保持一颗好奇心的故事3篇
乔治·西屋是美国西屋电器公司的。创办人。西屋电器公司在乔治·西屋的精心经营下,由他一个“光杆司令”起家,逐步发展壮大,不久便成为美国著名的大企业。
乔治·西屋的事业成功也在于他具有极强的好奇心,有一种“打破砂锅问到底”的精神。正因为有这种个性和精神,他在企业经营中获得了361项发明专利。所以有人说,西屋既是企业家,又是个发明家。他在一切经营活动中注意观察,善于寻根问底,结果带来了许多发明专利;反过来,西屋又以自己的发明使自己的企业赢得竞争的优势,使本企业的生产技术和产品在同行业中于领先地位,获得与众不同的好效益。
有一次,他乘火车出差,没想到火车误点5个多小时。旅客们怨气十足,纷纷向站务员询问误点原因,后来才知道火车在中途与另一列车相撞,致使交通中断。
据此,很多旅客决定改乘汽车。但乔治·西屋却与众不同,他好奇地跑去问站长,为什么会产生火车相撞。站长说:“我也不清楚,可能是交通信号出了问题吧!”
乔治·西屋对站长的回答很不满意,又跑到警察局去查询,他知道了真正的原因,是火车刹车失灵。
到了这步,乔治·西屋应该掉头就走,也去改乘汽车。但他仍不满足,又好奇地去追问:刹车为什么会失灵呢?几经周折,他终于搞清楚了当时火车的刹车方法:在每节车厢都设有单独的刹车器,每一刹车器均需几名刹车工专门负责。当火车要停下来时,每节车厢的刹车工就同时拉刹车器,然后使火车慢慢停下来。可是每个人的反应有快有慢,所以刹车工在听到命令时,根本不可能把每节车厢同时刹住,因而车厢与车厢间每每发生撞击,严重的则常因刹车器失灵而发生两列火车相撞事件。
乔治·西屋从此事引起思考,他亲自到火车上观察有关情况,甚至找刹车工了解情况,他终于得到一个结论:如果能够改良火车的刹车系统,撞击与相撞的事件必将大大减少,自己也可获得一个生财的机会。
乔治·西屋经过反复研究,与专家和火车工作人员商量,终于研究出解决上述难题的办法,把刹车权改由火车司机掌握,在司机驾驶室设刹车器,把每节车厢刹车工人取消。这一改进果然很好,被全美火车系统采用了。
不久,他又利用压缩的空气为动力,发明了性能卓越的空气刹车器,把它安装在每节车厢下,枢纽就在司机身旁,只要拉开气门枢纽,可以很轻易地就把火车刹住了。这一空气刹车器成为19世纪最伟大的发明之一,亦是乔治·西屋一生最得意的发明。这一发明,为西屋电器公司带来了巨大的经济收入。
强烈的好奇心最易产生奇迹,这是被大量事实所证明了的。一个人如果对什么事情都无动于衷、熟视无睹,便难以敏锐地捕捉成功的机遇。
拉曼是印度的物理学家,是著名的光散射问题专家。
1921年,拉曼出席了在牛津召开的英国大学会议,在会上他作了精彩的科研报告,备受人们的欢迎。
在取道地中海回国的途中,拉曼偶然听到一对母子的对话,促成了他科学研究的新转折。
轮船穿过直布罗陀海峡,进人了一碧万顷的地中海。蔚蓝色的海面风平浪静,拉曼信步来到甲板眺塱海面,旁边一位年轻的母亲领着一个八九岁的小男孩,正在谈话。
“妈妈,这个大海叫什么名字?”
“地中海。”
“为什么叫地中海?”
“因为它夹在欧亚大陆和非洲大陆之间。”
显然,这个小男孩是聪明好学的,他引起了拉曼的`注意。
“妈妈,大海为什么是蓝色的?”
