您当前的位置:首页 > 发表论文>论文发表

水流量检测的论文

2023-03-11 01:02 来源:学术参考网 作者:未知

水流量检测的论文

节能型循环水泵在供水系统中的应用

前言

电力工程建设中供水系统投资高、工程量大施工复杂,对电力工程建设造价与投资回收年限影响较大,在电厂供水系统方案设计中非常重视自然通风冷却塔与循环水泵选择,循环水泵房与循环水管道系统优化布置,因为它们直接影响汽轮机安全运行与发电机满负荷发电,直接影响电厂的经济性,为了降低供水系统年运行费用,节约工程造价必须推广节能型设备的应用、优化系统的配置。

火力发电厂中汽轮发电机凝汽器的冷却水量随季节变化,夏季冷却水量大冬季冷却流量小;随汽轮机抽汽量变化,抽汽量大冷却流量少,抽汽量小冷却流量大。供水系统采用一台机组配二台相同型号水泵并联模式,将循环冷却水量平均分配给二台循环水泵,这种配置模式符合《火力发电厂水工技术规程、规定》,在电厂供水系统设计中广泛使用。 但是,一台机组配二台相同型号水泵在运行过程中经常出现问题,为了从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾,开发一种新型高效节能型水泵事在必然。

高效节能型循环水泵在供水系统中的应用

近年来全国各地相继建成一大批135MW火力发电厂,在山东里彦电厂、徐州诧城电厂、甘肃金川电厂、山东魏桥热电厂,我们先后设计了18台135MW国产超高压、中间再热机组。这些电厂位于我国华北、东北与西北地区,共同特点是企业自发自用,除了有稳定的电力需求外还有供热负荷,供热负荷波动较大,夏季热负荷小冬季热负荷大,年采暖期长。

以135MW供热机组为例,汽轮机最大连续出力时汽轮机凝汽器的凝汽量为324t/h,需要循环冷却水量19640m3/h;汽轮机额定抽汽工况时汽轮机凝汽器的凝汽量为223t/h,需要循环冷却水量12274m3/h;汽轮机最大抽汽工况时汽轮机凝汽器的凝汽量143t/h,循环冷却水量4700m3/h。随机组运行工况的改变,循环水系统需要的冷却水量从4700m3/h--19000m3/h的巨幅波动。

供水系统采用常规水泵布置,为了满足夏季汽轮机运行要求,通常选用选择水泵流量9800-11700m3/h,扬程18.0-21.5米,按照夏季二台水泵并联运行来满足循环水系统需要的冷却水量19000m3/h,其它季节通过一台水泵运行来满足循环水系统冷却水量需要,水泵流量范围9800-11700m3/h,系统超过此流量范围运行时,水泵运行很不经济。

不难发现:汽轮机在额定抽汽工况下,循环冷却系统需水量为12274t/h,系统水阻比汽轮机纯凝工况时略为减少2.0-3.0米,水泵扬程下降到15.0-16.5米,单台水泵流量增加到13000t/h,一台水泵运行可以满足系统要求,只是运行效率不高。可是汽轮机最大抽汽工况时,循环冷却水量只有4700t/h,系统水阻比汽轮机纯凝工况时大幅度减少,导致水泵扬程提高、运行效率很低,造成冷却塔淋水装置涌水、加大配水槽流速,水流热交换时间减少。由于水泵的工作效率极低,电动机无功功率增加,白白地浪费电能。

如果在135MW国产超高压、中间再热机组中循环水系统采用新型高效节能型水泵,将从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾。

以G48Sh水泵为例,在转速n=485r/min时、水泵流量17500m3/h、扬程18米、水泵效率88%、轴功率947kw;在转速n=420r/min时、水泵流量13200m3/h、扬程14.5米、水泵效率87% 轴功率587kw。该水泵设计参数与135MW机组循环水系统参数基本吻合、运行效率高。对100多台G48Sh水泵进行抽样检测,实际运行效率为84-88%;常规48Sh-22水泵运行效率只有60%。

