在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:
一、从原理图到PCB的设计流程建立元件参数-输入原理网表-设计参数设置-手工布局-手工布线-验证设计-复查-CAM输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路:
(1).电源开关交流回路
(2).输出整流交流回路
(3).输入信号源电流回路
(4).输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:
·放置变压器
·设计电源开关电流回路
·设计输出整流器电流回路
·连接到交流电源电路的控制电路
·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:
(1)首先要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
(2)放置器件时要考虑以后的焊接,不要太密集.
(3)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接,去耦电容尽量靠近器件的VCC。
(4)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。
(5)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(6)布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。
(7)尽可能地减小环路面积,以抑制开关电源的辐射干扰。
四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比。长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。在地线设计中应注意以下几点:
1.正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰。在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路(中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激。做不到单点时,在共地处接两二极管或一小电阻,其实接在比较集中的一块铜箔处就可以。
2.尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。进行全局布线的时候,还须遵循以下原则:
(1).布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修(注:指在满足电路性能及整机安装与面板布局要求的前提下)。
(2).设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了。
(3).印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。因采用单面板,直插元件位于top面,表贴器件位于bottom面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠。
3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地。
五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。
六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。
七、设计输出输出光绘文件的注意事项:
a.需要输出的层有布线层(底层)、丝印层(包括顶层丝印、底层丝印)、阻焊层(底层阻焊)、钻孔层(底层),另外还要生成钻孔文件(NCDrill)
b.设置丝印层的Layer时,不要选择PartType,选择顶层(底层)和丝印层的Outline、Text、Linec.在设置每层的Layer时,将BoardOutline选上,设置丝印层的Layer时,不要选择PartType,选择顶层(底层)和丝印层的Outline、Text、Line。d.生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改。
其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单.
其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法.
其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多.
电子式多功能电能表的设计与实现
本文阐述了电子式多功能电能表的设计方法、硬件设计的技术关键和软件设计流程。并以NEC的uPD78F0338单片机为例,实现了一款具有四种费率、六条负荷曲线和两套费率结构的三相四线电子式多功能电能表
电子式多功能电能表主要针对国内市场三相用电的工业用户。随着电力行业改革深入,工业三相用电对多功能电能表的需求大量增加。目前国内多功能表种类少、价格较高、功能不完善,往往仅是针对某些地区的特定要求开发,缺乏通用性,某些产品未能完全达到国标的要求。本文介绍的电子式多功能电能表正是为了适应这种市场需求而设计的。
