核物理是研究射线束的产生、探测和分析技术;以及同核能、核技术应用有关的物理问题。下面我给大家分享一些核物理学术论文,大家快来跟我一起欣赏吧。
激光核物理
摘 要 在最近十年,激光技术有了长足的进展,激光的强度超过了1022W/cm2, 激光的电场达到~4×1012V/cm.当这种高强度的激光照射在靶上时,可以产生许多由激光产生的核反应现象.在这篇 文章 中,作者回顾了这一领域的 研究 进展,并对在不远的未来激光产生 电子 ?质子?中子?X射线和正电子 发展 的潜力进行了一些讨论.
关键词 啁啾脉冲放大,粒子云,正电子发射层析术,库仑爆炸
1 什么是
最近十年中,激光技术有了显著的进展,激光强度已超过1022W/cm2,激光的电场强度达到3.8×1012V/cm,比氢原子中电子玻尔轨道上的库仑场大759倍,相当于在原子大小上相应加上约40kV的电压,在原子核大小上相应加上约0.38V的电压,在这种很强的电场作用下,所有的原子都会在极短的时间内被电离,产生从几个MeV到几百MeV的质子,几十MeV到GeV的电子和其他粒子,以及韧致辐射和中子,这些粒子可以产生核反应,打开了核物理以及非线性相对论光学研究的新领域[1—3].
在今后的十年中,激光强度可能会提高到1026—1028W/cm2,这样高强度的激光可以将粒子加速到1012—1015eV,并将成为研究粒子物理?引力物理?非线性场论?超高压物理?天体物理和宇宙线研究中的一个有力工具[1].
超高功率超短脉冲激光技术的发展,在实验室中创造了前所未有的极端物态条件,如高电场?强磁场?高能量密度?高光压和高的电子抖动能量?高的电子加速度,这种极端的物理条件, 目前 只有在核爆中心?恒星内部?星洞边缘才能存在,在它和物质的相互作用中,产生了高度的非线性和相对论效应,产生了崭新的物 理学 领域,也为多个交叉学科前沿研究领域带来了 历史 性的机遇和拓展的空间.
2 国内外研究现状
当前国际上已经在一些实验室中建立了几十TW到几个PW的激光系统,在上世纪80年代中期,以前激光的强度长期停留在1014W/cm2左右,这是由于非线性吸收效应随着激光强度的增加而迅速增强,在80年代中期之后,由于采用了啁啾脉冲放大技术(chirped pulse amplification, CPA),激光强度提高了6—7个数量级,在CPA技术中,一个飞秒或皮秒的脉冲通过色散的光栅对在时间尺度将它展宽了3—4个数量级,这样就避免了放大器的饱和以及在很高强度时由于非线性效应产生的光学放大器件的损伤,在经过放大以后,再由另一光栅对将脉冲宽度压缩回到飞秒或皮秒宽度,以获得1019W/cm2到1022W/cm2的靶上功率密度.CPA超短脉冲TW的激光装置在法国光学 应用 研究所?瑞典Lund大学?德国Mark-Plank研究所?德国Jena大学?日本JAERI和 中国 工程物理研究院?中科院上海光学精密机械研究所?中科院物理研究所?中国原子能 科学 研究院等都建有.日本原子能研究所采用变形镜和CPA相结合的技术,运用低f值的抛物面镜,将激光聚焦于1μm的斑点,可以进一步提高焦斑上的功率密度,但是由于放大介质的单位面积上的饱和能量通量和光学元件的损伤阈值的限制,单位面积上最大的光强度?I??th?=hν3σΔν?ac2?,这个数值约为10?23?W/cm2.美国LLNL正在计划建造10?18?W(exawatt)和10?21?W(zettawatt)的激光装置,以期获得1026W/cm2 —1028W/cm2的靶上功率密度.
