脂类代谢与人体健康
脂类物质包括脂肪和类脂二类物质,脂肪又称甘油三酯,由甘油和脂肪酸组成;类脂包括胆固醇及其酯、磷脂及糖脂等。脂类物质是细胞质和细胞膜的重要组分;脂类代谢与糖代谢和某些氨基酸的代谢密切相关;脂肪是机体的良好能源,脂肪的潜能比等量的蛋白质或糖高1倍以上、通过氧化可为机体提供丰富的热能;固醇类物质是某些激素和维生素D及胆酸的前体。脂类代谢与人类的某些疾病(如酮血症、酮尿症、脂肪肝、高血脂症、肥胖症和动脉粥样硬化、冠心病等)有密切关系,因此,脂类代谢对人体健康有重要意义。
一、脂类的消化与吸收
1.脂肪的消化与吸收 食物中的脂肪在口腔和胃中不被消化,因唾液中没有水解脂肪的酶,胃液中虽含有少量脂肪酶,但胃液中的pH为1~2,不适于脂肪酶作用。脂肪的消化作用主要是在小肠中进行,由于肠蠕动和胆汁酸盐的乳化作用,脂肪分散成细小的微团,增加了与脂肪酶的接触面,通过消化作用,脂肪转变为甘油一酯、甘油二酯、脂肪酸和甘油等,它们与胆固醇、磷脂及胆汁酸盐形成混合微团。这种混合微团在与十二指肠和空肠上部的肠粘膜上皮细胞接触时,甘油一酯、甘油二酯和脂肪酸即被吸收,这是一种依靠浓度梯度的简单扩散作用。吸收后,短链的脂肪酸由血液经门静脉入肝;长链的脂肪酸、甘油一酯和甘油二酯在肠粘膜细胞的内质网上重新合成甘油三酯,再与磷脂、胆固醇、胆固醇酯及载脂蛋白构成了乳糜微粒,通过淋巴管进入血液循环。
2.类脂的消化与吸收 食物中胆固醇的吸收部位主要是空肠和回肠,游离胆固醇可直接被吸收;胆固醇酯则经胆汁酸盐乳化后,再经胆固醇酯酶水解生成游离胆固醇后才被吸收,吸收进入肠粘膜细胞的胆固醇再酯化成胆固醇酯,胆固醇酯中的大部分掺入乳糜微粒,少量参与组成极低密度脂蛋白,经淋巴进入血液循环。食物中的磷脂在磷脂酶的作用下,水解为脂肪酸、甘油、磷酸、胆碱或胆胺,被肠粘膜吸收后,在肠壁重新合成完整的磷脂分子,参与组成乳糜微粒而进入血液循环。
二、脂肪的代谢
1.脂肪酸的合成 体内的脂肪酸的来源有二:一是机体自身合成,以脂肪的形式储存在脂肪组织中,需要时从脂肪组织中动员。饱和脂肪酸主要靠机体自身合成;另一来源系食物脂肪供给,特别是某些不饱和脂肪酸,动物机体自身不能合成,需从植物油摄取。它们是动物不可缺少的营养素,故称必需脂肪酸。它们又是前列腺素、血栓素及白三烯等生理活性物质的前体。前列腺素可使血管扩张,血压下降,并能抑制血小板的聚集。而血栓素作用与此相反,有促凝血作用。白三烯能引起支气管平滑肌收缩,与过敏反应有关。
脂肪酸的生物合成是在胞液中多酶复合体系催化下进行的,原料主要来自糖酵解产生的乙酸辅酶A和还原型辅酶Ⅱ,最后合成软脂酸。软脂酸在内质网和线粒体分别与丙二酰单酰辅酶A和乙酸辅酶A作用,均可以使碳链的羧基端延长到18~26℃。机体还可利用软脂酸、硬脂酸等原料,在去饱和酶的催化下,合成不饱和脂肪酸,但不能合成亚油酸、亚麻酸和花生四烯酸等必需脂肪酸。
2.脂肪的合成 脂肪在体内的合成有两条途径,一种是利用食物中脂肪转化成人体的脂肪,另一种是将糖转变为脂肪,这是体内脂肪的主要来源,是体内储存能源的过程。糖代谢生成的磷酸二羟丙酮在脂肪和肌肉中转变为 磷酸甘油,与机体自身合成或食物供给的两分子脂肪酸活化生成的脂酰辅酶A作用生成磷脂酸,然后脱去磷酸生成甘油二酯,再与另一分子脂酰辅酶A作用,生成甘油三酯。
3.脂肪的分解 脂肪组织中储存的甘油三酯,经激素敏感脂肪酶的催化,分解为甘油和脂肪酸运送到全身各组织利用,甘油经磷酸化后,转变为磷酸二羟丙酮,循糖酵解途径进行代谢。胞液中的脂肪酸首先活化成脂酰辅酶A,然后由肉毒碱携带通过线粒体内膜进入基质中进行 氧化,产生的乙酰辅酶A进入三羧酶循环彻底氧化,这是体内能量的重要来源。
4.酮体的产生和利用 脂肪酸在肝中分解氧化时产生特有的中间代谢产物——酮体,酮体包括乙酰乙酸、 羟丁酸和丙酮,由乙酰辅酶A在肝脏合成。肝脏自身不能利用酮体,酮体经血液运送到其它组织,为肝外组织提供能源。在正常情况下,酮体的生成和利用处于平衡状态。