水泵配用电动机采用双极数、双转速的核心技术,增加了循环水系统运行调节灵活性。根据凝汽器冷却水量随季节变化、随抽汽量改变,自动调整电动机极数与转速,同时改变输出功率与水泵供水量。一台G48Sh水泵高转速运行比二台48Sh-22并联水泵每小时多供水量3000吨;一台G48Sh水泵低转速运行电动机输出功率可以从947KW调整到587KW,电动机功率降幅达37%,其节能效果非常明显。因为循环水系统除了夏季水泵高转速运行外,其他季节基本上可以低速运行,按照年运行时间7200小时计算,每年每台水泵可节省电量230万度。按照电厂厂用电价0.2元/度计算,单台循环水泵每年节约电费大约为40万元左右,按照10-15年回收年限计算,单台循环水泵节约电费高达400-600万元,对于安装几台节能型循环水泵的电厂,其经济效益非常可观不可小视,这也是许多电厂节能技术改造的一个发展方向。而常规水泵配用电动机是固定不可调的,一定的转速所对应的输出功率是不变的。单台高效节能型循环水泵比等容量常规SH系列离心水泵价格高15-20万元,这部分投资费用只须电机低速运行很短时间即可收回全部成本。

高效节能型循环水泵的引入可以优化系统水力条件,加宽了水泵高效区段适应范围,有效地提高水泵工作效率;改变了一台汽轮机配二台等容量水泵常规设计理念,提出了一种新的水泵配置来满足汽轮机的变工况运行要求,本体结构采用卧式泵壳设计,厂运行、检修非常方便。

山东十里泉电厂(2×125MW)循环水系统原来配备了4台同型号48SH-22水泵运行,确实存在水泵供水量不足、效率低、经济性能差。1998年10月将其中的4#水泵更换成G48SH水泵,投产后电厂委托电力试验研究所进行了水泵性能测试,在高、低转速时运行效率分别高达87.78%与86.11%,比未改造其他水泵效率分别提高28.26%和26.5%,耗电量明显减少。

广东云浮电厂(2×125MW)也是配备了4台同型号循环水泵48SH-22。夏季3台水泵运行,其他季节2台运行。因为循环水流量不足、效率低,将其改成G48SH水泵,投产后委托广东电力试验研究所对水泵效率进行检测,新泵高转速时实际流量16537t/h、运行效率87.78%、电动机功率1002KW;新泵低转速时实际流量13080t/h、运行效率为86.12%、电动机功率646KW。水泵与机组运行工况吻合。原水泵实际流量14400t/h、效率59.62%、电动机功率1089KW;最高效率70%时流量为11540t/h,水泵与机组运行工况不符。高转速时新泵比旧泵供水量大2137 t/h、功率低87.7KW、效率高28.16%;低速时新泵在供水量相同情况下,单台水泵每小时可以节省443KW,节能效果显著。

结论

任何新技术的推广都需要一个认识过程, 高效节能型循环水泵的最大特点是节能、工作效率高,值得在全国推广。但是它是否适合所有地区、所有135MW机组的运行还需要更多的实际应用证明,需要因地制宜的选择。

推广高效节能型循环水泵不仅涉及到电厂循环水泵的配置、水泵备用与水泵运行费用问题,而且关系到水泵与汽轮机运行的联锁、控制问题等等,尤其在长江边建设取水泵房必须谨慎选择,高效节能型循环水泵的几何尺寸较等容量水泵大的多,对江边取水泵房而言,设备及设备运行费用不及取水泵房结构费用与施工费用,特别是水源枯水位与最高水位相差较大的时候,取水泵房几何尺寸的任何变化对工程造价的影响是非常大的。