高强度的激光可以引起许多核反应,当激光强度I>10?18?W/cm2时,在激光电场做抖动的电子能量达到0.511MeV,产生了相对论等离子体.运用强激光在等离子体中产生的尾场去加速电子,如用一台紧凑型的重复频率的激光器可以产生200MeV的电子.这种激光等离子体型的加速器具有比通常电子加速器高出1000倍的加速梯度,即达到GV/m.运用高强度?单次脉冲的激光也获得了100MeV的电子,并测量到它的韧致辐射.超短超强激光还可以产生质子束,并开始运用这些质子束产生正电子发射层析术(positron emission tomography,PET)所需要的短寿命的正电子放射源,一种用激光来产生的小型化的和 经济 的质子产生器有望在未来用于质子治癌.运用超短超强激光直接产生正电子已在英国卢瑟福实验室开展,他们用重复频率的TW级的激光,打在高Z元素的靶上得到每脉冲2×107个正电子,它对于基础研究和材料科学很有用途.通过超短超强激光和氘团簇的相互作用,产生聚变反应的中子,其中子产额可以达到105中子/焦耳,激光产生中子的能量效率已达到世界上大型的激光装置的水平,它可以成为台面的中子源,由于其中子脉冲通量高,但总的中子剂量很小,适合于生物活体的中子照相和材料科学的研究.运用超短超强激光和氘化聚乙烯作用产生中子,Hilsher等人用钛宝石激光(300mJ, 50fs, 10Hz, 10?18?W/cm2) 轰击氘化聚乙烯靶,产生104中子/脉冲.运用超短超强的激光在相对论性的电子上的散射,产生几百飞秒?几十埃的硬X射线,可以用来研究材料和生命科学的一些 问题 ,这种超快的硬X射线源对于研究一些高Z物质和时间分辨的超快现象具有重要的意义.超短超强激光所产生的高能电子,在物质中产生高能X射线,可以在裂变物质铀中引起裂变,并在裂变靶中探测到许多裂变产物.在激光的强度达到1028W/cm2时,电场强度只比Schwinger场(真空击穿场强)低一个数量级,在这样的场中,由于真空的涨落被激发,激光就有可能从真空中产生正负电子对,美国Lawrence Berkerly实验室在SLAC高能加速器上,用10?18?W/cm2的激光束和聚焦性能很好的46.6GeV的电子束相碰撞,产生了200多个正负电子对,这是由于在反向相碰的电子和激光中,从电子的坐标系来看,激光的场强增强了Lorentz因子倍,以至于可以远远地超过Schwinger场值,直接从真空中产生一些电子对.
3 新的科学研究的 内容 ,新的交叉点
3.1 激光产生高能电子[4—7]
产生高能电子的机制有两种:第一种是在激光场作用下,电子做抖动运动,在激光强度I=10?20?W/cm2时,电子抖动运动能量能达到10MeV;第二种是由非线性效应所产生的能量比较高的部分.用300J,0.5ps的激光照射在厚的金靶上,测量到的电子能谱分布基本上由两个部分组成:一部分是由有质动力产生的,它的能量在20—30MeV以下,还有一部分就是由非线性效应产生的几十MeV以至100MeV以上的高能量的电子,并和粒子云(particle in cell,PIC) 的 计算 结果符合,目前加速电子最高能量已达1GeV.能散度可达3% .
当激光的强度增加时,光波的压力变得很大,光压推着电子往前走,光波就像一个光子耙将等离子体中的电子推到脉冲的前面积累,形成电子的“雪耙”(snow plow) ,在这种“雪耙”加速中,电子的动能得到增益.在综合了光压作用和激光场的作用后,计算得到在激光强度为I=1026W/cm2时,加速梯度可达200TeV/cm,如果加速长度达到1m,电子能量为2×10?16?eV,在I=1028W/cm2时,加速梯度可达2peV/cm,加速长度为1m时,电子能量为2×10?17?eV,可以用来研究高能物理中的许多问题.
3.2 激光产生质子束[8,9]
在激光等离子体中,在I=10?20?W/cm2的情况下,加速质子的能量可以高达58MeV.加速梯度约为1MV/μm.质子被加速的距离只有60μm左右,如何增长加速距离成为非常重要的研究内容,加速质子的机制是相当复杂的,也提出了一些加速模型的设想.实验上的研究结果已显示它存在很好的应用前景.这表现在:
(1) 激光能量转换成质子束能量的效率是高的,而且和激光的能量有关,在激光脉冲能量为10J?宽度为100fs时,转换效率为1%,当500J?500fs时,转换效率为10%,人们已经获得了10?13?质子/脉冲,质子脉冲宽度约1ps,相当于10?25?质子/秒,即?1.6×?106A的脉冲质子流.
从 理论 到实验应该研究如何进一步提高能量转换效率的问题,尤其是当激光能量进一步提高时,转换效率是否还继续上升.
(2) 质子束的发散角比较小,观察到的横向发散角为0.5mm·mrad,比通常加速器上加速的质子束的发散角小.
(3) 高能质子束的获得可能会在今后的十年中实现,按照Bulanov等人的计算结果,在I=10?23?W/cm2时,质子可以被加速到1GeV以上,在I=1026W/cm2和1028W/cm2时,质子能量可以达到100GeV和 10TeV.
(4) 目前已获得几十MeV的质子束,并已用于为PET产生?18?F等短寿命的正电子源,在英国Rutherford实验室的Vulcan装置上,在20分钟内制备了109Bq的?18?F源,已经可以用在PET上.
(5) 产生200MeV的质子,并用于质子治癌,由于它在能量沉积上的优越性能,以及整个装置可以做得小,成本低,所以在治癌应用上很有发展前景,并可应用于中子照相.目前由激光加速产生的质子的能量分散度为17%.治癌应用要求能散度≤3%左右,因此减少能散度的工作在一些实验室正在进行中.