三、类脂的代谢
1.胆固醇的代谢 体内胆固醇主要在肝细胞内合成,胆固醇在体内不能彻底氧化分解,但可以转变成许多具有生物活性的物质,肾上腺皮质激素、雄激素及雌激素均以胆固醇为原料在相应的内分泌腺细胞中合成。胆固醇在肝中转变为胆汁酸盐,并随胆汁排入消化道参与脂类的消化和吸收。皮肤中的7-脱氧胆固醇在日光紫外线的照射下,可转变为维生素 ,后者在肝及肾羟化转变为1,25- 的活性形式,参与钙、磷代谢。
2.磷脂的代谢 含磷酸的脂类称为磷脂,由甘油构成的磷脂统称为甘油磷脂,它包括卵磷脂和脑磷脂,是构成生物膜脂双层结构的基本骨架,含量恒定为固定脂。卵磷脂是合成血浆脂蛋白的重要组分。由鞘氨醇构成的磷脂称为鞘磷脂,是生物膜的重要组分,参与细胞识别及信息传递。磷脂酸是合成磷脂的前体,在磷酸酶作用下生成甘油二酯,然后与CDP-胆碱或CDP-胆胺反应生成卵磷脂和脑磷脂。鞘氨醇由软脂酸辅酶A和丝氨酸反应形成。鞘氨醇经长链脂酰辅酶A酰化而形成N-酸基鞘氨醇,即神经酰胺,又进一步和CDP-胆碱作用而形成鞘磷脂。
四、血浆脂蛋白代谢
1.血脂的组成及含量 血浆中所含的脂类统称血脂,它的组成包括甘油三酯、磷脂、胆固醇及其酯以及游离的脂肪酸等。血脂的来源有二:一为外源性,从食物摄取的脂类经消化吸收进入血液;二是内源性,由肝、脂肪细胞以及其它组织合成后释放入血液。血脂受膳食、年龄、性别、职业以及代谢等的影响,波动范围较大。正常人空腹12~24 h血脂的组成及含量见表1。
表1 正常成人空腹时血浆中脂类的组成和含量
脂类物质 nmol/L mg/dl
脂类总量 4~7(g/L) 400~700
甘油三酯 0.11~1.76 10~160
胆固醇总量 3.75~6.25 150~250
磷 脂 1.80~3.20 150~250
游离脂肪酸 0.3~0.9 8~25
血浆中脂类的正常值范围因测定方法不同而有一定的差别。另外,血脂含量与全身脂类相比,只占极小部分,但所有脂类均通过血液转运至各组织。因此,血脂的含量可以反映全身脂类的代谢概况。
血脂的来源与去路如下:
2.血浆脂蛋白的分类、组成及功能 正常人血浆含脂类虽多,却仍清彻透明,说明血脂在血浆中不是以自由状态存在,而与血浆中的蛋白质结合,以血浆脂蛋白的形式运输。载脂蛋白主要有apoA、apoB、apoC、apoD和apoE等五类,还有若干亚型。血浆脂蛋白的结构为球状颗粒,表面为极性分子和亲水基团,核心为非极性分子和疏水基团。各种血浆脂蛋白因所含脂类及蛋白质量不同,其密度、颗粒大小、表面电荷、电泳行为及免疫性均有不同,一般用超速离心法和电泳法将它们分为四类,彼此对应,即:HDL高密度脂蛋白( 脂蛋白)、VLDL极低密度脂蛋白(前 脂蛋白)、LDL低密度脂蛋白( 脂蛋白)和CM乳糜微粒。CM是在空肠粘膜细胞内合成,转运外源性脂肪;VLDL是在肝细胞内合成,转运内源性脂肪;LDL是在血浆中由VLDL转变而来,转运胆固醇至各组织;HDL是在肝细胞内合成,转运胆固醇和磷脂至肝脏。
五、脂类代谢紊乱引起的常见疾病
1.血浆脂蛋白的异常引起的疾病正常时,血浆脂类水平处于动态平衡,能保持在一个稳定的范围。如在空腹时血脂水平升高,超出正常范围,称为高血脂症。因血脂是以脂蛋白形式存在,所以血浆脂蛋白水平也升高,称为高脂蛋白血症。根据国际暂行的高脂蛋白血症分型标准,将高脂蛋白血症分为6型,各型高脂蛋白血症血浆脂蛋白及脂类含量变化见表2。
表2 各型高脂蛋白血浆脂蛋白及脂类含量变化
类型
血浆脂蛋白变化
血脂含量变化
发生率
Ⅰ
高乳糜微粒血症
甘油三酯升高
罕见
(乳糜微粒升高)
胆固醇升高
Ⅱa
高 脂蛋白血症
甘油三酯正常
常见
(低密度脂蛋白升高)
胆固醇升高
Ⅱb
高 脂蛋白血症
甘油三酯升高
常见
高前 脂蛋白血症
胆固醇升高
(低密度脂蛋白及极
低密度脂蛋白升高
Ⅲ
高 脂蛋白血症
甘油三酯升高
较少
高前 脂蛋白血症
胆固醇升高
(出现“宽 ”脂蛋白
