会

依据教学内容、要求及本章的特点,根据学生认知水平和近几年的教学实践,对"平面向量"教学有如下的教学体会:

1、认真研究《考试大纲》及教学要求和目标,分析本章节特点,根据学生原有知识结构对学习本章可能会产生的正负迁移作用,有针对性地设计教学计划,组织教学过程,做好学法指导。

2、在教学中重基础知识,重基本方法,重基本技能,重教材,重应用,重工具作用,不拔高,不选偏题和难题,遵循学生认知规律和按大纲要求进行。

3、抓住向量的数形结合和具有几何与代数的双重属性的特点,提高"向量法"的运用能力,充分发挥工具作用。在教学中引导学生理解向量怎样用有向线段来表示,掌握向量的三种运算,理解向量运算和实数运算的联系和区别,强化本章基础。

4、利用解三角形的应用问题,结合教学过程进行数学建模的训练,要引导学生识记、区分和理解正、余弦定理的应用范围,会对公式进行变形;在运用公式解三角形时,会分类讨论三角形类型;指导学生在解三角形时掌握正、余弦定理的选用与寻找合理、简捷的运算途径的关系,总结出解与三角形有关的应用问题

5、强化数形结合的思想,化归的思想,分类与讨论的思想,方程的思想等;加强学生运算能力的培养和提高。引导学生理解本章平移知识与函数图像平移的联系和区别;理解解三角形与三角函数的联系;注意区分两向量的夹角与直线的夹角概念。

一、编撰数学论文应具有准则

1.1立异性

作为宣布研讨效果的一种文体,应反映作者本人所供给的新的现实,新的办法,新的见地。论文选题不新颖,试验没有值的报道的效果,即使有高明写作技巧,也不可能妙笔生花,硬写出新东西来。根底性研讨最忌低水平重复,如受试方针,处理要素,观测方针,效果与前人雷同,毫无新意,这样论文不值得宣布。

1.2科学性

科技论文的生命在于它的科学性。没有科学性论文毫无价值,并且可能把他人引入歧途,构成有害效果。编撰论文应具有:(1)反映现实的实在性;(2)选题资料的客观性;(3)剖析断定的合理性;(4)言语表达的准确性。

1.3规范性

规范性是论文在体现方式上的重要特色。科技论文已构成一种相对固定的论文格式,大体上由文题,一般不超越20字;摘要(运用的办法,得到的效果,具有含义等);索引关键词;导言;研讨办法,评论,效果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)契合认识规则;(2)简练明快,较少篇幅包容较多信息;(3)便利读者阅览。

二、编撰数学论文忌讳

2.1草率行事

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文根本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见地。这样作者应将课题选的小一些,写出特色。

2.2关门写稿

一本学术杂志中的论文,独自拿出来看自然是独立完好的。就杂志的整个系统来看就会有一些联络,它们或是构成一个小专题或是使评论不断深入。这样作者就要对你预备刊物有所了解,以免无的放矢。不能缺乏现实闭门造车,夸大定论。首要应该知道他人做了些什么,写了些什么,防止在自己的论文中重复。一起能够学习他人效果,在他人研讨效果根底上进一步研讨,防止做无用功。

2.3方式思维混乱

科学发展到今日,科技论文的根本格式在世界范围内已趋向一致。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以编撰论文应遵守方式逻辑根本规则,正确运用逻辑推理办法尤为重要。

三、关于数学论文选题

数学论文选题是找“抢手”仍是“冷门”?“抢手”课题从事研讨的人员很多,发展迅速。假如作者所在单位根底雄厚,在这个范畴占有适当位置,当然要从这一范畴深入研讨或向相关范畴扩展。假如自己在这方面根底差,起步晚又没有找到新的突破,就不宜跟在他人后边搞低水平重复。挑选“冷门”,常识的空白处及学科交叉点为研讨方针为较好的挑选。无论选“冷门”仍是“抢手”,选题应遵从以下准则:

(1)需求性选题应从社会需求和科学发展的需求动身。

(2)立异性选题应是国内外还没有人研讨过或是没有充沛研讨过的问题。

(3)科学性选题应有最根本的科学现实作根据。

(4)可行性选题应充沛考虑从事研讨的主客观条件,研讨方案切实可行。

四、关于数学论文文风

4.1言语表达确切

从选词,造句,阶段,华章,标点符号都应正确无误。

4.2言语表达清晰简练

语句通顺,脉络清楚,行文流畅,言语简练。

4.3言语朴素

言语朴素无华是科技论文本性。对于科学问题论述无须富丽词采也不必夸张润饰。总之编撰论文应有感而写,有为而写,有意图而写。学习他人效果,博采众长,进入实践,提炼新意,在你的论文中拿出你的实在感触,不简单重复他人的观点,这样的论文才可能宣布,并为广大读者承受。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页