3.3 激光产生中子[10,11]
超短超强激光加热氘团簇产生核聚变,已经产生了104中子/脉冲或105中子/焦耳,从激光的能量转换成中子的效率看,和美国LLNL上的大型激光器NOVA上的每焦耳激光的中子产额相当,比日本大阪大学的大型激光装置Gekko 12上的数值大一个数量级,因此是一种很有 发展 前景的桌面台式的中子发生器,因为这种中子源的时间宽度只有1ps,是一个高中子通量的中子源,可用于材料 科学 和中子照相.
氘的团簇在吸收激光能量后要发生库仑爆炸,应该说到现在为止对于库仑爆炸的机理理解尚不非常清楚,尤其是团簇爆炸后产生的氘分子和氘的小团簇如何产生氘-氘的聚变反应也缺乏细致的了解,在进一步的改进方面,还有发展的余地,例如,如何采用多束的超短超强激光同时照射团簇,或用大于50T的脉冲磁场去推迟热等离子体的解体时间,以增加中子产额.
利用超短超强激光和氘化聚乙烯作用来产生中子,Hilsher等人用钛宝石激光(300mJ,50fs,10Hz,10?18?W/cm2)轰击氘化聚乙烯靶也产生了104中子/脉冲,大约每焦耳的激光产生3.3×104中子.Disdier等人用20J,400fs,5×1014W的激光辐照CD?2靶,获得107中子,每焦耳激光产生了3.5×105中子,这是很高的中子产额,他们还要用500J,500fs,1pW的激光照射CD?2,以获得更多的中子.
在激光辐照CD?2平面靶时,除了要 研究 激光能量在CD?2靶上的能量沉积的分布外,如何充分地利用沉积的能量是一个很重要的 问题 .沉积的能量有很大一部分要转变成等离子体的动能,在平面靶的情况下,如何设计靶面形状,以最大限度地使等离子体的动能对D-D反应做贡献.
3.4 激光产生硬的超短(~100fs)X射线[12]
用超短超强激光(50mJ,0.5TW,100fs)和50MeV的 电子 束散射可以产生4nm,300fs的硬X射线,虽然转换效率不高,但产生的X射线强度可以在Si表面产生衍射峰,可以用来研究Si表 面相 变过程(从固相→熔化过程)的时间分辨的研究,也可以研究蛋白质折叠动力学,蛋白质的折叠时间为1ns,用300fs的硬X射线可用来了解它的折叠过程中的状态.
3.5 激光产生正电子[13,14]
将具有几个MeV的电子,经过很好地准直后,射到一个高Z的靶上,通过Trident过程(Z+e-→Z′+2e-+e+)和Bethe-HEitler过程(Z+r→Z′+e-+e++r′)产生正电子,采用重复频率的超短超强激光和高Z靶的相互作用,每脉冲可以产生2×107个正电子,经过慢化后,储存在磁场中,它对于基础科学和材料科学的研究是很有用的.
4 主要存在的问题和 分析
这门新兴的交叉学科在国际上也只有十多年的 历史 ,但发展十分迅速,搞激光技术和原子核物理的科学家们已经开始在一起召开学术研讨会,共同参加一些实验,由于它是一个新的生长点,发展比较快,也比较容易发现一些新现象,所以合作的积极性也在日益增长.随着超短超强激光技术的发展,在粒子加速?核物理?甚至粒子物理方面可以做出一些很好的工作来.我国发展的情况有些滞后,学科之间的交叉和合作还没有真正形成,学科之间的了解和交流还不够,因此只在交叉学科的边缘上做了一些工作,按照我国在激光技术和核物理方面的力量来说,都应该有可能做出更多更好的工作. 目前 具有超短超强激光装置的研究单位并不少,但将它们运行好,做出好的物理工作的成果并不多.
国内的情况也和国际上相似存在着一个问题,即搞强激光技术的专家和搞核物理和粒子物理专家之间的交流?讨论不够,这就会 影响 这一交叉学科的发展.
从强场物理到超短超强激光技术,到 应用 于各个领域,在世界上是基础科学和技术进步相互推动,相互作用的一个范例,基础研究的需求,以及光学科学的基础,非线性科学的基础,促进了超短超强激光技术的发展,而高强度激光的发展又为物 理学 的发展提供一个崭新的世界.