低密度脂蛋白升高
Ⅳ
高前 脂蛋白血症
甘油三酯升高
常见
(极低密度脂蛋白升高)
胆固醇升高
Ⅴ
高乳糜微粒血症
甘油三酯升高
高前 脂蛋白血症
胆固醇升高
不常见
按发病原因又可分为原发性高脂蛋白血症和继发性高脂蛋白血症。原发性高脂蛋白血症是由于遗传因素缺陷所造成的脂蛋白的代谢紊乱,常见的是Ⅱa和Ⅳ型;继发性高脂蛋白血症是由于肝、肾病变或糖尿病引起的脂蛋白代谢紊乱。
高脂蛋白血症发生的原因可能是由于载脂蛋白、脂蛋白受体或脂蛋白代谢的关键酶缺陷所引起的脂质代谢紊乱。包括脂类产生过多、降解和转运发生障碍,或两种情况兼而有之,如脂蛋白脂酶活力下降、食入胆固醇过多、肝内合成胆固醇过多、胆碱缺乏、胆汁酸盐合成受阻及体内脂肪动员加强等均可引起高脂蛋白血症。动脉粥样硬化是严重危害人类健康的常见病之一,发生的原因主要是血浆胆固醇增多,沉积在大、中动脉内膜上所致。其发病过程与血浆脂蛋白代谢密切相关。现已证明,低密度脂蛋白和极低密度脂蛋白增多可促使动脉粥样硬化的发生,而高密度脂蛋白则能防止病变的发生。这是因为高密度脂蛋白能与低密度脂蛋白争夺血管壁平滑肌细胞膜上的受体,抑制细胞摄取低密度脂蛋白的能力,从而防止了血管内皮细胞中低密度脂蛋白的蓄积。所以在预防和治疗动脉粥样硬化时,可以考虑应用降低低密度脂蛋白和极低密度脂蛋白及提高高密度脂蛋白的药物。肥胖人与糖尿病患者的血浆高密度脂蛋白水平较低,故易发生冠心病。
2.酮血症、酮尿症及酸中毒 正常情况下,血液中酮体含量很少,通常小于1mg/100mL。尿中酮体含量很少,不能用一般方法测出。但在患糖尿病时,糖利用受阻或长期不能进食,机体所需能量不能从糖的氧化取得,于是脂肪被大量动员,肝内脂肪酸大量氧化。肝内生成的酮体超过了肝外组织所能利用的限度,血中酮体即堆积起来,临床上称为“酮血症”。患者随尿排出大量酮体,即“酮尿症”。酮体中的乙酰乙酸和 羟丁酸是酸性物质,体内积存过多,便会影响血液酸碱度,造成“酸中毒”。
3.脂肪肝及肝硬化 由于糖代谢紊乱,大量动员脂肪组织中的脂肪,或由于肝功能损害,或者由于脂蛋白合成重要原料卵磷脂或其组成胆碱或参加胆碱含成的甲硫氨酸及甜菜碱供应不足,肝脏脂蛋白合成发生障碍,不能及时将肝细胞脂肪运出,造成脂肪在肝细胞中堆积,占据很大空间,影响了肝细胞的机能,肝脏脂肪的含量超过10%,就形成了“脂肪肝”。脂肪的大量堆积,甚至使许多肝细胞破坏,结缔组织增生,造成“肝硬化”。
4.胆固醇与动脉粥样硬化 虽然胆固醇是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇水平增高常使动脉粥样硬化的发病率增高。动脉粥样硬化斑的形成和发展与脂类特别是胆固醇代谢紊乱有关。胆固醇进食过量、甲状腺机能衰退,肾病综合症,胆道阻塞和糖尿病等情况常出现高胆固醇血症。
近年来发现遗传性载脂蛋白(APO)基因突变造成外源性胆固醇运输系统不健全,使血浆中低密度脂蛋白与高密度脂蛋白比例失常,例如APO AI,APO CIII缺陷产生血中高密度脂蛋白过低症,APO-E-2基因突变产生高脂蛋白血症,此情况下食物中胆固醇的含量就会影响血中胆固醇的含量,因此病人应采用控制膳食中胆固醇治疗。引起动脉粥样硬化的另一个原因是低密度脂蛋白的受体基因的遗传性缺损,低密度脂蛋白不能将胆固醇送入细胞内降解,因此内源性胆固醇降解受到障碍,致使血浆中胆固醇增高。
5.肥胖症 肥胖症是一种发病率很高的疾病,轻度肥胖没有明显的自觉症状,而肥胖症则会出现疲乏、心悸、气短和耐力差,且容易发生糖尿病、动脉粥样硬化、高血压和冠心病等。除少数由于内分泌失调等原因造成的肥胖症外,多数情况下是由于营养失调所造成。由于摄入食物的热量大于人体活动需要量,体内脂肪沉积过多、体重超过标准20%以上者称为肥胖症。预防肥胖,要应用合理饮食,尤其是控制糖和脂肪的摄入量,加上积极而又适量的运动是最有效的减肥处方。
