楼主应该是问“毕业论文指导过程”吧?
简单点说,你可以这么来填写(这只是一个框架,自己可以填充修改它):⒈X月X日(或者写抽象的日期——X月上旬、中旬、下旬),与导师会面,交流论文选题想法,在导师的建议和启发下,选定了论文题目为《XXXXX》;
⒉X月X日,与导师进行了电话交流,填写了《论文开题报告》;
⒊X月X日,与导师进行了电子邮件交流,在导师的帮助下对论文框架作了粗略的修改;
⒋X月X日,与导师进行电子邮件交流,进行了细节的修改;
⒌X月X日,向导师提交了论文初稿,经导师批阅后,再次对论文修改;
⒍X月X日,经过反复修改和导师的最终意见,提交了论文定稿。
我在这里想总结一下在做毕业论文过程中关于“如何进行文献整理以及数据处理”的经验。数据录入:1. 在施测之前,就要对变量的排列有总体的规划,尽量每一次施测的变量排序一致,那样以后录入时才不会混淆;2. 数据录入时,往往用的是数字代码,此时务必做好各个代码所代表的含义的备份,建议用记事本保持,以防时间长了遗忘,带来不必要的麻烦;数据处理:1. 务必做好数据备份,对不同的转换,建立不同的文档;2. 建立数据处理日志,以防当你的数据处理逐渐增多、数据有所转换之后不至于混淆,以及方便进行数据回述和检查;3. 建立“数据”和“结果”文件夹,分开保存数据和处理结果,避免不必要的混乱;4. 在給数据处理的程序命名时,建议按照处理顺序写上“序号.程序处理名称”,如“1.频数分析”、“2.因素分析”,这样可以一目了然地了解你的数据处理过程和数据处理内容;5. 保存具有代表性的数据处理的程序,这样做的好处是,一方面日后进行相同的数据处理时可以直接“copy”“paste”,很方便;另一方面也避免时日一长遗忘了部分程序;文献整理:1. 所收集的中外文献卷帙浩繁,建议保存文件名包括一下内容:“年份.序号.标题”;如“2007.1.parent-children communication.pdf”、“2007.2.gender dif.pdf”;2. 对所有收集的文献进行归类整理,分别放置于不同的文件夹;3. 有时你需要对外文文献摘要整理和翻译,此时建议你把摘要保存于当前文献所在的文件夹;或者专门建立“摘要整理/翻译”文件夹,以保存各类专题的摘要翻译,以防文献一多便混乱了,想要的时候找不到;4. 外文文献摘要整理文件名格式:“摘要整理.专题名.整理日期”。
首先,我要说明这里的指导并非 常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。
迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。
很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。
而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。
因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:
首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。
其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。
第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。
第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。
第五.具体收集数据过程,不细说了,收集回来之后 就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。
第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。
最后。分析完成后,开始整篇论文的写作。
PS:还要强调一点,现在的高校导师都存在一些问题,因为我接触了那么多学生,他们的认为观点就是“我的统计检验结果不显著怎么办,那不就是说我的研究没有意义么?我的假设都是错的?”“我的结论跟前人的结果不一致啊,看来我的又错了”,这两种观点明显是错的:
一、数据的来源对象发生了变化,谁规定的结论必须跟前人一致;
二、请问爱迪生发明灯泡的前999次失败是没有意义么?科学研究本来就是一个证伪的过程,一次次证伪来接近真相。
三、如果你的假设一定是正确的,那不需要数据验证,你可以去帮助警察破案了,因为你认为你的假设一定是对的,那破案多简单的,假设一下就好了。但是很显然,很多导师并没有把这些正确的观点传达给学生。
自考毕业论文申请的流程如下:
1、选择论文题目:首先选择一篇符合自己专业和个人兴趣的论文题目。
2、填写申请表:在自考毕业前,需要向所在院校提交一份论文申请表,填写申请表需要提供个人基本信息,论文题目,指导教师信息等。
3、指导教师的选择和确认:在填写申请表时需要选择自己的指导教师。学生需要在规定时间内联系指导教师,并征得其同意作为指导教师。同时,学生需要和指导教师商定论文的题目、研究内容和进度计划等。
4、提交开题报告:完成指导教师安排的开题报告,按照规定时间内将开题报告提交学院进行审核。
5、提交论文初稿:根据指导教师的要求和规定,完成论文初稿,并按照规定时间提交给学院进行审核。
6、论文答辩:论文初稿审核通过后,需要进行答辩,答辩时间、地点由学院确定,答辩时需要准备好答辩PPT,回答出题人和答辩委员的提问。
7、修改论文:根据答辩委员会的意见和指导教师的要求修改论文,并提交最终论文。
8、最终审核:提交最终论文,学院对论文进行审核并确认通过,办理毕业手续。
毕业论文是 毕业生 总结性的独立作业,是学生运用在校学习的基本知识和基础理论,去分析、解决一两个实际问题的实践锻炼过程,也是学生在校学习期间学习成果的 综合性总结 ,是整个 教学活动 中不可缺少的重要环节。 撰写毕业论文对于培养学生初步的科学研究能力,提高其综合运用所学知识分析问题、解决问题能力有着重要意义。