陈达的论文论著

[1] Bernard D., Chen D. and Burlion N. A 3D study of mortar degradation by x-ray computed microtomography[J]. High Performance Structures and Materials, 2004, 6:297-306.[2] Da Chen, Ismail Yurtdas, Nicolas Burlion, Jian-Fu Shao. Elastoplasticité et endommagement dans un matériau cimentaire en cours de dessiccation : comparaison essais / calculs[J]. Revue européenne de génie civil, 2006, 10(3):405-421.[3] Nicolas Burlion, Dominique Bernard, Chen Da. X-ray microtomography: application to microstructure analysis of a cementitious material during leaching process[J]. Cement and Concrete Research, 2006, 36(2): 346-357.[4] 陈达, Yurtdas Ismail. 干燥作用对水泥基材料影响的研究[J]. 郑州大学学报(工学版), 2006, 27(4):58-61.[5] D. Chen, I. Yurtdas, N.Burlion, J.F.Shao. Elastoplastic damage behavior of a mortar subjected to compression and desiccation[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(4):464-472.[6] 陈达,张玮. 风能利用和研究综述[J]. 节能技术, 2007, 25(4):339-343,359.[7] 陈达,江朝华,张玮. 玻璃纤维增强塑料(GFRP)筋混凝土梁斜截面受力性能[J]. 河海大学学报(自然科学版), 2007, 35(5):534-537.[8] 陈达,东培华,廖迎娣. 海洋环境中受腐蚀混凝土的力学研究现状和展望[J]. 腐蚀与防护, 2007, 28(12):630-632.[9] L Chen, T Rougelot, D Chen, JF Shao. Poroplastic damage modeling of unsaturated cement-based materials[J]. Mechanics Research Communications, 2009, 36(8):906-915.[10] Nicolas Burlion, Dominique Bernard, Da Chen. Evolution microstructurale d’un mortier lixivié: caractérisation expérimentale au moyen de la microtomographie par rayon X[A]. In L. Dormieux, D.Kondo, K.Sab ed. Microstructure et propriétés des matériau[C], Paris: Ponts et Chaussees press, 2005.[11] D.Chen, I.Yurtdas, N.Burlion, J.F. Shao. Plastic damage modelling of concrete subjected to desiccation[A]. In Gilles Pijaudier-Cabot, Bruno Gérard, Paul Acker ed. 7th International Conference on Creep, Shrinkage and Durability of Concrete and Concrete Structures[C], France: Ecole Centrale de Nantes, 2005:181-186.[12] D. CHEN, I.YURTDAS, N.BURLION, J.F.SHAO. A coupled elastoplastic damage model for cement-based materials submitted to desiccation[A]. 2nd International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modeling, Experiments & Applications[C]. Nanjing, China, 2006 may 22-24:514-519.[13] 陈晓峰,陈达,廖迎娣. 过闸船舶撞击力研究[J]. 水运工程, 2010, (9):48-50.[14] 张研,蒋林华,陈达. 围压状态下的混凝土本构模型[J]. 计算力学学报, 2010, 27(6):1096-1101.