脂肪是人体内的主要储能物质,机体所需能量的50%以上由脂肪氧化供给;脂肪还协助脂溶性维生素的吸收,因此,脂肪是人体的重要营养素之一;包括胆固醇、胆固醇酯和磷脂等在内的类脂广泛分布于全身各组织中,是构成生物膜的主要物质,它与膜上许多酶蛋白结合而发挥膜的功能,胆固醇还是机体内合成胆汁酸、维生素 和类固醇的重要物质。脂类代谢受多种因素影响,特别是受到神经体液的调节,如肾上腺素、生长激素、高血糖素、促肾上腺素、糖皮质类固醇、甲状腺素和甲状腺刺激素促进脂肪组织释放脂肪酸,而胰岛素和前列腺素的作用则相反。适量的含脂类食物的摄入和适当的体育锻炼,有利于脂类代谢保持正常,一旦某种因素发生变化引起脂类代谢反常时,便导致疾病,危害人体健康。
生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸、脂类、糖类。
糖类代谢与脂类代谢之间的关系
应该清楚,糖类与脂肪之间的转化是双向的,但它们之间的转化程度不同,糖类可以大量形成脂肪,例如酵母菌放在含糖培养基中培养,细胞内就能够生成脂类,个别种类的酵母菌合成的脂肪可以高在这酵母菌干重的40%;然而脂肪却不能大量转化为糖类,例如某些动物在冬眠的时候,脂肪可以转变成糖类。
糖类代谢与蛋白质代谢的关系
首先使明确必需氨基酸和非必需氨基酸的概念:所谓非必需氨基酸是指在人体细胞中可能合成的氨基酸;所谓必需氨基酸是指在人体细胞中不能合成的氨基酸,人体的必需氨基酸共有8种,它们是赖氨酸、色氨酸、苯丙氨酸、亮氨酸、异亮氨酸、苏氨酸、甲硫氨酸。 然后应指出糖类与蛋白质之间的转化也可以是双向的:糖类代谢的中间产物可以转变成非必需氨基酸,但糖类不能转化为必需氨基酸,因此糖类转变蛋白质的过程是不全面的;然而几乎所有组成蛋白质的天然氨基酸通过脱氨基作用后,产生的不含氮部分都可以转变为糖类,例如,用蛋白质饲养患人工糖尿病的狗,则有50%以上的食物蛋白质可以转变成葡萄糖。
蛋白质代谢与脂类代谢的关系
蛋白质与脂类之间的转化依不同的生物而有差异,例如人和动物不容易利用脂肪合成氨基酸,然而植物和微生物则可由脂肪酸和氮源生成氨基酸;某些氨基酸通过不同的途径也可转变成甘油和脂肪酸,例如用只含蛋白质的食物饲养动物,动物也能在体内存积脂肪。
糖类、蛋白质和脂类的代谢之间相互制约
糖类可以大量转化成脂肪,而脂肪却不可以大量转化成糖类。只有当糖类代谢发生障碍时才由脂肪和蛋白质来供能,当糖类和脂肪摄入量都不足时,蛋白质的分解才会增加。例如糖尿病患者糖代谢发生障碍时,就由脂肪和蛋白质来分解供能,因此患者表现出消瘦。
海洋生物来源药物先导化合物的研究进展
【摘要】 海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。
【关键词】 海洋生物 萜类化合物 糖苷类 生物活性
【Abstract】 Marine organism show some important biological activities. This paper reviews terpenoids and glycosides from marine organism at home and abroad since 2005, and provides scientific evidence for reasonable exploitation and application. Terpenoids are mainly occurred on marine algae, coral, sponge and some fungi by monoterpene, sesquiterpene, diterpene and triterpene. And glycosides with structures of lipid, steroid and terpenoid are distributed to marine algae, sponge, sea cucumber and starfish.