参考 文献
[1] Tajima T, Mourou G. Physical Review Special Topics\|Accelerators and Beams, 2002, 5:037301
[2] Mourou G, Tajima T, Bulanov S V. Reviews of Modern Physics, 2006, 78: 309
[3] Lee mans W P et al. Nature Physics, 2006, 2: 696
[4] Thomas Katsouleas. Nature, 2004, 431: 515
[5] Mangles S P D et al. Nature, 2004, 431 :535
[6] Geddes C G R et al. Nature, 2004, 431: 538
[7] Farue J et al. Nature, 2004, 431:541
[8] Wilks S C et al. Physics of Plasma, 2001, 8:542
[9] Schwoerer H et al. Nature , 2006, 439: 445
[10] Perkins L J et al. Nuclear Fusion,2000, 40:1
[11] Zweiback J et al. Phys. Rev. Lett.,2000, 85:3640
[12] Kmetec J D et al. Phys. Rev. Lett.,1992, 68: 1527
[13] Gahn C et al. Appl. Phys. Lett., 2000,77 : 2662
[14] Gahn C et al. Phys. Rev. Lett., 1999, 83 :4772
点击下页还有更多>>>核物理学术论文
机译的..改了一部分..
Abstract:
In military,LIA has a widely application. It is intense charged particle beam acceleration of the important equipment, widely used in flash X-ray camera, plasma resonance heating, heavy particle inertial confinement fusion experiments.
Especially in nuclear weapons development plays an important role. LIA large magnetic ring as one of the key device, we need to study very pulse of its magnetic properties.
This article from the start with the existing test platform, including foreign IEH design of the test platform, the domestic China Engineering Physics Research Institute of Physics Institute of fluid ferrite magnetic pulse of the way, and Cheng Hao of China Physics Research Institute in its graduate thesis The experimental design platform, a detailed study of its experimental principle and the experiment and the results of the analysis, through their research to understand the pulse of its test magnetic ring magnetic properties of the basic idea, this experiment was later laid a good idea Basis.