[15] D.Chen, W.Q.Shen, J.F.Shao, I.Yurtdas. Micromechanical modeling of mortar as a matrix-inclusion composite with drying effects[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 37(9):1034-1047.[16] 陈达,庄宁,廖迎娣,黄辉. 水泥土力学特性随龄期发展规律试验研究[J]. 水利水运工程学报, 2012(1):26-29.[17] 陈达,廖迎娣,庄宁,黄辉. 水泥品种对水泥土力学性能与耐久性的影响[J]. 施工技术, 2012, 41(359):84-86.[18] 何良德,姜晔,殷兆进,周博,唐晖. 内河船舶跟驰间距模型[J]. 交通运输工程学报, 2012, 12(1):55-62, 86.[19] CHEN Da, WANG Na, JIANG Chaohua. Influence of Sulfate Attack and Drying-wetting Cycle on Properties of Mortar[J]. Applied Mechanics and Materials, 2012, 204-208: 3731-3735.[20] Na Wang, Da Chen, Yingdi Liao. Study on foundation structure for comprehensive power generation of offshore renewable energy [J]. Advanced Materials Research, 2012, 594-597:121-125.[21] 陈达,李莉,姚鹏飞,廖迎娣. 高桩码头拱式纵梁结构[J]. 江南大学学报(自然科学版), 2012, 11(6):685-689.[22] 陈达,谢春秋,廖迎娣,侯利军. 闸墙碰撞分析及其混凝土性能指标研究[J]. 水运工程, 2013(5):120-123.[23] 陈达,廖迎娣,侯利军,欧阳峰. 受硫酸盐侵蚀水泥基材料力学性能及本构模型[J]. 建筑材料学报, 2013, 16(6):743-749.[24] Da Chen, Yingdi Liao, Chaohua Jiang, Xingguo Feng. The mechanical properties of coastal soil treated with cement [J]. Journal of Wuhan University of Technology- Materials Science Edition, 28(6):1155-1160.[25] Da Chen, Chen Du, Xingguo Feng, Feng Ouyang. An elastoplastic damage constitutive model for cementitious materials under wet-dry cyclic sulfate attack [J]. Mathematical Problems in Engineering, vol. 2013, Article ID 562410, 7 pages, 2013.[26] I. Yurtdas, D. Chen, D.W. Hu, J.F. Shao. Influence of alkali silica reaction (ASR) on mechanical properties of mortar [J]. Construction and Building Materials, 2013, 47(10):165-174.[27] Da Chen, Kai Huang, Valentin Bretel, Lijun Hou. Comparison of Structural Properties between Monopile and Tripod Offshore Wind-Turbine Support Structures [J]. Advances in Mechanical Engineering, vol. 2013, Article ID 175684, 9 pages, 2013.[28] Xingguo Feng, Xiangyu Lu, Yu Zuo, Da Chen. The influence of plastic deformation on the structure of passive films on carbon steel in simulated pore solution[J]. Journal of the Brazilian Chemical Society, 2014, 25(2): 372-379.[29] 陈达, 杨一琛, 冯兴国, 欧阳峰. 碱硅酸反应对水泥基材料力学性能的影响 [J]. 土木建筑与环境工程, 2014, 36(1):119-124.[30] Chaohua Jiang, Ke Fan, Fei Wu, Da Chen. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete [J]. Materials and Design, 58(2014):187-193.