物理学的发展,促进了科学技术的进步。现代物理学更成为高新技术的基础。 1、在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。也使中国人“九天揽月”成为可能。(2007年我们国家要登月,那时就是神州7号)。杨得伟是神州6号。 (学完万有引力定律可窥一斑) 2、带电粒子在电场磁场中的偏转的规律在科学技术中的应用。电视机显像管等。(学完带电粒子在电场磁场中的偏转会了解了。) 刀。如核磁共振,超声波,X光机等。3、核物理的研究使放射线的应用成为可能。医疗上的放疗。在医疗上还有很多,如用于治疗脑瘤的 4、20世纪初相对论和量子力学的建立,诞生了近代物理,开创了微电子技术的时代。半导体芯片。电子计算机。没有量子力学也就没有现代科技 。 5、20世纪60年代,激光器诞生。激光物理的进展使激光在制造业、医疗技术和国防工业中的得到了广泛的应用。大家熟悉的微机光盘就是用激光读的。光导纤维等。 6、20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。 7、20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。 8、生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。 可以说物理学的发展,促进了各个领域科学技术的进步。使人类的生产和生活发生了翻天覆地的变化。 物理学的发展引发了一次又一次的产业革命,推动着社会和人类文明的发展。可以说社会的每一次大的进步都与物理学的发展紧密相连。 18世纪中叶,在热学发展的基础上发明并改进了蒸汽机。蒸汽机的广泛使用,促成了手工业向机械化的大生产的转变,并使陆上和海上的大规模的长途运输成为可能。大大推动了社会的发展。古人云:一日千里。火车、飞机的使用使每一个地球人实现了“一日千里”甚至日行万里的梦想。蒸汽机的使用是第一次产业革命。 1840年,法拉弟发现了电磁感应现象,并逐渐形成了完整的电磁场理论。在此基础上发展起来的电力工业,使人类进入电气化的时代,给人类的生产和生活带来翻天覆地的变化。大家想想现在使用的电灯、电话、电视、微机等一切的电力设施就能体会了。这是第二次产业革命。 20世纪70年代,微观物理方面取得重大突破,开创了微电子工业,使世界开始进入了以电子计算机应用为特征的信息时代。这是第三次产业革命。 可以说社会的每一次巨大的进步都是在物理学发展的基础上完成的。没有物理学的发展就没有人类社会和文明的巨大进步。
麻烦采纳,谢谢!
品 名:超导陶瓷
拼音:chao1dao3tao2ci2
英文名称:superconductivity ceramics
说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。
奇异的超导陶瓷
1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。
1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!
高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。
2018《自然》杂志年度十大人物评选出炉,居十大人物之首的是22岁中国天才科学家曹原。2018年3月5日,《自然》背靠背发布了两篇以曹原为第一作者关于“魔角”石墨烯的重磅论文。这名中科大少年班的毕业生、美国麻省理工学院的博士生发现当两层平行石墨烯堆成约1.1°的微妙角度,就会产生神奇的超导效应。这一发现轰动国际学界,直接开辟了凝聚态物理的一块新领域。如今,正有无数学者试图重复、拓展他的研究。
《自然》杂志是全球最顶尖的科学杂志,能在自然发布论文,是很多国内外科学家一生的梦想,而这次2018的年度评选把这位出生在1995年的少年科学家曹原的发现放在年度论文之首,足以想见科学界对这次发现的重视程度。这期《自然》的封面就是以“魔角”石墨烯的概念为原型设计的。
“魔角”石墨烯研究最让人兴奋的地方之一,是它对高温超导体的理论意义,虽然它也是在接近绝对0度的状态下做的,但它以极为简单的形式模拟了高温超导体的特性。对高温超导体的研究有里程碑式的意义。高温超导体一般是指超导的临界温度比液氮温度(零下196度)要高的物体,相对的,超导临界温度从绝对0度到零下196度之间的物体,是低温超导体。人们现在对低温超导体的研究比较清楚了,但对高温超导体的超导物理原理以及相关的凝聚态物理,仍然是物理学中不为人知的地带。而“魔角”石墨烯的研究,可能打破这种现状,成为常温超导体的研究的里程碑。