【Key words】 Marine organism; terpenoid; glycoside; bioactivity
海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。
萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。
糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosyl cytosine) 1、抗病毒药物的Ara - A 2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。
本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。
1 萜类化合物
1.1 单萜 2005年M. G. Knott等人〔2〕对从红藻Plocamium corallorhiza中分离得到的三种多卤代单萜化合物plocoralides A-C(1~3)〔3,4〕进行了活性研究,发现化合物Plocaralides B(2), C(3)对食管癌细胞WHCOI具有中等强度的细胞毒作用,这些化合物具有卤素取代基。
1.2 倍半萜 从海泥来源的真菌Emericella variecolor GF10的发酵液中分离得到两个新型的倍半萜化合物6-epi-ophiobolin G(4)和6-epi-ophiobolin N(5),化合物在1~3μM浓度时能使神经癌细胞Neuro 2A凋亡,同时伴随细胞萎缩和染色体聚集〔5〕。这一类ophiobolins是天然的三环或四环的倍半萜化合物,对线虫、真菌、细菌以及肿瘤细胞有着普遍的抑制活性。
Willam Fenical等人从海洋沉积物分离得到一株放线菌CNH-099,在该菌的代谢产物中分离到具有细胞毒作用的新颖的 marinonc 衍生物 neomarinone(6)、isomarinone(7)、hydroxydebromomarinone(8)和methoxydeuromomarinonc(9),它们均是倍半萜萘醌类抗生素。Neomarinone(6)和marinones(7~9)对HCrll6结肠癌细胞显示中等程度的体外细胞毒作用(IC50=8μg/ml),而且,neomarinone(6)对NCI-s60癌细胞也具有中等程度细胞毒作用(IC50=10μg/ml)〔6〕。
化合物花侧柏烯倍半萜(10~12)从希腊北爱情海希俄斯岛采集的红藻 L. microcladia中分离得到〔7〕。红藻 L. microcladia 经有机溶剂CH2Cl2/MeOH (3:1)提取,以Cyclohexane/EtOAc(9:1)为洗脱液进行硅胶柱层析,最后经HPLC纯化得到化合物(10-12)。该试验并对化合物活性进行了研究,发现三种化合物均对肺癌细胞NSCLC-N6 和 A-549有抑制作用,化合物(10):IC50=196.9 μM (NSCLC-N6)和242.8 μM (A-549),化合物(11):IC50 = 73.4μM (NSCLC-N6) 和52.4 μM (A-549) ,化合物(12):IC50= 83.7 μM (NSCLC-N6)和81.0 μM (A-549)。后两个化合物对肺癌细胞毒活性作用明显高于第一个化合物,推测可能由于后两个化合物结构中酚羟基以及五环内双键的存在提高了化合物活性,而化合物中溴原子的存在并没有对其活性构成影响。从中国南京采集的红藻L. okamurai也分离出四种衍生的花侧柏烯倍半萜化合物,分别是Laureperoxide (13), 10-bromoisoaplysin (14), isodebromolaurinterol (15)和10-hydroxyisolaurene (16)〔8〕。5种snyderane倍半萜(17~21)化合物从红藻L. luzonensis中分离得到〔9〕。