这是一款智能型高科技电能计量产品,该表可以同时计量正/反向有功电能、正/反向无功电能、四象限无功电能,还具有多费率控制,负荷曲线记录,各相失压、过压、频率超限记录,数据LCD显示等多种功能。主站可以通过RS-485总线或手持红外抄表器对该电表进行查表、设表、抄表等操作。
软件代码全部采用C/C++语言编写,编码效率高,可维护性好,便于实现模块化设计,可根据用户的需求方便地对功能模块进行裁剪。而且代码经过优化,其生成的目标代码大小和执行效率已与汇编代码相差无几。该产品的技术指标全面符合GB/T 17215-1998《1级和2级静止式交流有功电度表》、DL/T614-1997《多功能电能表》和DL/T645—1997《多功能电能表通信规约》的要求。
多功能电能表的总体结构和硬件设计
多功能表总体结构
电子式多功能电能表硬件的核心MCU主控制器,它负责按键输入扫描、工作状态检测,计量数据的读入、计算和存储、电表参数的现场配置以及与外界的通信控制等。其主要功能单元包括MCU主控制器单元、电量计量模块、红外和RS—485通信模块、校表模块、EEPROM存储阵列等;其他辅助模块主要有:时钟日历电路、工作异常报警电路、按键输入电路、复位和看门狗电路、开关电源模块和后备电池电路、大屏幕液晶显示模块和LED显示模块。多功能表总体结构框图如图1所示。
高性能主控制器单元
主控制器采用NEC公司8位单片机中的高档产品uPD78P0338。该款单片机为120脚QFP封装,单片集成有60KBFlash、一个异步通信串行口、40x4段LCD驱动器、高达10MHz的总线时钟和10路10位精度的ADC,并可通过简单的接口进行在系统编程,极大地方便在线调试和软件升级。并且支持高级语言,较好地满足了多功能表任务繁多、数据量庞大、算法较复杂的功能要求。
串口复用通信单元
通信电路模块主要包括TSOPl838红外接收头、红外发射二极管、载波电路、MAX487专用485收发电路、驱动/开关二极管和其他元件。
本电能表为便于用户抄表,设计有红外本地抄表和RS-485集中抄表两种串行抄表方式,因为uPD78F0338仅有一个串口,故通信电路设计时采用串口复用技术。由9012、9014和若干电阻等器件组成互补开关,由MCU的一个I/O口来控制红外和RS-485通信方式的切换,如图2所示。
高精度电量计量模块
计量模块由高精度专用电能计量芯片SA9904,电流互感器和其他外围电路元件组成。SA9904是Sames公司生产的一款三相双向功率/电能计量芯片,可以计量有功/无功功率、电压、频率、相序异常等,可以单独计量每一相的用电信息,符合IEC521/1036标准,可达到1级交流电能表的精度要求,各数据寄存器具有24位精度,可通过三线SPI接口与CPU交换数据。从而可以较好地适应多功能表需要计量多种电量数据的要求。SA9904引脚及其外围电路图如图3所示。
其中,CLK、DO、DI构成与MCU控制器的接口,用于传输控制命令和测得的电量数据,IIps、IIPt、IIPr用来对电流取样,IVPl、IVP2、IVP3用来对电压取样。
时钟日历模块
时钟电路采用EPSON生产的RTC-4553实时时钟芯片。内部集成了32.768kHz的石英晶体振荡器,简化外围电路,并可以根据需要进行自由设置以得到较高的频率;同时集成有时钟和日历计数器,可选择24或12小时显示模式,时钟可通过软件方式进行间隔30秒的调整,并提供0.1Hz或1024Hz的定时脉冲输出,以便于在电能表的外部对时钟精度进行定期检查。RTC-4553引脚及其外围电路图如图4所示。
其中,SCK、Sin、Sout与主处理器接口,用于发送控制指令或者传输日期时间数据,本系统日历时钟模块采用电池作后备电源,以确保在停电状态下,日期时间的准确无误。
多功能电能表的软件设计
数据结构设计
多功能电能表涉及的数据类型种类繁多。按字节分包括单字节、双字节、三字节、四字节和六字节等,按表征的意义分有时间、时刻、电压、电流、有功功率、无功功率、有功电能、无功电能、次数、功率因数、门限、状态字、系数、表号等。复杂的数据类型对数据结构的设计提出了较高的要求,本实现方案通过采用多种数据寻址方式和多种类型存储器较好地解决了这一问题。
数据结构设计要点
系统的数据存放方式有:内部ROM、RAM和外挂EEPROM。
内部ROM用来存放大量的常数表格,RAM用于存放临时变量和堆栈,本方案需要2.5KB左右的RAM,串行EEPROM则存储各种用户电量数据和设表参数,通过12C总线与CPU交换数据,电能表按设计需求的最大要求大约需要250KB的EEPROM,本方案采用8片256位EEPROM通过级联来实现。
数据寻址方式
EEPROM数据访问采用两种方式;直接地址访问,通过数据的EEPROM地址直接读写数据;数据ID寻址,通过数据的编码读写数据。
通信口复用功能设计
红外通信和RS-485共用一个串行口(RxD/TxD)通信,由于串行口通信开始都有一低电平位(0),因此将红外接收端(与485接收端用一三极管隔开)引到一中断引脚INTP1,通过其引发的中断可判断串行口数据是否来自红外。发送时按时应方式发送,使其不互相干扰。由于红外通信和遥控接收用同一接收管,因此在判断红外来源的中断中启动定时器INTTM4检测红外接收端,如果检测到脉冲宽度为9ms或0.56ms,则判断为红外遥控,并根据定时检测遥控编码;否则判断为红外产生的串行口接收中断,并将定时检测关闭。
