您当前的位置:首页 > 发表论文>论文发表

水煤气研究论文

2023-03-11 11:27 来源:学术参考网 作者:未知

水煤气研究论文

  水煤浆气化技术论文篇二
  德士古水煤浆气化技术的特点及应用

  【摘要】水煤浆气化技术在我国由来已久,近年来,德士古水煤浆气化技术在我国的发展更为的迅速,其技术应用的范围也在不断的扩大,德士古水煤浆气化技术具有很多优点,因此,其应用还有待于进一步开发。本文将从以下几个方面来分析德士古水煤浆气化技术的特点及应用。

  【关键词】德士古水煤浆气化技术;特点;应用;分析

  中图分类号:X752 文献标识码:A 文章编号:

  一、前言

  目前,国内水煤浆气化的应用还存在一定的问题,选用何种技术成为了主要的关注点,因此,研究德士古水煤浆气化技术的特点及其在我国的应用具有很深远的现实意义。

  二、煤气化原理及发展趋势

  1、煤气化的原理

  煤的气化反应是指气化剂(空气、水蒸气、富氧空气、工业氧气以及其相应混合物等)与碳质原料之间以及反应产物与原料、反应产物之间的化学反应。在气化炉内,煤炭要经历干燥、热解、气化和燃烧过程。

  (一)湿煤中水分蒸发的过程:

  (二)热解(干馏)是煤受热后自身发生的一系列物理化学变化过程。一般来讲,热解的形式为:煤 煤气(CO2,CO,CH4,H2O,H2,NH3, H2S)+焦油+焦炭

  (三)气化与燃烧过程。仅考虑煤的主要元素碳的反应,这些反应如下:

  a.碳-氧间的反应;

  b.碳-水蒸气间的反应;

  c.甲烷生成反应;

  需要指出的是,以上所列诸反应为煤气化和燃烧过程的基本化学反应,不同过程可由上述或其中部分反应以串联或平行的方式组合而成。

  2、煤气化技术的发展趋势

  现代煤炭气化技术发展趋势如下:

  (一)气化压力向高压发展。气化压力由常压、低压(<1.0MPa)向高压(2.0-8.5MPa) 气化发展,从而提高气化效率、碳转化率和气化炉能力。

  (二)气化炉能力向大型化发展。大型化便于实现自动控制和优化操作,降低能耗和操作费用。

  (三)气化温度向高温发展。气化温度高,煤中有机物质分解气化,消除或减少环境污染,对煤种适应性广。

  (四)不断开发新的气化技术和新型气化炉,提高碳转化率和煤气质量,降低建设投资。目前碳转化率高达98%-99%,煤气中含CO+H2达到80%-90%。

  (五)现代煤气化技术与其他先进技术联合应用。

  (六)煤气化技术与先进脱硫、除尘技术相结合,实现环境友好,减少污染。

  三、国内应用上存在的问题与解决措施

  1.存在的问题

  (一)气化效率仍然低

  当前在国内,在燃烧上多采用单喷嘴直喷的模式,像德士古炉,而华东理工大学则采用多嘴对喷,后者的改进虽然增强了利用的效率,但是其对耐火砖的损坏也相应的加大了。在整个气化装置中,采用单个喷嘴时,其容量受到了限制,这就制约了水煤浆气化的转化效率。当采用多对喷嘴时,喷嘴的寿命也同时受到了考验,在雾化方面的效果仍然不能得到完全的控制。

  (二)耐火砖的寿命短

  水煤浆中本身存在34%左右的水,它的存在会吸收大量的热,在转化过程中,反应的进行使得化学平衡容易遭受破坏,因此,在设计上安排了耐火砖来作内衬。耐火砖专为改善水煤浆气化而来,所以,好的耐火砖将会对气化产生重要的作用。而在实际转化过程中,耐火砖十分容易损坏,当转化炉的操作温度过高时,它将直接烧坏耐火砖。

  (三)煤炭质量的影响在现今的转化中,煤浆的混合制成,也对煤中含灰量和灰熔点有着特定的要求,当煤的质量不能满足水煤浆的合成时,其气化的效果将降低,同时,在进一步的燃烧中,由于可燃物含量的低下使得将要获得热能减少。