从一个软海绵种属Halichondria sp中分离得到四种具有抗微生物活性的含氮桉烷倍半萜化合物halichonadins A-D(22~25)〔10〕。该海绵采集于日本冲绳运天港,2.5 kg样品溶于4L MeOH,所得的115g MeOH提取物分别用1200ml EtOAc和400MlH2O萃取,7.9g EtOAc萃取物经硅胶柱层析后,洗脱液为MeOH/CHCl3(95:5)和石油醚/乙醚(9:1),得到化合物halichonadins A-D(22~25)和已知化合物acanthenes B、C。活性检测实验显示:化合物halichonadins A-D均具有抗细菌活性,同时halichonadins B和C也具有抗真菌活性,化合物halichonadins C对新型隐球菌(Cryptococcus neoformans)的半致死浓度(IC50)达到0.0625μg/ml。三个部分环化的倍半萜(26~28)化合物具有抑制磷酸酶Cdc25B活性,从海绵Thorectandra sp.中分离得到〔11〕。冷冻的海绵样品经4℃去离子水浸泡冷冻干燥后得到的干涸物, 随后用MeOH/CH2Cl2(1:1)和MeOH/H2O(9:1)的有机溶剂提取获得粗提物。采用活性追踪的方式,对粗提物(IC50=8μg/ml)进一步分离,将其溶于100mlMeOH/H2O(9:1)有机溶剂中,得到1.2g的粗提物加入300ml正己烷,获得水相部分溶于MeOH/H2O(7:3)的溶剂中,再用300ml CH2Cl2提取得到的部分经活性测定显示对磷酸酯酶抑制活性最强(IC50=6μg/ml),之后采用反相C-18柱HPLC分离,得到部分环化的倍半萜化合物(26)16-oxo-luffariellolide(12mg, tR=18min),化合物(27) 16-hydroxy-luffariellolide (2.5 mg, tR=19min)以及化合物(28) luffariellolide (4.20mg, tR=38min)。五种属于倍半萜类的化合物hyrtiosins A-E (29~33),从中国海南两个不同地方的海绵Hyrtios erecta种属中分离得到〔12〕。
氧化的倍半萜化合物gibberodione(34), peroxygibberol(35) 和 sinugibberodiol(36)从台湾软珊瑚Sinularia gibberosa分离得到〔13〕,化合物(35)具有较温和的细胞毒性〔14〕。从珊瑚Eunicea sp.中提取的七种倍半萜代谢产物(37~43)〔15〕,含有榄烷,桉烷和吉玛烷骨架结构,研究显示对Eunicea 种属的疟原虫具有轻度的抑制作用。
1.3 二萜 以前很少有从绿藻中分离得到萜类化合物的报道,但是与2004年相比,提取的代谢产物数量有所增加〔16〕。从澳大利亚塔斯马尼亚采集的绿藻Caulerpa brownii中分离出许多新型二萜类化合物,其中化合物(44~48)在没有分支的绿藻中提取得到〔17〕,而类酯萜化合物(49)是从分支的绿藻中获得,该研究同时显示提取的类酯萜化合物对细胞、鱼类、微生物均有不同程度的毒性作用〔18〕。
日本Koyama K等人从褐藻Ishige okamurae来源的未知海洋真菌(MPUC 046)中分离到一种新型的二萜类化合物phomactin H(50)〔19〕。真菌(MPUC 046)经含150g小麦的400ml海水25℃发酵培养31天后,采用CHCl3溶剂提取、硅胶层析及HPLC纯化得到phomactin H。该化合物同已发现的phomactin A-G化合物一样,均属于血小板活化因子(PAF)拮抗剂,能抑制PAF诱导的血小板凝聚,同时推测此活性与化合物的某个特定骨架结构有关。
从法国南部大西洋海滨采集的褐藻Bifurcaria bifurcata中分离得到(51~55)五种新型的极性非环状二萜类化合物〔20〕。该褐藻经CHCl3/MeOH(1:1)提取,硅胶层析(洗脱液为不同比例的Hexane,EtOAc,MeOH),经反相C-18柱HPLC纯化获得十二种化合物,其中五种为新型二萜类化合物。化合物(51~53)在Hexane: EtOAc(2:3)洗脱液中发现,而化合物(54)和(55)则从Hexane: EtOAc(1:4)洗脱液中获得。
6种新型的Dactylomelane二萜类化合物 (56~61)从西班牙特纳里夫南部家那利群岛采集的红藻Laurencia中分离得到〔21〕,其结构具有C-6到C-11环化的单环碳新型结构。采集的红藻经CH2Cl2/MeOH(1:1)有机溶剂提取后,用洗脱液Hexane/CHCl3/MeOH(2:1:1)进行Sephadex LH-20反相色谱分离,结合TLC点样筛选的部分用洗脱液EtOAc/hexane(1:4)进行硅胶柱层析,最后采用硅胶柱进行HPLC纯化得到六种新型的单环碳二萜类化合物Dactylomelans。从红藻L. luzonensis中也分离得到二萜类化合物luzodiol (62)〔9〕。一个溴代二萜类化合物 (63)从日本其他红藻Laurencia物种中分离得到 〔22〕。