红外38.4kHz调制信号由CPU内部分频输出(P05/PCL)。f=fx/27=4.9152/128=38.4kHz。
因红外发送字节之间可选有15~20ms的延时,而485通信则不需要延时。数据发送在发送中断中进行,红外通信在发送操作后立即关闭发送中断允许,待延时时间到后再允许发送中断。
多功能表程序流程图
多功能表主程序流程主要包括初始化、数据校验、负荷曲线修补和事务处理等,其流程图如图5所示。
日常事务处理流程集中体现了多功能表的大部分主要功能,包括费率处理、计量数据采集及处理、自动抄表、电能脉冲输出、校表模块和掉电检测及处理模块等,其流程图如图6所示。
TOPSwitchGX系列是美国PowerIntegrations公司继TOPSwitchFX之后,且每对电阻的失配大小方向要一致。于2000年底新推出的第四代单片开关电源集成电路,但是并非整个光伏产业链上的所有板块都会出现产能过剩的局面,并将作为主流产品加以推广。图2所示是SG6848时钟频率与其反馈电流的关系。下面详细阐述TOPSwitchGX的性能特点、产品分类和工作原理。无锡尚德、天威英利、河北晶澳等国内主要太阳能光伏电池片和组件生产企业的产能扩张速度都达到了50%以上,
1TOPSwitchGX的性能特点及产品分类
1.1性能特点
(1)该系列产品除具备TOPSwitchFX系列的全部优点之外,并且给出一个误差放大器的ILR参考值。还将最大输出功率从75W扩展到250W,这个新方案为耗电量低于60W的设备与低成本SMPS结构之间搭起了一座桥梁,适合构成大、中功率的高效率、隔离式开关电源。再作处理就方便许多。
(2)采用TO2207C封装的TOP242~TOP249产品,目前其也是国内垂直一体化建设做地最成功的企业,新增加了线路检测端(L)和从外部设定极限电流端(X)这两个引脚,在风轮机中的电感容量应该为3300~4700μF,用来代替TOPSwitchFX的多功能端(M)的全部控制功能,谐振非连续正激式不仅具有适配器铁芯较小的优点,使用更加灵活、方便。作者设计了一种远程无线自动抄表系统。
(3)将开关频率提高到132kHz,把已经失去同步的输电系统,这有助于减小高频变压器及整个开关电源的体积。由于电容器不能限制瞬时电流,
(4)当开关电源的负载很轻时,对12V的小型密封式铅酸蓄电池,能自动将开关频率从132kHz降低到30kHz(半频模式下则由66kHz降至15kHz),这个公式理解吧,可降低开关损耗,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,进一步提高电源效率。要想实现1%的电池容量估计都是不可能的。
(5)采用了被称作EcoSmart的节能新技术,电流的变化也只有10%。显著降低了在远程通/断模式下芯片的功耗,必须在启动后将该电阻通道切断。当输入交流电压是230V时,那么200mA时的光输出就大约是60%,芯片功耗仅为160mW。低的RDS(ON)的集成开关在重负载确保高效率,
1.2产品分类
根据封装形式和最大连续输出功率的不同,最小的LDO之间的交叉耦合噪声。TOPSwitchGX系列可划分成三大类、共14种型号,假如锂电时保护电路在侦测到过充电保护时有Latch Mode,详见表1。位置计数器将自动增加25600(128×200步)。型号中的后缀P、G、Y分别表示DIP8B、SMD8B、TO2207C封装。PMOS管M3导通,
表1TOPSwitchGX的产品分类及最大连续输出功率POM
阀门定位器作为气动调节阀的主要附件之一,可以改善调节阀特性、提高定位的精度和内设参数可选择增加了控制的灵活性。目前定位器研究的热点主要是智能电气阀门定位器,国外一些大公司:如西门子SIEMENS、费希尔—罗斯蒙特Fisher-Rosemount等已相继推出智能阀位定位器产品。国内在这方面起步较晚。国内目前普遍使用的阀门定位器采用的是机械式力平衡原理,存在一些问题,而由国外进口的智能型定位器价格昂贵。因此研究设计智能电气阀门定位器是十分必要的。本文通过分析定位器的原理,明确当前工业过程控制对阀门定位器的基本要求,同时结合国内、外典型智能阀门定位器产品结构与功能,研究开发了一种基于32位的ARM7系列中的LPC2290微处理器的新型智能电气阀门定位器。本论文主要完成了以下几方面研究工作:1.在分析国内、外智能阀门定位器产品结构的基础上,明确定位器硬件设计要求,完成了以微处理器LPC2290为核心的定位器硬件电路设计,其中包括微处理器硬件资源分配、电源电路、电流信号检测电路、阀位检测电路、AD转换电路、压电阀驱动电路、按键与显示电路的设计。同时完成了对各个硬件电路的调试与驱动程序的编写。2.在分析国内、外智能阀门定位器产品功能的基础上,明确本文的功能需求,针对需完成的功能编写定位器软件程序。其中包括定位器人机界面监控程序、初始化程序及控制算法的编写。3.分析被控对象空载下的特性,针对被控对象特性提出相应的控制算法,通过闭环实验验证本文提出的控制算法阀位控制效果良好,并与国内的乐清市自动化仪表九厂生产的SEPP4000智能阀门定位器的阀位控制效果进行比较,实验结果表明,本文提出的阀位控制算法效果更佳。