[31] Hou Lijun, Xu Shilang, Zhang Xiufang, Chen Da, Shear behaviors of reinforced ultrahigh toughness cementitious composite (RUHTCC) slender beams with stirrups [J]. Journal of Materials in Civil Engineering, ASCE, 26(3): 466-475.[32] 侯利军,陈达,徐世烺,张秀芳,无腹筋RUHTCC梁抗剪性能试验研究,东南大学学报,44(1): 133-139, 2014.[33] Liao Yingdi, Chen Da, Liu Zihan, Ouyang Feng, Hou Lijun. Elastoplastic-damage compression constitutive model for cementitious material subjected to alkali-silica reaction [J]. Journal of Advanced Concrete Technology, 2014(12):158-166.[34] Xingguo Feng, Xiangyu Lu, Yu Zuo, Da Chen. The passive behaviour of 304 stainless steels in saturated calcium hydroxide solution under different deformation [J]. Corrosion Science, 82 (2014):347-355.[35] 侯利军,陈达*,徐世烺,张秀芳,正常使用状态下RUHTCC梁的弯曲变形预测,工程力学,2014, 31(11):183-189.[36] 冯兴国, 卢向雨, 陈达, 杨雅师, 苏晓栋. 拉应力和压应力对砂浆中钢筋锈蚀的影响 [J]. 建筑材料学报, 2015, 18(4):640-646.[37] 范可, 刘子涵, 陈达. 规则波作用下挡浪板式防浪墙波浪力研究[J]. 水运工程, 2014, 10(1):7-12.[38] 侯利军, 陈达, 孙晋永, 徐世烺. RC/UHTCC复合梁的弯曲与界面性能试验研究. 水利学报, 45(z1): 100-107.[39] Y.D. Liao, Y.C. Yang, C.H. Jiang, X.G. Feng, D. Chen. Degradation of mechanical properties of cementitious materials exposed to wet-dry cycles of sulphate solution [J]. Materials Research Innovations, 19 (2015):173-177. [1] 中华人民共和国水利部, 村镇供水工程施工质量验收规范》(SL 688-2013)[2] 中华人民共和国交通运输部, 《水运工程施工监控技术规范》 [1] 杨正,娄保东,陈达等. 船舶吃水超限预警系统及预警方法[P]. 中国专利: ZL 2009 1 0305821.5.[2] 陈达,张玮,廖迎娣,江朝华. 一种船舶对闸墙碰擦力测试方法[P]. 中国专利: ZL 2009 1 0035364.2.[3] 刘曙明,王爱民,储兴隆,陈达等. 船舶对闸墙碰擦力测试系统[P]. 中国专利:ZL2009 10035365.7.[4] 陈达,廖迎娣,陈波涛,张峰. 杆件轴向荷载超限预警系统及预警方法[P]. 中国专利: ZL 2010 1 0225001.8.[5] 郑金海,陈达,廖迎娣等. 一种用于控制吃水超深船舶过闸的方法及装置[P]. 中国专利: ZL 2010 1 0273480.0.[6] 陈达,廖迎娣,何良德,杨正. 全自动墙体护面混凝土喷射系统[P]. 中国专利: ZL 2010 1 0526441.7.[7] 陈达,廖迎娣,庄宁,张峰等. 一种混凝土分层浇筑装置及施工方法[P]. 中国专利: ZL 2010 1 0564948.1.[8] 庄宁,何良德,郑金海,陈达等. 一种船闸闸室墙变形监测装置及监测方法[P]. 中国专利: ZL 2011 1 0009658.5.[9] 陈达,王伟,王瑞彩,刘桃根等. 新型防波堤及其设计方法[P]. 中国专利: ZL 2011 1 0098720.2.[10] 陈达,李正,廖迎娣,杨正等. 爬升脚手架安全监控方法及装置[P]. 中国专利: ZL 2011 1 0102354.3.[11] 陈达,陈蒙龙,宋晓阳,范可等. 环境亲水型复合式海堤[P]. 中国专利: ZL 2011 1 0261642.3.[12] 陈达,廖迎娣,欧阳峰等. 一种检测闸门漏水的装置及其控制方法[P]. 中国专利: ZL 2011 1 0434394.8.[13] 陈达,王娜,欧阳峰,范江山等. 一种抵御波吸力的连通式防波堤消浪结构[P]. 中国专利: ZL 2012 1 0013135.2.[14] 廖迎娣,王娜,陈达等. 一种气囊式船闸灌泄水辅助系统[P]. 中国专利: ZL 2013 1 0028867.3.[15] 陈达,娄保东,刘子涵等. 基于蜗轮式水流量传感器闸门止水设施检测装置[P]. 中国专利: ZL 2013 1 0071338.1. [1] 水泥基材料弹塑性损伤计算模型软件(登记号: 2013SR016450).[2] 受化学侵蚀水泥基材料本构模型模拟系统(登记号: 2013SR124414).[3] 高桩码头横向排架内力计算软件(登记号: 2013SR124418).[4] 弹性地基梁内力计算软件(登记号: 2013SR124350).