  四、德士古水煤浆气化技术工艺

  水煤浆制气的德士古工艺见图 1:

  五、德士古水煤浆气化技术特点

  德士古加压水煤浆气化工艺与第一代煤气化工艺相比,主要是提高了气化压力和温度,从而改善了技术经济指标。扩大了煤种的适应范围,该气化炉属于喷流气化,以水煤浆方式进料,其气化压力为2.0~8.5MPa。

  主要工艺特点如下:

  1、煤种适应性强,主要以烟煤为主,对煤的活性没有严格要求,但对煤的灰熔点有一定要求。

  2、水煤浆用泵连续输送,故气化炉操作稳定性好,输送方便并有利于环境改善。

  3、碳转化率高达96%以上,排水中无焦油、酚等污染环境的副产物产生,同时煤气中甲烷含量低,是较为理想的合成原料气。

  4、气化在加压下进行,气化强度高,设备体积小,布置紧凑而且能耗较低。

  5、气化炉内无转动部件,其结构简单、可靠。

  6、气体在气化炉内停留时间短,仅为几秒钟,因而气化操作弹性大。

  7、气化炉高温下排出之熔渣性能稳定,对环境影响小。

  德士古水煤浆气化技术,与无烟煤间歇气化及鲁奇(Lurgi)气化技术相比具有明显的优越性。该法常以灰融点低活性较好的煤质为主,对煤种有较宽的适应性。适宜于作生产合成氨和甲醇的原料气。因而该技术引入我国以后,引起合成氨企业及各界人事的普遍关注。

  六、德士古水煤浆气化的应用

  目前我国采用该技术的在运行装置有20多家。鲁南化肥厂、上海焦化厂、陕西渭河化肥厂、安徽淮南化工厂和黑龙江浩良河化肥厂是国内使用德士古水煤浆气化炉较早的厂家,德士古水煤浆气化炉的部分应用情况见表 1。

  表 1 德士古德士古水煤浆气化的应用状况

  七、水煤浆气化工艺前景展望

  德士古加压水煤浆气化技术虽然是比较成熟的煤气化技术,但从已投产的水煤浆加压气化装置的运行情况看,由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多。

  1、气化炉烧嘴运行周期较短,一般不超过 3 个月,这是造成德士古装置必须有备炉的主要原因;

  2、耐火砖使用寿命国产约 1 a,进口约 2 a,导致维修费用较大;

  3、单烧嘴制气,操作弹性较低;德士古加压水煤浆气化炉耐火砖的寿命问题仍然是一个难题,对于德士古水煤浆气化炉烧嘴的问题已有一些新的气化炉将单喷嘴改为对置式多喷嘴,可以增加热质传递,并且能提高碳的转化率。目前由兖矿集团有限公司、华东理工大学共同承担的国家高技术研究发展计划(863 计划)重大课题“新型水煤浆气化技术”就是将单喷嘴水煤浆气化炉改为对置式多喷嘴水煤浆气化炉,并配套生产甲醇和联产发电。多喷嘴对置式水煤浆气化技术含水煤浆制备工序、多喷嘴对置式水煤浆气化和煤气初步净化工序、含渣水处理工序。

  多喷嘴对置式水煤浆气化技术自动化程度高,全部采用集散控制系统(DCS)控制,特别是氧煤比完全可以投自动串级控制。工业运行证实,该装置具有开车方便、操作灵活、投煤负荷增减自如的特点,操作的方便程度优于引进水煤浆气化装置。多喷嘴对置式水煤浆气化技术已被工程实践证实完全可行,工艺指标也极为先进,对初步的运行结果统计表明:有效气 CO+H2≥82%,碳转化率≥98%。通过工业化规模的气化炉的示范运行,我国在水煤浆气流床气化技术方面将达国际先进水平,具有自主知识产权的大型煤气化技术。

  随着机械化采煤的发展,粉煤产率也在增加,利用此项技术可以解决粉煤的利用问题,也可以解决煤炭在洗选过程中产生的大量煤泥,利用水煤浆气化技术联合循环发电也具有广阔前景。今后煤化工的更多机会是发展新型煤化工,即煤制甲醇、煤烯烃、二甲醚和煤制油,煤气化生产甲醇及其下游产品的开发和 IGCC 联合发电也是新型煤化工的一个发展方向。新型煤化工将成为今后煤化工产业的发展主题。

  八、结束语

  在我国今后的水煤浆气化的发展过程中,可以更加深入的分析德士古水煤浆气化技术,通过充分利用其优势来提高其使用效果,从而提高我国水煤浆气化技术的整体质量水平。

  【参考文献】

  [1]陈俊峰.煤气化技术的发展现状及研究进展[J].广州化工,2012.40(5):31-33.