The magnetic material (amorphous, ferrite) of the magnetic pulse of a more in-depth studies, designed a pulsed magnetic properties experimental system, through the experimental design study found that, through the network to provide PFN accelerating voltage pulses, RC circuit provided by the current reduction can be achieved test magnetic ring of the magnetic pulse of purpose. Such an effective solution to the MARX generator complex design and pre-voltage pulse of the problem.
Pspice conduct of this study is a basic simulation tools. Therefore, the paper gave a briefing on the source of Pspice and various functions. Pspice through the simulation tests that test the magnetic ring cavity excitation current and voltage of wave Shape, so the experiment to calculate the expected results and analysis.
《爆炸与冲击》是中国力学学会主办的学术期刊。一、办刊宗旨为:报道爆炸力学学科领域的国内外最新科技成果,反映学术前沿进展及水平,促进学术交流,创造本学科领域青年人才良好的成长环境,推进爆炸理论和应用、抗爆与爆炸安全技术的发展。二、征稿内容:爆炸、爆轰、燃烧、冲击波、冲击动力学、高速碰撞、动高压技术、激光与电磁驱动的高能量密度动力学、材料动态力学性能、爆炸驱动与爆炸加工、工程爆破、抗爆结构与设计、爆炸力学计算方法和实验测试技术、爆炸器材、爆炸安全技术等方面的论文、研究简报以及科技动态等。 《高压物理学报》创刊于1987年9月,是中国高压物理领域唯一的专业性刊物,它是由中国物理学会高压物理专业委员会主办、四川省物理学会协办、中国工程物理研究院流体物理研究所承办的一份学术季刊。《高压物理学报》办刊宗旨是反映并刊登高压物理学科领域内的国内外科研及技术成果,以促进国内外学术交流,发现与培养中国从事高压物理专业研究的中青年科技人才,推进中国高温高压物理学科研究工作的发展。读者对象为从事高压物理专业以及相邻专业(如爆炸力学、地球物理、天物理、材料科学等)的科学研究人员、工程技术人员、研究生以及大专院校师生等。《高压物理学报》主要刊登高压物理学科专家学者的最新科技成果,其内容主要有:动态及静态高压技术,人工合成新材料,高温高压下材料的力学、光、电、磁等特性,高温高压下物质的相变及微观结构研究,动态及静态高压研究中的测试技术,以及高温高压物态方程等。从1989年起,《高压物理学报》一直由中国科技信息研究所列入《中国科技论文统计与分析》课题选用的中文科技期刊之一,中国科学院文献情报中心把《高压物理学报》作为《中国科学引文数据库》核心库来源期刊之一。《中国科学引文数据库》分为核心库和扩展库。核心库的来源期刊经过严格的评选,是各学科领域中具有权威性和代表性的核心期刊。扩展库的来源期刊也经过大范围的遴选,是中国各学科领域较优秀的期刊,核心库期刊共633种。《中国物理文摘》、《中国力学文摘》、《中国学术期刊文摘》和《中国科学引文索引》等把本刊作为引用的核心期刊。1996年,本刊首批加入《中国学术期刊(光盘版)》。 《含能材料》是中国工程物理研究院主办的学术性期刊, 1993年创刊,1995年国内外公开发行。中国工程院院士董海山研究员历任本刊主编、名誉主编。中国科学院院士陈能宽为本刊题写了刊名。著名科学家王淦昌、朱光亚等为本刊题了词。本刊现任主编为中国工程物理研究院化工材料研究所所长黄辉研究员。《含能材料》旨在及时报道国内外火炸药、推进剂、烟火剂、火工药剂、武器弹药设计、实验及相关材料的研制、工艺技术、性能测试、爆炸技术及其应用、含能材料的库存可靠性、工业废水处理、环境保护等方面的最新成果,促进含能材料学科领域的科技进步。时下,本刊是《中国科技核心期刊》,被《EI》、《CA》、《CSA》、《中文科技期刊数据库》、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》、《中国导弹与航天文摘》、《兵工文摘》、《中国学术期刊文摘》等收录;是《中国科学引文数据库》、《中国学术期刊综合评价数据库》的来源期刊。 《信息与电子工程》(双月刊)《信息与电子工程》是2003年创刊的一份国内外公开发行的电子类学术期刊,主要围绕信息化新军事变革中电子信息技术发展的需要,及时传播信息与电子工程领域的新理论、新技术、新成果。重点报道内容:信息工程技术、无线电测控通信技术、雷达技术、自动控制技术、天线技术、微波毫米波技术、高功率微波技术、电子信息对抗技术、微电子与微机电技术、引信技术、电子测量与仪器技术、核电子学、高压电子学、高能电子学和计算机工程应用等。