碧蓝的海水成了小男孩疑问的对象。年轻的母亲一时语塞,只好向拉曼投去求援的目光。拉曼蹲下身来,亲切地牵着小男孩的手,说:“小朋友,海水之所以呈现蓝色,是因为它反射了天空的蓝色。”
在此之前,几乎所有的人都认可了这一解释。它出自英国物理学家瑞利勋爵,这位以发现惰性气体而闻名于世的大科学家,曾用太阳光被大气分子散射的理论解释过天空的颜色,并由此推断,海水的蓝色是反射了天空的颜色所致。
但不知为什么,在告别了那一对母子之后,拉曼总对自己的解释心存疑惑,那个充满好奇心的稚童,那双求知的大眼睛,那些源源不断涌现出来的“为什么”,使拉曼深感愧疚。作为一名训练有素的科学家,他发现自己在不知不觉中丧失了男孩那种到所有的“已知”中去追求“未知”的好奇心,他不禁为之一震!
拉曼一回到研究室,就开始着手研究海水为什么呈现蓝色的课题。他运用爱因斯坦等人的涨落理论进行研究,观察光线穿过海水时的散射现象。通过大量的实验,他发现,在光散射实验中,散射光中有新的不同波长成分,它和散射物质的结构密切相关。1922年,拉曼发表论文,用细致的分析证明了水分子对光线的散射使海水显出颜色的机理,与大气分子散射太阳光而使天空呈现蓝色的机理完全相同。此后,他和助手又在其他液体、固体和气体中发现了一种普遍存在的散射效应。
拉曼发现的光散射效应为量子力学和相对论提供了强有力的证据,为全世界的科学研究开辟了一条新的道路。为了纪念拉曼,人们把这种光散射效应称为“拉曼效应”。
1930年,拉曼因发现光散射效应而获诺贝尔物理学奖。
院子里,一只大母鸡孵出了10只小鸡,其中9只落入水井并淹死,因为它们没有听从大母鸡的安全指示。
大母鸡很是担心留下的独苗,时时看着它,嘱咐它要听母亲的话。不要去井边玩耍。一旦掉下去,就会死亡。
独苗小鸡坚持了两三天没有去井边,但心里却甚是好奇:“井里到底什么样?”想得越多,就越想知道。
终于有一天,趁着母亲没注意,小鸡偷溜了出来,来到了井边。它站在井口,睁大眼睛往井底看去,发现井里竟然有一只跟它一模一样的小鸡。它晃了几下头,尖叫了好几声,井里的小鸡似乎在跟它交流,也以晃头、尖叫做出了回应。
小鸡瞬间觉得有伙伴玩了。甚至怀疑她母亲的嘱咐是不想让它玩。“这哪有什么危险?井里的小鸡生活在这么狭小的空间里,不照样活的自在!我应该下去找它玩耍。”
想到这一点,小鸡便毫不犹豫地跨出了那一步。结果,它也像自己逝去的兄弟姐妹一样,溺死在井水中。
[编辑本段]拉曼
又译喇曼(Sir Chandrasekhara Venkata Raman, 1888-1970)因光散射方面的研究工作和喇曼效应的发现,获得了1930年度的诺贝尔物理学奖。
喇曼是印度人,是第一位获得诺贝尔物理学奖的亚洲科学家。喇曼还是一位教育家,他从事研究生的培养工作,并将其中很多优秀人材输送到印度的许多重要岗位。
拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。
他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就没有资格在科学文化界任职。但会计行业是唯一的例外,不需先到英国受训。于是拉曼就投考财政部以谋求职业,结果获得第一名,被授予总会计助理的职务。
拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过十年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。
1917年加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教十六年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈(M.N.Saha)和玻色(S.N.Bose)。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。
1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批赋有才华的学生和合作者。就以光散射这一课题统计,在三十年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生谆谆善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里。
在X射线的康普顿效应发现以后,海森堡曾于1925年预言:可见光也会有类似的效应。1928年,喇曼(下图)在《一种新的辐射》一文中指出:当单色光定向地通过透明物质时,会有一些光受到散射。散射光的光谱,除了含有原来波长的一些光以外,还含有一些弱的光,其波长与原来光的波长相差一个恒定的数量。这种单色光被介质分子散射后频率发生改变的现象,称为并合散射效应,又称为喇曼效应。这一发现,很快就得到了公认。英国皇家学会正式称之为“20年代实验物理学中最卓越的三四个发现之一”。