关于高尔夫球场排水系统的论文怎么写?

  一、前言
  高尔夫球场是普达项目的一个重要组成部分,是为满足高端人群进行社交、娱乐、运动、旅游等需求的场所。高尔夫球场全部由草坪覆盖,并且对草坪的质量要求十分苛刻,草坪的生长情况是球场的质量的关键。
  高尔夫球场种植的草皮对水分的要求很高。草坪草的含水量一般在75 %~90 % ,草坪草的含水量下降会引起草坪草萎蔫,水量下降到60%时,就可能会导致草坪草死亡。但水分过多又会导致土壤通气状况变差,从而引起草皮生长不良,诱发病害,甚至导致植物窒息死亡。在雨季,如果过多的降雨不能及时排出草坪表面和根系层,会导致场地积水,根系受淹。因此,优良的灌溉系统和排水系统是草坪整体质量的保证,相关人员需要根据草坪草的需求和环境条件,进行科学灌溉和排水。
  二、灌溉系统
  1、灌溉系统规划
  规划区高尔夫球场草坪灌溉用水取自高处中水回用池,供水方式为重力流供水。
  2、草坪灌溉要求
  高尔夫球场草坪是所有球类运动场草坪中规模最大、管理最精细、艺术品位最高的草坪。不同与一般的景观园林灌溉,由于高尔夫球场自身的特殊性,如球场内的草坪种类、面积大小、使用要求、地形条件、气候条件、场地因素等,决定了高尔夫球场灌溉的特殊性:
  第一,球场草坪灌溉面积大,需水量多。一个标准的高尔夫球场约为60~100hm2,而整个球场大部分为草坪覆盖,这就要求高尔夫球场草坪灌溉系统不仅能满足灌溉用水量,而且要具备综合管理灌溉设备的能力。
  第二,球场内不同区域的草坪需水量不同。高尔夫球场内的果岭、发球台、球道、高草区内种植的草坪草种、坪床土壤类型不尽相同,而且打球者对其使用要求也不同。因此,不同区域的草坪草在灌溉量、灌溉时间上均不相同,尤其对于果岭,灌溉管理要求更为精细。这决定了要实施精确灌溉,灌溉系统必须结合不同草种和使用情况区域化灌溉。
  第三,灌水周期性。高尔夫球场草坪面积大,灌溉并不是一次完成的,需要经过严格的计算,制定合理的灌溉制度进行随机循环、轮流灌溉。
  第四,灌溉的景观效果。不同于一般的园林灌溉,高尔夫球场景色优美,草坪灌溉不仅要满足草坪草的需水、保持喷洒效果,最重要的是灌溉设备在使用和维护时不能破坏草皮,影响景观效果。
  3、微灌技术
  微灌技术是一种相对最为省水的灌溉方式,是一种新型的节水灌溉技术,包括滴灌、微喷灌、渗灌等,它是通过低压管道和滴头或其它灌水器,以持续、均匀和受控的方式向作物根系输送所需水分(及养分)。微灌技术具有显著的节水(微灌一般比地面灌溉节水30-50%,比喷灌节水15-20%)、节能和增产效果,对土壤、地形和作物种类适应性强,并易于实现自动控制,具有诱人的推广应用前景。
  (1)滴灌技术
  滴灌技术利用管道将水通过直径约10mm毛管上的孔口或滴头送到作物根部进行局部灌溉。具有显著的节水、增产效果。它是目前干旱区水地区最有效的一种节水灌溉方式,其中水的利用率可达95%。滴灌技术是一种低水头灌溉,它适合大面积长期种植的高秆作物,如果园、葡萄园的灌溉,也适合蔬菜、花卉等经济作物、大面积农作物以及温室大棚的灌溉;在干旱缺水的地方亦可用于大田作物灌溉,还可用于高扬程抽水灌区及地形起伏较大地区的灌溉,同时在透水性强、保水性差的砂质土壤和咸水地区也有一定的发展前进。
  (2)微喷灌技术
  微喷灌是通过低压管道系统,以小的的流量将水喷洒到土壤表面进行灌溉的一种灌水方法。微喷灌技术具有喷水流量小,工作压力低,配套功率低,喷水高度低、喷水直径小、水滴细小、喷洒均匀、受风的影响很小,设备轻巧、移动方便、管件齐全、装卸简单以及适用于分散地块和一家一户使用等特点。