Xenicane二萜类化合物(64~71)从台湾珊瑚Xenia blumi分离出来,而化合物xeniolactones A-C (72~74)则是从台湾Xenia florida中分离出来的〔23〕。化合物 (64~67), (69), (70) 和 (72)具有轻微的细胞毒性作用。非Xenicane代谢产物xenibellal (75)对Xenia umbellata也具有轻微的细胞毒性作用〔24〕。化合物Confertdiate (76)是一个四环的二萜类物质,从中国珊瑚Sinularia conferta中分离得到〔25〕。
从史密森尼博物院癌症研究所收集的海葵中分离得到的二萜类化合物actiniarins A-C (77~79)能适度抑制人cdc25B磷酸酶重组〔26〕。 Periconicins A,B (80~81)〔27〕是从内生红树林真菌Periconia sp.分离得到的二萜类的新化合物,能抑制不同微生物的生长活性,诸如bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6358p, Staphylococcus epidermis ATCC 12228等等。
南海真菌2492#是从采自香港红树林植物Phiagmites austrah样品中分离得到的,从2492#菌株的发酵液中分离得到的两种二萜类化合物 (82~83)有很好的生理活性〔28〕,如抗肿瘤、降压、调整心率失常,同时降压调整心率失常的作用在相同的条件下优于临床现用的阳性对照物。
从中国红树林植物Bruguiera gymnorrhiza分离出二萜类化合物 (84~86),化合物(86)对小鼠成纤维细胞具有适当的细胞毒活性〔29〕。也从中国红树林另一物种Bruguiera sexangula var. rhynchopetala分离出三种二萜类化合物 (87~89) 〔30〕。与之结构相似的二萜类化合物 (90~93)从中国Bruguiera gymnorrhiza中分离得到,其中化合物 (92)和 (93)有轻微的细胞毒活性〔31〕。
1.4 二倍半萜 Willam Fenical研究小组从曲霉属Aspergillus海洋真菌(菌株编号CNM-713)分离到一个新的二倍半萜化合物aspergilloxide (94),该化合物为含有25个碳原子的新骨架,对人的结肠癌细胞HCT-116有微弱的细胞毒活性〔32〕。在此之前,Willam Fenical等人从巴哈马的红树林中的漂浮木中也分离到一株真菌Fusarium heterosporum CNC-477, 并从中分离得到一系列多羟基二倍半萜类化合物neomangicols A-C(95~97)〔33〕和mangicols A-G (98~104)〔6〕,它们的结构如下图所示。Neomangicols的骨架为25个碳的二倍半萜,是首次从天然物中分离得到。药理实验显示化合物 (96)具有和庆大霉素大致相当的对革兰阳性细菌的抑制能力,化合物 (98)和 (99)对MPA(phorbol myristate acetate)诱导的鼠类耳朵水肿有抗炎症活性。1.5 三萜 从海洋生物中提取得到的三萜类化合物主要以三萜皂苷、三萜烯类、三萜糖苷等形式存在。四环三萜皂苷类化合物nobilisidenol (105) 和 (106)是从中国黑乳海参Holothuria nobilis分离得到的〔34〕。采集于福建东山的黑乳海参洗净切碎后用85%的EtOH冷浸提取,得到的流浸膏均匀分散于水中,依次用石油醚、二氯甲烷、n-BuOH萃取,研究发现n-BuOH提取物经大孔吸附树脂、正相硅胶层析、反相C-18硅胶柱层析以及反相C-18 柱HPLC分离得到三萜皂苷类化合物nobilisidenol (105)和(106)。易杨华等同时从海参中提取到了其它的三萜糖苷类化合物以及三萜皂苷脱硫衍生物〔35,36〕。三萜烯类化合物intercedensides D-I(107-112)从中国海参Mensamaria intercedens中分离得到,具有细胞毒功能〔37〕。新西兰海参Australostichopus mollis是单硫酸酯三萜糖甙化合物mollisosides A(113), B1(114) 和 B2(115)的来源〔38〕。
具有细胞溶解作用的三萜类化合物sodwanone S (116)是从印度洋多毛岛采集的海绵Axinella weltneri中分离得到的〔39〕。三萜苷类化合物sarasinosides J-M (117-120)分离自印尼苏拉威西岛采集的海绵Melophlus sarassinorum,对B. subtilis和S. cerevisae的细菌具有抗微生物活性作用〔40〕。