  [2]赵嘉博.刘小军.洁净煤技术的研究现状及进展[J].露天采矿技术.2011.1.

  [3]高丽. 德士古水煤浆加压气化技术的应用[J]. 煤炭技术,2010,07:161-162.

  [4]贾小军. 德士古水煤浆气化技术研究及其国产化创新[J]. 中国科技信息,2013,14:115.

  [5]崔嵬,吕传磊,徐厚斌. 德士古水煤浆加压气化技术的应用及创新[J]. 化肥工业,2000,06:7-8+17-58.

  
看了“水煤浆气化技术论文”的人还看:

1. 煤气化技术论文

2. 煤气化技术论文(2)

3. 煤炭气化技术论文(2)

4. 洁净煤燃烧技术论文

5. 大气污染控制技术论文

《燃煤锅炉清洁燃烧技术的研究与探讨》这方面的论文?

下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧

一、前言
众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,存在着效率低、污染严重的问题。统计表明,我国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx来源于煤的燃烧。我国的大气污染主要是锅炉、窑炉燃煤产生烟气形成的煤烟型污染。目前我国能源仍然以煤炭为主,改变能源结构,使用油气电等清洁能源,与我国的国情又不太相适应,未来相当长一段时间内,煤炭在我国一次能源结构中的主体地位不会改变,这已成为不争的现实。因此大力发展和应用洁净煤燃烧技术与装置,是解决和控制大气污染的一条重要措施。
近年来,人们已在洁净煤燃烧技术方面进行了大量的研究与实践,但综合效果还都有待于提高。多年来在总结、借鉴、完善、发展国内外相关技术的基础上,我们对原煤气化和分相燃烧技术进行了大量研究,通过几年来的大量实验和工作实践,解决了十多项技术难题,掌握了一种锅炉清洁燃烧技术——煤气化分相燃烧技术, 并利用该技术研制出一种煤转化成煤气燃烧的一体化锅炉,我们称之为煤气化分相燃烧锅炉。其突出特点是无需炉外除尘系统,经过炉内全新的燃烧、气固分离及换热机理,实现“炉内消烟、除尘”,使其排烟无色——俗称无烟。烟尘、SO2、NOX排放浓度符合国家环保标准的要求,而且热效率高达80~85%。这种锅炉根据气固分相燃烧理论,把互补控制技术、气固分相燃烧技术集于一炉,将煤炭气化、燃烧集于一体,组成煤气化分相燃烧锅炉,从而实现了原煤的连续燃烧与洁净燃烧。

二、煤气化分相燃烧技术
烟尘的主要污染物是碳黑,它是不完全燃烧的产物。形成黑烟的原因主要是煤在燃烧过程中,形成易燃的轻碳氢化合物和难燃的重碳氢化合物及游离碳粒。这些难燃的重碳氢化合物、游离碳粒随烟气排出,便可见到浓浓的黑烟。
一般情况下,煤的燃烧属于多相混合燃烧,煤在燃烧过程中析出挥发物,而挥发物的燃烧对煤焦的燃烧起到制约作用,使固体碳的燃烧过程繁杂化、困难化。固体燃料氧化反应过程中的次级反应,即一氧化碳和二氧化碳的产生以及一氧化碳的氧化反应和二氧化碳的还原反应,都不利于固体碳和天然矿物煤的燃烧,而气固分相燃烧就可以有效地解决上述问题。
气固分相燃烧就是使固体燃料在同一个装置内分解成气相态的燃料和固相态的燃料,并使其按照各自的燃烧特点和与此相适应的燃烧方式,在同一个装置内有联系地、互相依托地、相互促进地燃烧,从而达到完全燃烧或接近完全燃烧的目的。
煤气化分相燃烧技术是根据气固分相燃烧理论,将煤炭气化、气固分相燃烧集于一体,以煤炭为原料,采用空气和水蒸气为气化剂,先通过低温热解的温和气化,把煤易产生黑烟的可燃性挥发份中的碳氢化合物先转化为煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。这样在同一个燃烧室内气态燃料与固态燃料有联系地、互相依托地、相互促进地按照各自的燃烧规律和特点分别燃烧,消除了黑烟,提高了燃烧效率,并且在整个燃烧过程中,有利于降低氮氧化物和二氧化硫的生成,进而达到洁净燃烧和提高锅炉热效率的双重功效。