  微喷灌工程是一种新型的灌水工程。它在投资、使用方面具有一定的优越性,因此它的发展前景十分广阔。随着科学技术和社会经济的发展,世界各地的微喷灌技术和其工程发展十分迅速。
  (3)渗灌技术
  渗灌是继喷灌、滴灌之后,一种新型的有效地下灌溉技术,是在满足植物生理生长需求的条件下,将以往对土地的灌溉转变为对植物根系直接进行灌溉。目前国内有低压渗灌和重力渗灌两种方式。
  许多国内外从事节水灌溉研究的学者认为:地下灌溉不仅机理上、技术上、经济上,而且在生态环境保护、水资源保护和高效利用等方面具有发展前途的灌溉技术。
  渗灌技术可适用于不同区域、各种地形及土壤的多种作物的灌溉。具有大幅度节水、节能、改善作物生长环境,控制病虫害,实现增产、增效的作用;渗灌技术是农业节水灌溉中最先进的灌溉技术之一,它的适应性强,应用范围广;渗灌可以用于盐碱地,因为渗灌系统减少了田间供水量,不产生深层渗漏,可以防止盐碱地上常发生的水分大量渗漏导致盐分上升的现象。
  4、自动监测及控制
  传统草坪管理和灌溉专家是依靠自己经验判断来决定灌溉制度。现在可以通过气象站的监测仪器提供准确的气象资料,如降雨、温度、湿度、日照等,及时的将这些气象信息传输给计算机中央控制系统或管理人员,使他们能够相应调整程序和灌溉制度。
  自动控制和计算机技术使人们能够通过复杂的系统可以控制多个场地,并能使用户能够节省时间,能够根据植物的具体需求使灌溉更有效、更精确和均匀,用户能够显著的节省用水、用工和成本,并使球场草坪和植物更为茁壮生长。自动控制便于均匀灌溉大面积草坪,而且在最适宜的时间进行,即晚上无人打球时灌溉。在晚上灌溉最为有效是因为风和日光造成的蒸发较午间要低。另外,自动系统更便于根据每个不同区域来制定制度。一个典型的高尔夫球场有多种微型气候区,从平坦球道、果岭,到障碍区和周边长草地域,再到俱乐部会所和停车场。高尔夫球场中央控制系统能够让管理员根据每个区域的不同需要最低水量灌溉。
  现有的球场灌溉自动控制器和中央控制系统都具备的一些节水功能,其中包括:
  (1)启动时间
  控制器允许根据植物的个性需求,设定更短、更精确的运行时间。这样可以让草坪和植物更好地吸收水分;减少径流和深层渗漏浪费。地表径流是水源浪费的一种常见问题,即灌溉强度高于植物和土壤的吸收速度,在有坡度或粘土会使在重力作用下沿坡面径流流失。坡地草坪由于地面径流而入渗到根系水量不够,经常会出现干斑现象。而灌溉中央控制系统可以根据“间歇灌溉”减少地面径流。
  (2)灌水时间长度
  高尔夫球场喷灌一天的灌水量,只要能满足当天植物的耗水需要就行,或者说,刚好足够补充当天的蒸散量ET值。
  (3)水量预算调节
  允许用户根据环境的需要方便的调节系统和程序的灌溉量。譬如,在雨季,用户可以将其控制器上“水量预算”的设置调整为高峰水量的85%,从而节省15%的用水。
  (4)降雨延迟
  允许用户在不需要灌溉时(通常是雨季)将灌水时间延迟,而在适当的时间再自动启动。
  (5)降雨监测
  在灌溉计算机中央控制系统中,有一个雨量监测功能。该功能不仅可以实现降雨暂停和延时,同时可以根据降雨量判断降雨量是不是满足草坪根系储存水量,如果够了,就延时24小时或48小时等,根据你需要延时不同时间;如果降雨不够那灌溉系统就会自动启动程序,完成补充降雨量不够水量。该功能尤其适合南方多雨地区,节水效果非常明显。
  (6)间歇灌溉
  按照土壤入渗率和地形坡度设置间歇灌溉,将过去传统一次灌溉过程变为多次灌溉,少量多次,减少地表径流、水土流失和浪费。在高尔夫球场上没有多少平地,该功能是有效灌溉坡地的手段。通过灌溉中控系统就能实现间歇灌溉功能。
  