1911年荷兰科学家卡末林发现了汞的超导电性,从而发现超导现象,仅仅两年后的1913年就获得了诺贝尔奖。并成为低温物理学的奠基人。“魔角”石墨烯的研究,再次证明了在超导体领域的任何研究,都可能牵动整个自然科学的神经。
那常温超导体到底有什么意义呢?简单来说,凡是用到电的地方,它都有划时代的意义,而当超导体实现常温超导,他的应用注意渗入到生活的方方面面。指尖科技说和你一起盘点:
1.超导电器。超导体没有电阻,会极大推动现有电子技术的使用。我们日常的应用电子技术,都是基于有电阻的电路,由于电阻产生的电的消耗是极为巨大的,人们为了电阻产生的散热问题,投入了无数资源。电脑会变成超导计算机,想象你的电脑没有电阻,不再需要散热,电脑可以更轻薄。使用超导晶体管的集成电路,电脑的速度直接可以有几十几百倍的提升;用电的效率更高,家里的用电量就直接降低了,灯泡却更亮了,电动车跑的更快了,电器的使用变得更加方便,更多的精细电元件可以使用到我们的生活中。据说现在已经有很多公司在研究超导计算机和量子计算机。
2.量子计算机。现在已经被研制出来的两台量子计算机,一台是基于电磁激光技术,一台是基于超导微波技术。其中IBM公司的基于超导微波技术的量子计算机已经让人们看到了超导体在计算机领域的可行性。
3.超导发电。目前,超导发电机有两种含义。一种含义是将普通发电机的铜绕组换成超导体绕组,以提高电流密度和磁场强度,具有发电容量大、体积小、重量轻、电抗小、效率高的优势。 另一种含义是指超导磁流体发电机,磁流体发电机具有效率高、发电容量大等优点,但传统磁体在发电过程中会产生很大的损耗,而超导磁体自身损耗小,可以弥补这一不足。发电损失降到最低,也可能会导致放发电变得更加容易,可能我们身边很多能源都可以用做发电元件提供日常用电,如太阳能、运动能。
4.超导输电:由超导材料制作的超导电线和超导变压器,可以把电力几乎无损耗地输送给用户。据统计,用铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。
5.磁悬浮交通。超导磁悬浮列车:利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。磁悬浮汽车:这种汽车据说已经被发明出来,但如果超导技术成熟,即可进入实用阶段。磁悬浮轮胎,有报道说磁悬浮轮胎的原型已经被一位中国小伙发明,具有现在轮胎所不具有的高性能特性。还有磁悬浮滑板,可能会代替我们日常行走。
6.磁悬浮机械。把磁悬浮特性应用到在机械研发上,可使重要元件没有摩擦力,机械的制动效率和速度会大大增加,能够做到现有机械做不到的很多功能。
7.磁悬浮建筑。磁悬浮技术可以让人类更加高效的利用空间,也许将来人类生活在空中就不再是梦想。当生活用品用上磁悬浮的技术,我们的生活会变得无比的便利。
8.超导医疗。据说医疗行业现在已经有了超导磁力共振仪,可以对很多重要疾病进行诊断。
9.核聚变反应堆“磁封闭体”:核聚变反应时,内部温度高达1亿~2亿摄氏度,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。由于核聚变原料的广泛性,能源问题有望就被彻底解决。即使远距离的太空旅行也会变得有可能。
10.超导重力模拟。太空飞船中是没有重力的,这导致太空人在太空船中的运动受到很大限制,如果可以在太空船上也如履平地,那对太空人的作业甚至对在太空船上生活,都有非常重要的意义。通过常温超导体的作用力,可能可以模拟这种重力作用。
可以遇见一旦常温超导体技术成熟,肯定会有一场超级技术革命,从此整个世界都会改变一个模样。欢迎关注指尖科技说(公众号),如果有其他设想也欢迎您留言评论。
从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。
A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。
B、电子技术:物理实验、电路的设计、传感器、
C、计算机技术:多媒体技术、数据库等。
D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。
超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。
然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。