煤气化分相燃烧技术在锅炉上的应用,使固体燃料的干燥、干馏、气化以及由此产生的气相态的煤气和固相态的煤焦在同一炉内同时燃烧。并使锅炉在结构上实现了两个一体化,即煤气发生炉和层燃锅炉一体化,层燃锅炉与除尘器一体化,因此无需另设煤气发生炉便实现了煤的气化燃烧;也无需炉外除尘器,就可实现炉内消烟除尘,锅炉排烟无色。其燃烧机理如图一所示,双点划线框内表示固相煤和煤焦的燃烧过程,单点划线框内表示气相煤气的燃烧过程,实线框内表示煤的干馏过程,虚线框内表示煤焦的气化过程。
原煤首先在气化室缺氧条件下燃烧和气化热解,煤料自上部加入,煤层从下部引燃,自下而上形成氧化层、还原层、干馏层和干燥层的分层结构。其中氧化层和还原层组成气化层,气化过程的主要反应在这里进行。以空气为主的气化剂从气化室底部进入,使底部煤层氧化燃烧,生成的吹风气中含有一定量的一氧化碳,此高温鼓风气流经干馏层,对煤料进行干燥、预热和干馏。煤料从气化室上部加入,随着煤料的下降和吸热,低温干馏过程缓慢进行,逐渐析出挥发份,形成干馏煤气。其成份主要是水份、轻油和煤中挥发物。
原煤经干馏后形成热煤焦进入到还原层,靠下层部分煤焦的氧化反应热进行气化反应。同时可注入适量的水蒸汽发生水煤气反应,这样以空气和水蒸汽的混合物为气化剂,在气化室内与灼热的碳作用生成气化煤气。其成份主要是一氧化碳和二氧化碳以及由固体燃料中的碳与水蒸碳与产物、产物与产物之间反应生成的氢气、甲烷,还有50%以上的氮气。这样干馏层生成的干馏煤气和进入干馏层的气化煤气混合,由煤气出口排出。气化室内各层的作用及主要化学反应见表一。
表一:气化室内各层的作用及主要化学反应
层区名 作用及工作过程 主要化学反应
灰层 分配气化剂,借灰渣显热预热气化剂
氧化层 碳与气化剂中氧进行氧化反应,放出热量,供还原层吸热反应所需 C+O2=CO2 放热
2C+O2=2CO 放热
还原层 CO2 还原成CO,水蒸汽与碳分解为氢气, CO2+C=2CO 放热
H2O+C=CO+H2 放热
CO+H2O=CO2+H2 吸热
干馏层 煤料与热煤气换热进行热分解,析出干馏煤气:水份、轻油和煤中挥发物。
干燥层 使煤料进行干燥

在锅炉的气化室中,煤料自上而下加入,在气化过程中逐步下移,气化剂则由下部进入,通过炉栅自下而上,生成的煤气由燃料层上方引出。这一过程属逆流过程,它能充分利用煤气的显热预热气化剂,从而提高了锅炉的热效率,并且由于干馏煤气不经过高温区裂解,使气化煤气的热值有所提高。
原煤经温和气化低温热解产生的煤气,在经过上部干馏层后,通过气化室的煤气出口进入燃烧室,与充足的二次风充分混合,在燃烧室的高温条件下自行点燃,并与进入燃烧室炉排上煤焦向上的火焰相交,这样在燃烧室内煤气与煤焦分别按照气相和固相的燃烧特点和燃烧方式分别燃烧,又相互联系、相互促进,使一氧化碳和烟黑燃烬,达到或接近完全燃烧。