它为广大科技工作者提供了升华实践经验,发展相关理论,展示创新成果的交流平台,为高等院校的学者、教授和科研院所的科研人员提供了发表优秀论文的自由空间。本刊面向国内外所有专家、学者征稿,主要刊登学术及科研论文,并接收优秀的综述性论文。本刊已被列为《中国学术期刊(光盘版)综合评价数据库(CAJCED)》、《中文科技期刊(光盘版)数据库》、《中国期刊(光盘版)全文数据库(CJFD)》、《中国核心期刊(遴选)数据库》、万方数据-数字化期刊群(网)、中国期刊网、中文科技期刊网以及《电子科技文摘》、《书生》等的统计源期刊并被全文收录。本刊双月25日出版,版面为A4,每期内容约8万字,每期定价12.00 元,全年72 元。
一、桥梁建筑美学
自古以来,建筑(包括桥梁建筑)与绘画、雕塑被称为三大造型艺术(又称为空间艺术或视觉艺术)。它和其他门类艺术有共同的特征,如:鲜明的形象、强烈的艺术感染力、
、反映时代特征等。但是桥梁建筑艺术作为实用艺术,又有它自己独特的艺术特征。
功能价值与审美价值的统一。桥梁建筑不仅要表现出结构上的稳定连续、强劲力感和跨越能力,而且要有美的形态与内涵,只有内容和形式的高度统一,才能显示出不朽的生命力。
艺术和技术紧密相关。技术本身也是美的因素之一,计算力学、钢筋混凝土的发展,才使各式轻巧、大跨的桥梁得以出现。
桥梁建筑美的基本因素:
一.统一和谐
二.均衡稳定
三.比例协调
四.韵律优美
统一和谐
多样统一是形式美的一种高级形态,也是创造形式美的最高要求。从本质上讲,多样统一的和谐规律与人类社会和自然界一切事物的发展规律相一致。
一、 多样统一
多样统一产生和谐是自古希腊以来美学家们一向极为看重和追求的。毕达哥拉斯学派的美学思想就是建立在自然科学基础上的和谐,他们认为"美就是和谐","和谐是杂多的统一",和谐的事物可以引起人们生理和心理上的共鸣,因此就产生了美感。并从数的和谐又联系到音乐的节奏乃至建筑上的柱、门窗等构造要素的排列,形成了衡量美的客观理论性尺度。
多样统一,一般表现为两种形态,即有差异的统一和对立的统一。前者属于各种不同量的因素之间的变化,如各种形式要素的多少、高低、长短、大小等,呈现出一渐变的调和美。后者是指各种不同因素之间的对立统一,如刚柔。明暗、冷暖。浓淡等有规律的组合,这种形态往往造成强烈的感观效果,在对比中见统一。
在桥梁建筑设计中应该注意在变化中呈对比,于对比中求和谐。这里变化多样是基础,差异对比是手段,统一和谐是目的。
二、桥梁建筑中多样统一手法
桥梁及周围环境的复杂多样是必然的,桥梁的组成有上部结构、下部结构、附属结构,又有主桥、引桥之分,不同部位的组成部分各有不同的功能,不同的功能又表现为不同的形式,而所构成的桥梁整体,要完成一个具体的总的目的或功能。因此,一切都要围绕着这个目的,使整个桥梁建筑自身及与周边环境成为有机的整体,而不是杂乱无章、支离破碎。
1.多样中求统一
从复杂的结构中提出各种可以互相统一的因素,起到衔接。联系和协调的作用,使整体看起来"天在无缝"。如桥梁中栏杆。灯柱、行杆。桥墩、跨度一般采用整齐划一,相同形态、相同间距或有规律的变化,从而起到整体统一协调、简洁明快的效果。
2.统一中求多样
单纯的同一是统一的最简单形式,过多的"同"不可避免地会产生单调。呆板。所以,同中求异,统一中求多样。求变化,才能营造情趣与韵味。
如纵观卢沟桥柱头上的狮子,它们的间距、大小、轮廓都是统一的,内容上也以表达狮子的情态为主旨而统一,但细看这485个石狮却是千姿百态,趣味无穷,堪称一绝。
3.结构体系统一
桥梁各局部设计要体现整体划一的概念,避免产生孤立、离散、自成体系的不和谐现象,这在设计中是非常重要的。
4.结构形态的统一
恰当地处理次要部位对主体部分的从属关系,使所有细部形态从属于总体的几何形态,用相似的几何形态将各个部分协调在一起,如同音乐中主旋律反复出现一样,产生和谐统一美感。
均衡稳定
中国美学家朱光潜先生曾说"美的形体无论如何复杂,大概含有一个基本原则,就是平衡和匀称。"
桥梁建筑是一种空间实体结构,通过它的外在形象所展示的体量就有一种均衡稳定感。
左右的对比存在着是否均衡的问题,上下的对比就产生了是否稳定的问题,二者相互关联。一般来说,均衡的建筑外观常常能满足稳定的要求。
一、 均衡
均衡是大自然赋于人类生理上的一种本能要求。一方面人们从实践中已逐渐形成了一整套与重力有联系的审美体验;另一方面由于视觉的特点,能给予审美感受上的满足。桥梁建筑作为视觉艺术,应该注意强调均衡中心,或者说只有容易觉察的均衡,才会令人满意。