2 糖苷类化合物
从中国海南采集的甲藻A. carterae中分离得到一种不饱和的糖基甘油酯化合物(121)〔41〕。甲藻采集于中国海南三亚,经分离筛选得到的A. carterae大规模培养后用甲苯/MeOH(1:3)的有机溶剂提取,所得干涸物分别用甲苯、1N NaCl 水溶液提取。研究发现有机相提取物经硅胶柱(洗脱液为不同比例的MeOH/CHCl3)、反相C-18硅胶柱层析(洗脱液为MeOH/H2O=9:1),最后经反相C-18柱制备型HPLC(流动相为MeOH/H2O =95:5)分离纯化得到25mg不饱和的糖基甘油酯化合物(121)。从多米尼克普次矛斯采集的绿藻Avrainvillea nigricans中可以分离出一个甘油酯avrainvilloside(122),该化合物含有6-脱氧-6-氨基糖苷部分〔42〕。
两个甘油一酯化合物homaxinolin(123)和(124),磷脂酰胆碱homaxinolin(125)以及能抑制细胞生长的脂肪酸(126)是从韩国海绵Homaxinella sp.中分离得到的〔43〕。从红海采集的海绵Erylus lendenfeldi分离得到的两个甾体糖苷类化合物erylosides K(127)和L(128)能选择性的抑制酵母菌株的rad50芽体,rad50能修复协调受损的双链DNA〔44〕。
海参Stichopus japonicus是五种糖苷化合物SJC-1(129),SJC-2(130), SJC-3(131), SJC-4(132) 和 SJC-5(133)的主要来源〔45〕。五种化合物均从弱极性CHCl3/MeOH部分分离出来,其中SJC-1(129), SJC-2(130), SJC-3(131)是典型的鞘甘醇或植物型鞘甘醇葡萄糖脑苷脂类化合物,含有羟基化或非羟基化的脂肪酰基结构。SJC-4(132) 和 SJC-5(133)也含有羟基化的脂肪酰基结构,但是含有独特的鞘甘醇基团,是两种新型的葡萄糖脑苷脂类化合物。Linckiacerebroside A(134)是从日本海星Linckia laevigata分离出的一种新型糖苷脂化合物〔46〕。
甾体糖苷孕甾-5, 20-二烯-3β-醇-3-O-α-L-吡喃岩藻糖苷(135) 和 孕甾-5, 20-二烯-3β-醇-3-O-β-D-吡喃木糖苷(136)从中国短足软珊瑚Cladiella sp.中分离得到〔47〕。将新鲜的软珊瑚干质量 1.6 kg用乙醇在室温下浸泡 3 次, 合并提取液, 减压浓缩后得到深褐色浸膏 166.5g用30%的甲醇溶解后, 依次用石油醚、乙酸乙酯、正丁醇萃取, 石油醚提取液经减压浓缩后得棕黑色胶状物 62.5g,将此提取物硅胶柱减压层析, 用石油醚乙酸乙酯溶剂体系梯度洗脱, 从石油醚/乙酸乙酯(20:80)洗脱液中所得的洗脱部分在反相C-18柱上进行HPLC分离, 用MeOH洗脱得到化合物60mg(135)和3mg(136),该类化合物具有抗早孕和抑制肿瘤细胞生长活性。
四种甾体糖苷化合物(137-140)是从中国珊瑚Junceella juncea EtOH/CH2Cl2提取液中分离得到〔48〕。
3 结语
目前,从海洋生物中发现的萜类和糖苷类天然化合物的数量近几年呈现逐渐增加的趋势,有些化合物的活性确切而且活性作用强烈是很有希望的一些药物先导化合物,但是用于临床研究的化合物还相对较少,因此开发更多新的天然化合物是有必要的。其次,从海洋生物中发现的活性化合物也存在着活性较低或毒性较大等问题,可以通过对其结构进行修饰,使其活性达到最佳效果。此外,从海洋生物中提取的活性化合物含量通常较低,而且化合物在提取过程中受到提取试剂、方法等外界因素的影响,所以采用化学合成的方法进行化合物的半合成或者全合成解决化合物在提取过程中结构易变、试剂耗量大等缺点。例如从海洋真菌中发现的结构新颖,有抗菌、抗癌和神经心血管活性的物质头孢菌素C,就是从海洋真菌中分离得到的,这是一大类半合成的广为人知的抗生素,它已广泛用于临床〔49〕。所以采用合成或半合成的方法解决活性化合物作为药源的大量生产方式是通行的。我们期待着这些药物先导化合物在药物开发方面发挥重要作用。
机体一般营养充足的情况下由糖类通过糖酵解和TCA循环供能,当饥饿初期的时候,糖类摄取不足,由肝糖原分解补偿血糖,维持机体能量和血糖平衡,当持续饥饿,糖类缺乏,机体开始进行脂肪动员,利用脂肪酸分解产生乙酰coa进入TCA循环供能,同时产生酮体供应大脑等多种组织器官。当食物极度匮乏,机体甚至会分解氨基酸供能,通过生酮,生糖氨基酸分解供能,还会产生细胞自噬,通过分解结构物质来供应细胞的正常运行。