超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。
在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。
在普通导体中会发生什么情况
上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。
超导体会发生什么变化
超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。
超导体
超导体,气体液化问题是19世纪物理学的热点之一。1911年昂内斯发现:汞的电阻在42K左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。
直到50年后,人们才获得了突破性的进展,“BCS"理论的提出标志着超导电性理论现代阶段的开始“BCS"理论是由美国物理学家巴丁、库珀和施里弗于1957年首先提出的,并以三位科学家姓名第一个大写字母命名这一理论。这一理论的核心是计算出超导体中存在电子相互吸引从而形成一种共振态,即存在“电子对”。
1962年英国剑桥大学研究生约瑟夫森根据“BCS”理论预言,在薄绝缘层隔开的两种超导材料之间有电流通过,即“电子对”能穿过薄绝缘层(隧道效应);同时还产生一些特殊的现象,如电流通过簿绝缘层无需加电压,倘若加电压,电流反而停止而产生高频振荡。这一超导物理现象称为“约瑟夫森效应”。这一效应在美国的贝尔实验室得到证实。“约瑟夫森效应”有力的支持了“BCS理论”。因此,巴丁、库怕、施里弗荣获1972年诺贝尔物理奖。约瑟夫森则获得1973年度诺贝尔物理奖。
德国物理学家柏诺兹和瑞士物理学家缪勒从1983年开始集中力量研究稀土元素氧化物的超导电性。1986年他们终于发现了一种氧化物材料,其超导转变温度比以往的超导材料高出12度。这一发现导致了超导研究的重大突破,美国、中国、日本等国的科学家纷纷投入研究,很快就发现了在液氮温区(-196C以下)获得超导电性的陶瓷材料,此后不断发现高临界温度的超导材料。这就为超导的应用提供了条件。帕诺兹和缪勒也因此获1987年诺贝尔物理奖。
超导体处于主导地位
柯宝泰
超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。
然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。
超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。
在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。
在普通导体中会发生什么情况
上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。
超导体会发生什么变化
超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。
人们早已知道,随着温度的降低,金属的电阻会减小,但是并不知道在温度接近绝对零度时,电阻会降低到什么程度。为了弄清这个问题,荷兰物理学家昂尼斯(1853~1926)开始对极低温度下金属电阻的研究。1911 年,他在测量低温下水银的电阻时发现,水银的电阻并不像人们预想的那样随着温度的降低连续地减小,而是当温度降到—269℃左右时突然完全消失。以后还发现一些金属或合金,当温度降到某一温度时,电阻也会变为零。这种现象叫做超导现象,能够发生超导现象的物质叫做超导体。物质的电阻变为零时的温度叫做这种物质的超导转变温度或超导临界温度,用TC 表示。物质低于TC 时具有超导性,高于TC 时失去超导性。
超导体的发现,在科学技术上有很大的意义。例如,由于现代生产的发展,对电能的需要迅速增长,有人统计,几乎每隔10 年对电能的需要就会增长一倍。但输电线有电阻,由于电流的热效应,使损失在输送电路上的电能大约超过。如果我们能够找到常温下的超导材料,就可以在发电、送电、电动机等方面大规模地利用超导性能,它将在现代技术的一切领域内引起一场巨大的变革。所以常温超导体的研究,是目前的一个重要课题,即使得不到常温超导体,能寻找到转变温度较高的超导体亦有重大意义。在这方面,我国的研究工作走在世界前列,1989 年已找到TC 达—141℃的超导材料,这是在高临界温度超导体研究方面取得的重大突破。