三、煤气化分相燃烧锅炉的结构特点及应用
锅炉在发展的过程中一直重视提高锅炉热效率和烟尘排放达标两大问题。传统的锅炉解决这两大问题的基本上是靠强化燃烧和传热提高锅炉热效率和设置炉外除尘器。强化燃烧往往会导致锅炉烟尘初始排放浓度的加大,增大除尘器的负担,在发达国家可使用除尘效率在99%以上的电除尘器或布袋除尘器,使烟尘排放浓度控制在50mg/Nm3以下,而在我国由于经济条件的原因,只能使用价格相对低廉的机械式或湿式除尘器,除尘效率一般低于95%,使烟尘排放浓度大于100-200 mg/Nm3,达不到国家的环保要求。这种依靠炉外除尘器解决除尘的办法,不仅增加锅炉房的占地面积和基建投资,而且增大引风机电耗,还造成二次污染。由于煤气化分相燃烧锅炉彻底改变了传统锅炉的燃烧原理,利用气固分相燃烧理论,使煤在燃烧过程中易产生黑烟的可燃性挥发份中的碳氢化合物先转化为可燃煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。由于燃烧室温度高达1000℃以上,烟雾得以充分分解,解决了煤直接燃烧产生黑烟的难题。这种锅炉不仅使原煤尽可能地完全燃烧和高效利用,有较高的热效率,而且还尽可能地减少烟尘和有害气体SO2、NOX等的排放,达到消烟除尘的作用,使锅炉各项环保及节能指标大大优于国家标准。
煤气化分相燃烧技术在锅炉上的应用,打破了传统锅炉加除尘器的模式,创建了无需炉外除尘器的一体化模式。而这种一体化并不是机械式地将除尘器加入锅炉。煤气化分相燃烧锅炉与普通煤气锅炉和层燃锅炉相比,具有自己独特的结构,它将后两者有机结合,主要由前部的煤气化室,中部的燃烧室和尾部的对流受热面三大部分组成。(见图二:锅炉结构与燃烧示意图)
气化室是锅炉的技术核心部分,它看上去象是一个开放式的煤气发生炉,其主要功能,一是将煤中的可燃挥发份和煤的气化反应生成气,以煤气的形式排入到燃烧室进行燃烧;二是将释放出挥发份的半焦煤输送到燃烧室继续进行燃烧;三是控制气化室内的反应温度和煤焦层厚度。实现上述功能的关键:一是要保证一定的原煤层;二是要合理配置送风和气化剂,提高煤炭气化率和气化室的气化强度;三是要在煤气化室和燃烧室的连接部位,合理配置煤气出口和煤焦出口。气化室产要由炉体、进煤装置、炉栅、气化剂进口、煤气出口和煤焦出口等部分组成。
在气化室内以煤炭为原料,采用空气和水蒸汽为气化剂,在常压下进行煤的温和气化反应,将煤在低温热分解产生的挥发性物质从煤中赶出。当气化室内温度达到设定条件时,将气化室内脱挥发份的高温煤焦输送到燃烧室的炉排上进行强化燃烧。