喇曼效应为光的量子理论提供了新的证据。频率为ν0的单色光入射到介质里会同时发生两种散射过程:一种是频率不变(ν=ν0)的散射,即瑞利散射,是由入射光量子与散射分子的弹性碰撞引起的;另一种是频率改变(ν=ν0±νR)的散射,即喇曼散射,其中νR称为喇曼频率。散射光频率的改变是由于入射光量子与散射分子之间发生了能量交换,交换的能量(hνR)由散射分子的振动或转动能级决定。后人研究表明,喇曼效应对于研究分子结构和进行化学分析都是非常重要的。
拉曼效应的发现
在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(G.Landsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。
巴基斯坦有一位诺贝尔奖级别的物理学家,印度也有一位,他就是拉曼。不过长得没有巴基斯坦那位物理学家帅气。
不过他是第一个正确解释海水为什么那么蓝的科学家。往下看就知道为什么了。
拉曼(Sir Chandrasekhara Venkata Raman, 1888(戊子年)-1970)。印度物理学家,又译喇曼。因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。于1970年逝世,享年82岁。
1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼,以表彰他研究了光的散射和发现了以他的名字命名的定律。
拉曼是印度人,是第一位获得诺贝尔物理学奖的亚洲科学家。拉曼还是一位教育家,他从事研究生的培养工作,并将其中很多优秀人材输送到印度的许多重要岗位。
拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。
他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就意味着没有资格在科学文化界任职。但会计行业是当时唯一例外的行业,不需先到英国受训。于是拉曼就投考财政部以谋求一份职业,结果获得第一名,被授予了总会计助理的职务。
拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过十年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。
1917年加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教十六年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈(M.N.Saha)和玻色(S.N.Bose)。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。
1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批赋有才华的学生和合作者。就以光散射这一课题统计,在三十年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生谆谆善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里。
在X射线的康普顿效应发现以后,海森堡曾于1925年预言:可见光也会有类似的效应。1928年,喇曼在《一种新的辐射》一文中指出:当单色光定向地通过透明物质时,会有一些光受到散射。散射光的光谱,除了含有原来波长的一些光以外,还含有一些弱的光,其波长与原来光的波长相差一个恒定的数量。这种单色光被介质分子散射后频率发生改变的现象,称为并合散射效应,又称为喇曼效应。这一发现,很快就得到了公认。英国皇家学会正式称之为“20年代实验物理学中最卓越的三四个发现之一”。
喇曼效应为光的量子理论提供了新的证据。频率为ν0的单色光入射到介质里会同时发生两种散射过程:一种是频率不变(ν=ν0)的散射,即瑞利散射,是由入射光量子与散射分子的弹性碰撞引起的;另一种是频率改变(ν=ν0±νR)的散射,即喇曼散射,其中νR称为喇曼频率。散射光频率的改变是由于入射光量子与散射分子之间发生了能量交换,交换的能量(hνR)由散射分子的振动或转动能级决定。后人研究表明,喇曼效应对于研究分子结构和进行化学分析都是非常重要的。
拉曼效应是如何发现的?