均衡分静态均衡与动态均衡,前者主要指在静力状态下的体量。形态的均衡,后者指依靠运动来求得瞬间平衡的形态,如乌的飞翔、动物的跑跳等。桥梁建筑其固定不变的形态自然属静态均衡,但由于在结构上的对称与非对称,又可分对称均衡与非对称均衡,前者对称的形态引起稳定、平和、安全、满足的美感,后者不对称的形态使在静态中具有运动的趋势,产生类似动态均衡的心理诱惑力,令人兴奋、激动,有一种生机勃勃的勉力。
二、对称均衡
对称形式大然是均衡的。生物体态是对称的,如人及动物都是凭借左右两侧对称的器官才能保持机体的平衡。因而对称形式符合人的生理要求与心理习惯,必然产生美感。
在传统美学中认为对称就是美,也是自古以来重要的构图手法。如古希腊的雅典神庙、巴黎圣母院,罗马教堂以及我国的故宫、大坛。大安门广场……等等都是对称形式,表现出肃穆、端庄。大部分古今中外桥梁所采取的布局也都是对称形式。我国古代桥梁更是具有良好的对称均衡性,多孔桥大多为三、五、七、九等奇数跨。一般中孔大边孔渐小,这不仅可以在水深急流的河中心不设桥墩,利于通航,而且在主从关系分明、均衡稳定上也是得当的,如 11孔的卢沟桥、北京颐和园十七孔桥等均是如此。
三、 非对称均衡
对称处理得当,具有对称美。然而它只是多元美中的一元,并非仅只有对称桥等均是如此。
三、 非对称均衡
对称处理得当,具有对称美。然而它只是多元美中的一元,并非仅只有对称才美,若不分场合、不分功能一味追求对称,则会流于平庸呆板。况且由于环境。地理条
条件诸多因素难以处理,许多桥梁并不适合采用对称形式。
在建筑上,现代派认为对称是古典主义原则,是一种世代相传的潜在习惯。而在经济上、美学上如不因势利导,对称布置极易造成浪费和呆滞。特别是随着现代建筑中新技术、新工艺。新结构的不断发展,人们的建筑观点已自发地倾向于不对称结构,几乎作为一种"革命"冲破对称模式的约束,不拘一格自由多变,追求新、奇。巧、变,充分发挥非对称的自由、灵活、生动、经济、轻快、活泼的优点以及动态的美感,突出个性,适应多层次审美心理要求,以显示人类现代文明生活中的丰富多采。
这种建筑思潮自然也影响到桥梁建筑,近年来,国内外桥梁建筑也有不少这方面的大胆尝试,出现了别具一格、造型新颖、令人赞叹的杰作。
比例协调 和谐的比例与尺度是建筑形态美的必要条件。
圣·奥古斯丁说:"美是各部分的适当比例,再加一种悦目的颜色";关于建筑的美,维特鲁威斯所著粮筑十书冲认为建筑之美在于比例,建筑的理论是:"证明和说明建筑物的比例与规则的能力";17世纪法国建筑家法兰梭亚·布龙台称:"建筑上整体的美来自绝对的、简单的可以认为的数学上的比例";几乎所有的美学家、建筑学家都一致认为比例在建筑艺术上的重要性。
合乎比例或优美的比例是建筑美的根本法则,适宜的数比关系是建筑形式美的理性表达,是建筑外观合乎逻辑的显现。
工程建筑和谐美,体现在量上就是寻求比例与尺度的协调,对桥梁建筑这种单维突出的结构,协调比例尤为重要。
一、比例与尺度的概念
比例是艺术领域中诸相对面间的度量关系(数比关系为其一)。一般是指建筑物各部分相对尺寸,狭意的说指整体或局部的长、宽、高尺寸间关系,广义的看还包含实体与空间之间,虚与实之间,封闭与开敞之间,凹凸之间,高低之间,明暗之间,刚柔之间。
尺度是指建筑整体或局部给人感觉上的印象与其真实大小之间的关系,或者说是可变要素与不变要素的对比。
简言之:比例是物与物的相比;尺度是物与人(或其他易识别的不变要素)间相比,前者只表明各种相对面间的相对度量关系,不需涉及具体尺寸。但尺度是感觉上的印象。是建筑与人的关系方面的一种性质。当建筑物和人体以及内在感情之间建立起紧密而简洁的关系时,建筑物的实用、美观、舒适等更为明显。
二、桥梁建筑的比例
桥梁各个局部及整体的比例是以其固有的功能关系和结构关系为艺术构思前提的,必须在深刻了解桥梁结构内在规律的基础上去寻求桥梁体态匀称和比例和谐,决不能违背结构关系和力学原理。
比例的概念和一定历史时期的技术条件、功能要求以及一定的思想内容是分不开的。比如古代石梁、石拱相对厚重,预应力混凝土技术使桥梁的跨越能力大大提高,与旧的结构相比就显得十分纤细。
一座桥梁,其各部分的比例只有达到匀称和谐时,才能构成优美的形象。但实际上比例处理不当也是"常见病",比如,挪威特罗姆斯港桥,其悬臂孔跨径较边孔跨径还小,显得布置缺少章法。另外,净高和跨径之比为2.5左右,显得桥墩过细过高而比例失调,缺乏稳定感。
三、桥梁建筑的尺度
建筑的一切取决于人的要求,所以,人是衡量建筑尺度的最直接、最明显的标志。对桥来说,与人体功能紧密相关的踏步、栏杆扶手、行驶的车辆等都是辅助标志。良好的建筑尺度应当从建筑物及其局部的大小同它本身用途相适应的程度,及其大小与周围环境相适应的程度来理解,由这种综合的判断获得的尺度感可以分为三类:
1. 自然尺度
一般情况下,人的视觉印象尺寸和真实尺寸之间是一致的,这就是正常尺度,也称自然尺度。桥梁的自然尺度就是要求桥梁的整体与局部和人体等尺度标志之间形成合乎功能要求、合乎常情的空间外观,给人一种真实、自然、亲切的感觉。例如,城市桥梁相距较近、关系密切,应当具备令人舒适、便利的尺度。