燃烧室的主要功能:一是使煤气和煤焦燃烧完全,提高燃烧效率;二是降低烟尘初始排放量和烟气黑度。气化室内产生的煤气经煤气出口,喷入到燃烧室,在可控二次风的扰动下旋向下方,与由气化室进入到燃烧室的煤焦向上的火焰相交而混合燃烧。煤气与固定碳(煤焦)燃烧相结合,强化了燃烧,达到了充分燃烬,洁净燃烧的目的,提高了燃烧效率。并且因为在炉排上的燃烧是半焦化的煤焦,因此产生的飞灰量小,烟尘浓度、烟气黑度都比较低。同时,在燃烧室上方设置了防爆门,确保锅炉的安全运行。
对流受热面的主要功能就是完成与烟气的热量交换,达到锅炉额定出力,提高锅炉换热效率。其结构形式可有多种,与普通锅炉没有太大的区别,因此对大多数锅炉来说,都可以改造成煤气化分相燃烧锅炉。并且锅炉无需除尘器,大大节省锅炉房总投资和占地面积。
设计煤气化分相燃烧锅炉时,应注意的几点:
1、合理布置煤气出口和煤焦出口的位置和大小;
2、煤焦的温度控制;
3、气化剂进口和进煤口;
4、合理设置二次风和防爆门;
5、气化室与燃烧室的水循环要合理。
由上述可知,煤气化分相燃烧锅炉的结构并不复杂,只需在传统锅炉的基础上,在其前部加一个气化室,在原炉膛上设置二次风和防爆门,再结合一些控制技术。利用该原理可以设计出多种规格型号的锅炉,类型主要为0.2t/h~10t/h各参数的锅炉。现仅在东北地区已有几十台此类型的锅炉在运行,广泛用于洗浴、采暖、医药卫生等领域,并已经利用该技术,改造了很多工业锅炉,效果都非常好。
下面以一台DZL2t/h锅炉为例,改造前后对比见表二。
表二:DZL2t/h锅炉改造前后对比
改造前 改造后 比较
热效率 73% 78% 提高5%
耗煤量(AII) 380kg/h 356kg/h 节煤6.3%
适应煤种 AII AIII 褐煤 石煤AI AII AIII 无烟煤 煤种适应性广
锅炉外形体积 5.4×2×3.2m 5.9×2×3.2m 长度约增加一米
环保性能 冒黑烟,环保不达标 排烟无色,满足环保要求

该新型锅炉综合地应用当代高新技术和高效率传热技术,将煤气发生炉与层燃锅炉有机结合为一体,做到清洁燃烧,炉内自行消烟除尘,锅炉运行期间,在无需炉外除尘器的情况下,排烟无色,烟尘浓度≤100mg/Nm3,比传统锅炉减少30-50%,SO2浓度≤1200mg/Nm3,NOx<400mg/ Nm3,符合国家环保标准GB13271-2001中一类地区的要求,同时,热效率在82%以上。而成本仅比传统锅炉增加不到一万元,但却省了一台除尘器。每小时加煤次数少,仅2~3次,并可实现机械上煤和除渣,因而大大减轻了司炉工的劳动强度。