  三、排水系统
  1、高尔夫球场排水系统的特点
  (1)高尔夫球作为一种运动,球场内的草坪不仅要维持一定的景观功能,更重要的是要满足比赛要求。球场就需要用高标准的排水设计来保持一个优良的环境,保证球场硬件设备的完好。因此高尔夫球场排水系统在设置地表排水系统排除天然降雨的同时,还要设置地下排水系统以维持草坪正常使用功能,以保证草坪的质量、耐久性、减少草坪的养护成本以及保证比赛的正常进行。
  (2)高尔夫球场占地面积较大,一个标准的高尔夫场占地面积一般为60~100hm2, 高尔夫球场草坪排水系统设计与地表起伏的景观设计相吻合,通过地形起伏,将较大的汇水区变成小的汇水区,这使得排水的汇水区域分散化、面积小型化。由于高尔夫球场内各果岭、沙坑大小,球道长度均不同,因此汇水面积差异较大。
  (3)高尔夫球场草坪的地表排水系统与城市街道雨水排水系统相似。但不同的是,城市街道为水泥硬表面,降雨后全部产生地表径流,几乎没有下渗雨水。而整个高尔夫球场地面均被草坪所覆盖,并且由于造景和安全性需要, 设计者对球场内地形进行了人为的改造, 使得球场内的地势高低起伏,这对雨水的地面径流影响很大,包括影响着地面径流系数和设计排水量。
  2、高尔夫球场排水系统规划
  高尔夫球场草坪排出的水分一部分为降雨或灌溉水入渗形成的饱和土壤水,一部分为降雨量形成的地面径流。为了及时排除这两部分水,相应的高尔夫球场草坪排水系统划分为地表排水系统和地下排水系统。
  高尔夫球场地表排水主要通过地面造型排水和管道排水两种方式。地面造型排水就是通过地面造型设计,使降雨时来不及下渗的水分沿地表自然流出草坪绿地,汇集到球场内的湖、排水沟、或雨水井中。地面造型排水的目的就是为了分散地面径流,从而减少降雨径流对地表的冲刷。管道排水就是地表汇流与雨水井、地下水排水管道相结合的排水系统。它可以缩短汇水流程,将较大的汇水区域分隔成较小的汇水区。
  普达项目高尔夫球场地表排水采用地面造型排水和管道排水相结合的方式,地下排水采用管道排水。通过合理设置地面造型和排水口及时将场地内雨水排出。雨水经管道收集后排入人工湖作为景观补水。
  此外,考虑到球场用水和景观的需要,高尔夫球场草坪排水系统的排水口的设置也比较特殊。高尔夫球场用水量很大,球场内水体的设置不仅是一种造景的手段,而且是球场喷灌系统的水源之一。因此,高尔夫球场草坪排水系统的排水口一部分设在场内湖泊处,一部分与场地排水口相结合排出场外,这样有利于水分的循环使用,达到节水的目的。设在湖泊处的排水口,为了防止淤泥堵塞出水口不能深入到湖底,也不能高于湖面影响景观。与场地排水口相结合部分也应考虑到球场周围地区的排水系统的排水能力。
  3、管道排水原则
  (1)就近排水原则,将多余水向就近容泄区排走,以免造成草坪积水,同时减少排水管内的水流量。
  (2)排水管走向根据地形由高到低,排水管段坡度在地形满足的情况下应尽量大一些,保证排水管内水流顺畅。
  (3)排水管段不应通过雨水井完全串联在一起,否则会在增大下游管段的流量,而且连接两个雨水井的管段不宜太长,否则在管段中需要布置检查井。
  (4)布设排水管道时,尽量分片布置,减少出水口数量,以免对球场景观造成不良影响。
  (5)管线尽可能直,但不允许穿过果岭或沙坑底部。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页