2. 雄伟尺度
有时,为了满足精神功能要求或赋予建筑以特殊的性格(如纪念性),往往有意识地采用夸大的尺度,使建筑的视觉尺寸印象超过真实尺寸,显得更大、更有力、更雄伟壮观。大型桥梁建筑环境空间宽广无垠,桥梁凌空架设,因而大多选用长、大、高的尺度以构成壮观、磅礴的气势。
3. 亲切尺度
使建筑空间比它实际尺寸看上去小一些,产生一种自由的、非正规的亲切感,建筑必须具有与功能、环境协调的良好尺度,就像人有好的风度一样。不适宜德、夸大虚假的尺度会使人产生装腔作势的不愉快感。我们乐于领受桥梁的雄伟壮观,也喜欢园林小桥典雅、秀丽的风姿。
韵律优美
一、节奏与韵律
节奏一词源于生活,富于音乐,是表现乐音的高下缓急即重音与音程的重复和交替,又称节奏的强弱快慢。诗歌中的韵律为音韵、节律,韵古称作均;律即规律,韵律即和谐优美的旋律。
事实上节奏与韵律是密不可分的统一体,是一种生理和心理上的需要,是美感的共同语言,是创作和感受的关键。
按我国古代"阴阳生万物"的哲学,桥梁建筑中直线的、刚劲的、明亮的、坚实的构件如塔;梁、柱、墩等被赋予"阳性",而建筑中曲线的、柔和的、幽暗的、虚空的如曲线的拱。主缆、拉索、桥上桥下空间……等属于阴性,阳性为实,阴性为虚,虚实相生,对立统一。其交替组合及变化,能产生变化无穷的节奏与韵律。
人称"建筑是凝固的音乐"就是因为它们都是通过节奏与韵律的体现而造成美的感染力。成功的建筑总是以明确动人的节奏和韵律显扬于世,将无声的建筑变为生动的语言和音乐。
二、韵律的表现手法
工程建筑上的节奏与韵律是通过体量大小的区分,空间虚实的交替,构件排列的疏密、长短的变化,曲柔刚直的穿插……等变化来实现的,具体手法有以下几种: <
1.连续韵律
以一种或几种建筑要素连续地重复排列而形成,可以获得整齐划一、简洁统一、连续流畅的美感。如桥梁上的栏杆、灯柱的连续排列。
2.渐变韵律
建筑上的连续结构要素按一定的规律或秩序进行微差变化可以增加建筑物的生动性、情趣性,有助于取得真体和谐美。如多孔桥的孔径变化,吊桥的吊索长短变化。
3.起伏韵律
节奏进行强弱、大小、高低、虚实、曲直等有规则变化,或按一定规律时而增加时而减少,可形成激情的起伏韵律。如颐和园的玉带桥,中部突出隆起,似玉带飘扬。
4.交错韵律
运用各种形式要素作有规律的纵横交错、相互穿插等手法,构成虚实进退、明暗相间、色彩变化的韵律感。
二、桥的分类
梁式桥
在竖直荷载作用下,梁的截面只承受弯短,支座只承受竖直方向的力。多孔架桥的梁在桥墩上不连续的称为简支梁;在桥墩上连续的称为连续梁;在桥墩上连续,在桥孔内中断,线路在桥孔内过渡到另一根梁上的称为悬臂梁。支承在悬臂上的简支架称为挂梁;伸出有悬臂的梁称为锚梁。架式桥的梁身可以做成实腹的,也可以做成空腹的(称为桁梁)。
拱式桥
在竖直荷载作用下,作为承重结构的拱肋主要承受压力。拱桥的支座则不但要承受竖直方向的力,还要承受水平方向的力。因此拱桥对基础与地基的要求比梁桥要高。下图分别表示上承式拱桥(桥面在拱肋的上方)、中承式拱桥(桥面一部分在拱肋上方,一部分在拱助下方)与下承式拱桥(桥面在拱肋下方)。仅供人、言行走的拱桥可以把桥面直接铺在拱肋上。而通行现代交通工具的拱桥,桥面必须保持一定的平直度,不能直接铺在曲线形的拱肋上,因此要通过立柱或吊杆将桥面间接支承在拱肋上。
斜拉桥
斜拉桥日文称"斜张桥",德文称"斜索桥",英文称"拉索桥(Cable Stayed Bridge)"。将梁用若干根斜拉索拉在塔在上,便形成斜拉桥。与多孔梁桥对照起来看,一根斜拉索就是代替一个桥墩的(弹性)支点,从而增大了桥梁的跨度。
斜拉桥这种结构型式古已有之。但是由于斜拉索中所受的力很难计算和很难控制,所以一直没有得到发展和广泛应用。直到本世纪中,由于电子计算机的出现,解决了索力计算难的问题,以及调整装置的完善,解决了索力的控制问题,使得斜拉桥成为近50年内发展最快,应用日广的一种桥型。
悬索桥
桥面支承在悬索(通常称大揽)上的桥称为悬索桥。英文为Suspension Bridge,是"悬挂的桥梁"之意,故也有译作"吊桥"的。"吊桥"的悬挂系统大部分情况下用"索"做成,故译作"悬索桥",但个别情况下,"索"也有用刚性杆或键杆做成的,故译作"悬索桥"不能涵盖这一类用桥。和拱肋相反,悬索的截面只承受拉力。简陋的只供人、畜行走用的悬索桥常把桥面直接铺在悬索上。通行现代交通工具的悬索桥则不行,为了保持桥面具有一定的平直度,是将桥面用吊索挂在悬索上。和拱桥不同的是,作为承重结构的拱肋是刚性的,而作为承重结构的悬索则是柔性的。为了避免在车辆驶过时,桥面随着悬索一起变形,现代悬索桥一般均设有刚性梁(又称加劲梁)。桥面铺在刚性梁上,刚性梁吊在悬索上。现代悬索桥的悬索一般均支承在两个塔柱上。塔顶设有支承悬索的鞍形支座。承受很大拉力的悬索的端部通过锚碇固定在地基中,个别也有固定在刚性梁的端部者,称为自锚式悬索桥。