四、煤气化分相燃烧锅炉的特点
传统的煤炭燃烧方式在煤的燃烧过程中会产生大量的污染物,造成严重的环境污染。主要原因是:
(1)煤炭不易与氧气充分接触而形成不完全燃烧,燃烧效率低,相对增加了污染排放;
(2)燃烧过程不易控制,例如挥发份大量析出时往往供氧不足,造成烟尘析出与冒黑烟;
(3)固体燃料燃烧时温度难以均匀,形成局部高温区,促使大量NOx形成;
(4)原煤中的硫大多在燃烧过程中氧化成SO2;
(5)未经处理的固态煤炭直接燃烧时,大量粉尘将随烟气一同排出,造成大量粉尘污染。
煤气化分相燃烧锅炉将煤炭气化、气固分相燃烧集于一体,有效地解决环境污染问题,与传统的燃煤锅炉相比,它有以下优点:
1、烟尘浓度、烟气黑度低,环保性能好。
在气化层生成的气化煤气和在干馏层生成的干馏煤气最终混合在一起,在燃烧室内与二次风充分混合,因是气态燃料,供氧充分,容易达到完全燃烧,使一氧化碳和烟黑燃烬。而从气化室进入到燃烧室的炽热煤焦,因大部分挥发份已被析出,避免了挥发物对固定碳燃烧的不良影响,剩余的挥发份在煤焦内部进一步得到氧化,生成的一氧化碳和烟黑等可燃物在通过煤焦层表面时被燃烬。另外煤焦在燃烧时产生的飞灰量小,同时在锅炉内采用除尘技术,因此从根本上消除了“炭黑”,高效率地清除了烟尘中的飞灰。
2、节约能源、热效率高。
煤料在气化室充分气化热解之后再燃烧,不仅避免了挥发物、一氧化碳、二氧化碳等对煤焦燃烧的不良影响,而且从气化室进入燃烧室的热煤气更容易燃烧,并对煤焦的燃烧有一定的促进作用。进入燃烧室的炽热煤焦已脱去大部分挥发份,不仅有较高的温度,而且具有内部孔隙,能增强内部和外部扩散氧化反应,起到强化煤焦燃烧的作用,从而在降低过量空气系数下,使一氧化碳和炭黑燃烬,燃烧更加充分,因而降低了化学和机械不完全燃烧热损失,提高了煤的燃烧热效率,与直接烧煤相比可节煤5-10%。
3、氮氧化物的排放低
在气化室内煤层从下部引燃,并在下部燃烧,总体上气化室内温度比较低,属低温燃烧。而且在气化室内过量空气系数很小,大约在0.7-1.0之间,属低氧燃烧。这为降低氮氧化物的排放提供了有利条件。煤中有机氮化学剂量小,并处在还原气氛中,只转变成不参与燃烧的无毒氮分子。煤中含有的氮氧化物,一部分在煤层半焦催化作用下反应生成氮气、水蒸汽和一氧化碳,还有一部分在穿过上部还原层时被还原成氮气。而气化室内脱去绝大部分挥发份的高温煤焦在进入燃烧室后,进行充足供氧强化燃烧,其中剩余的少量挥发份在半焦内部进一步热解氧化,氮氧化物在煤焦内部被进一步还原,生成的烟黑可燃物在经过焦层表面时被燃烬,从而控制和减少了氮氧化物的生成与排放。
4、有一定的脱硫作用
煤中的硫主要以无机硫(FeS2和硫酸盐)和有机硫的形式存在,而硫酸盐几乎全部存留在灰渣中,不会造成燃煤污染。在煤气化分相燃烧锅炉中,煤中的FeS2和有机硫在气化室内发生热分解反应,以及与煤气中的氢气发生还原反应,使煤中的硫以硫化氢气体的形式脱除释放出来。而且在气化室下部,温度一般在800℃左右,恰好是脱硫剂发挥作用的最佳反应温度。如燃用含硫量较高的煤,只需在碎煤粒中添加适量的石灰石或白云石,即可得到较好的脱硫效果,从而大大降低烟气中二氧化硫的含量。
5、操作和控制简单易行
煤气的发生和燃烧在同一设备的两个装置中进行,不用设置单独的煤气点火装置,煤气在燃烧室内由高温明火自行点燃,易于操作和控制,简化了运行管理,操作方便,减轻司炉工劳动强度,改善锅炉房卫生条件,实现文明生产。
6、燃烧稳定,煤种适应性强
煤在锅炉气化室的下部引燃,因而燃烧稳定。可燃劣质煤矿和燃点高的煤,其煤种适应性较强,在难熔区或中等结渣范围以内的煤种均适合。其中褐煤、长焰煤、不粘结或弱粘结烟煤、小球形型煤是比较理想的燃料。

五、结束语
实践证明,新的燃烧理论及多种专利组成的集成技术,保证了煤气化分相燃烧锅炉高效环保的稳定性及先进性,克服了旧技术无法解决的浪费及污染的难题,获得了明显的经济效益和环境效益,受到用户青睐。中国的煤炭资源十分丰富,随着能源政策和环境的要求越来越高,煤气化分相燃烧锅炉在我国市场前景十分广阔。

关于煤质分析的一篇大学毕业论文。煤的工业分析!!