拉曼效应(Raman scattering),也称拉曼散射,1928年由印度物理学家拉曼发现,指光波在被散射后频率发生变化的现象。1930年诺贝尔物理学奖授予当时正在印度加尔各答大学工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。
在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(G.Landsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。
1921年夏天,航行在地中海的客轮“纳昆达”号(S.S.Narkunda)上,有一位印度学者正在甲板上用简便的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装置:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证明,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。
拉曼返回印度后,立即在科学教育协会开展一系列的实验和理论研究, 探索 各种透明媒质中光散射的规律。许多人参加了这些研究。这些人大多是学校的教师,他们在休假日来到科学教育协会,和拉曼一起或在拉曼的指导下进行光散射或其它实验,对拉曼的研究发挥了积极作用。七年间他们共发表了大约五六十篇论文。他们先是考察各种媒质分子散射时所遵循的规律,选取不同的分子结构、不同的物态、不同的压强和温度,甚至在临界点发生相变时进行散射实验。1922年,拉曼写了一本小册子总结了这项研究,题名《光的分子衍射》,书中系统地说明了自己的看法。在最后一章中,他提到用量子理论分析散射现象,认为进一步实验有可能鉴别经典电磁理论和光量子1923年4月,他的学生之一拉玛纳桑(K.R.Ramanathan)第一次观察到了光散射中颜色改变的现象。实验是以太阳作光源,经紫色滤光片后照射盛有纯水或纯酒精的烧瓶,然后从侧面观察,却出乎意料地观察到了很弱的绿色成份。拉玛纳桑不理解这一现象,把它看成是由于杂质造成的二次辐射,和荧光类似。因此,在论文中称之为“弱荧光”。然而拉曼不相信这是杂质造成的现象。如果真是杂质的荧光,在仔细提纯的样品中,应该能消除这一效应。
在以后的两年中,拉曼的另一名学生克利希南(K.S.Krishnan)观测了经过提纯的65种液体的散射光,证明都有类似的“弱荧光”,而且他还发现,颜色改变了的散射光是部分偏振的。众所周知,荧光是一种自然光,不具偏振性。由此证明,这种波长变化的现象不是荧光效应。
拉曼和他的学生们想了许多办法研究这一现象。他们试图把散射光拍成照片,以便比较,可惜没有成功。他们用互补的滤光片,用大望远镜的目镜配短焦距透镜将太阳聚焦,试验样品由液体扩展到固体,坚持进行各种试验。
与此同时,拉曼也在追寻理论上的解释。1924年拉曼到美国访问,正值不久前A.H.康普顿发现X射线散射后波长变长的效应,而怀疑者正在挑起一场争论。拉曼显然从康普顿的发现得到了重要启示,后来他把自己的发现看成是“康普顿效应的光学对应”。拉曼也经历了和康普顿类似的曲折,经过六七年的 探索 ,才在1928年初作出明确的结论。拉曼这时已经认识到颜色有所改变、比较弱又带偏振性的散射光是一种普遍存在的现象。他参照康普顿效应中的命名“变线”,把这种新辐射称为:“变散射”(modified scattering)。拉曼又进一步改进了滤光的方法,在蓝紫滤光片前再加一道铀玻璃,使入射的太阳光只能通过更窄的波段,再用目测分光镜观察散射光,竟发现展现的光谱在变散射和不变的入射光之间,隔有一道暗区。
就在1928年2月28日下午,拉曼决定采用单色光作光源,做了一个非常漂亮的有判决意义的实验。他从目测分光镜看散射光,看到在蓝光和绿光的区域里,有两根以上的尖锐亮线。每一条入射谱线都有相应的变散射线。一般情况,变散射线的频率比入射线低,偶尔也观察到比入射线频率高的散射线,但强度更弱些。
不久,人们开始把这一种新发现的现象称为拉曼效应。1930年,美国光谱学家武德(R.W.Wood)对频率变低的变散射线取名为斯托克斯线;频率变高的为反斯托克斯线。
拉曼发现反常散射的消息传遍世界,引起了强烈反响,许多实验室相继重复,证实并发展了他的结果。1928年关于拉曼效应的论文就发表了57篇之多。科学界对他的发现给予很高的评价。拉曼是印度人民的骄傲,也为第三世界的科学家作出了榜样,他大半生处于独立前的印度,竟取得了如此突出的成就,实在令人钦佩。特别是拉曼是印度国内培养的科学家,他一直立足于印度国内,发愤图强,艰苦创业,建立了有特色的科学研究中心,走到了世界的前列。