巨野煤田煤质分析及科学利用评价
摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田
是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。
[关键词]煤质分析;煤质特点;科学利用;评价
1巨野煤田煤质分析
1.1煤的工业分析
工业分析是确定煤组成最基本的方法。在指标
中,灰分可近似代表煤中的矿物质,挥发分和固定碳
可近似代表煤中的有机质。
衡量煤灰分性能指标主要有灰分含量、灰分组
成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是
动力用煤和气化用煤的重要性能指标。一般以煤灰软
化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。
1.1.1龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆
时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖
触及底板变成球形时的温度;半球温度(HT)为灰锥形
变至近似半球形,即高约等于底长的一半时的温度;
流动温度(FT)为煤灰锥体完全熔化展开成高度<1.5 mm
薄层时的温度。
1.1.2彭庄矿钻孔煤样工业分析结果(表2)
2煤质特点及科学利用评价
2.1巨野煤田煤质特点
由煤炭科学研究总院《巨野矿区煤质特征及菜加
工利用途径评价》2003.5可以看出巨野煤田煤质有
如下特点:①灰分含量低,属于中、低灰煤层。②挥发
分含量高,各煤层原煤的挥发分含量在33%以上,且
差异不大,均属于高挥发分煤种。③磷含量特低;硫分
含量上低下高。④干燥基低位热值高。各层煤的都比
较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质
层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量
在86.02%~86.51%之间,氢含量在5.41%~5.44%之
间,C/H比值<16。⑦灰熔点上高下低。
2.2成浆性实验评价
2008年1月,华东理工大学对巨野煤田龙固矿
(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验
及评价。
2.2.1成浆浓度实验
成浆浓度是指剪切速率100 s-1,粘度为
1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制
浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作
为添加剂,用量为煤粉质量的1%。制成一系列浓度的
水煤浆,测量其流动性,观察水煤浆的表观粘度随成
浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度
也明显升高。本实验3种煤样成浆浓度分别为龙固矿
66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。
2.2.2流变性实验
水煤浆流变特性是指受外力作用发生流动与变
形的特性。良好的流变性和流动性是气化水煤浆的重
要指标之一。
将实验用煤制成适宜浓度的水煤浆,然后用
NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表
观粘度随剪切变化的规律绘制成曲线,观察水煤浆的
流变特性,见表11。
从表11可以看出,3种煤制成的水煤浆中,随着
剪切速率增大,表观粘度都随之降低,均表现出一定
的屈服假塑性。屈服假塑性有利于气化水煤浆的储
存、泵送和雾化。
2.2.3实验结论
煤粉粗粒度(40~200目)和细颗粒(<200目)质
量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质
量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆
浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加
压气流床水煤浆气化技术对水煤浆浓度的要求。
2.3原料煤的应用
2.3.1适合于制备水煤浆
水煤浆不但是煤替代重油的首选燃料,而且是加
压气流床水煤浆气化制备合成气的重要原料。同时它
又是一种很有前途的清洁工业燃料。实践上,华东理
工大学“巨野煤田原煤成浆性实验评价报告”表明:巨
野煤田各矿井原料煤均适合于制备高浓度稳定水煤
浆。
2.3.2用于煤气化合成氨、合成甲醇及后续产品
巨野煤田原煤属于高发热量的煤种(弹筒热平均
值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高
(>1 300℃),有利于固态排渣。根据鞍钢和武钢分
别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,
巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一
样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,
作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。
煤气化得到的合成气既可通过变换用于合成
氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲
醇为基础可进一步合成其他约120余种化工产品。另
外,还可利用甲醇制备醇醚燃料及合成液体烃燃料
等。
2.3.3用作焦化原料
焦化用于生产冶金焦、化工焦,其副产焦炉煤气
可用于合成甲醇或合成氨,副产煤焦油进行分离和深
加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可
以供将来的400万t/a焦化厂或者上海宝钢等大型
钢铁企业生产I级焦炭时作配煤炼焦使用;灰分
≤9.0%的8级精煤(2#),也可供华东地区的中小型焦
化企业生产2级和3级冶金焦的配煤炼焦使用。此
外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏
高,最好进行配煤炼焦。2.3.4远景目标———煤制油
煤直接液化可得到汽油、煤油等多种产品。巨野
煤田的大部分煤层均为富油煤,尤其是15煤层平均
焦油产率>12%,属高油煤;根据元素分析计算的碳氢
比各煤层均<16%;大部分煤层挥发分>35%的气煤和
气肥煤通过洗选后的精煤挥发分>37%,而其灰分
<10%。因此,巨野煤田的煤炭都是较好的液化用原料
煤。
煤间接液化可制取液体烃类。煤经气化后,合成
气通过F-T合成,可以制取液体烃类,如汽油、柴油、
石腊等化工产品及化工原料。
3结语
综上所述,巨野煤田第三煤层大槽煤属于低灰、
低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资
源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是
国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用
煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的
重要原料。因此,菏泽大力发展煤气化合成氨和甲醇
并拉长产业链搞深度加工是必然的正确选择。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页