您当前的位置:首页 > 发表论文>论文发表

煤田构造论文题目

2023-03-09 05:04 来源:学术参考网 作者:未知

煤田构造论文题目

五十年代初期,随着新中国的诞生,加之苏联大地构造派理论的传入与影响,虽然有其“一边倒”的负面影响,但确实活跃了中国大地构造学界的学术气氛,有的中国大地构造学家,把1949—1966年划分为中国大地构学发展的五个阶段之一,为大发展和百家争鸣的时期,这一时期,确实是中国大地构造学派形成的前夜,蕴育了中国大地构造学派。
在中央提出科学文化艺术界贯彻“百家争鸣”和“百花齐放”的方针的感召下,中国大地构造学确实获得突飞猛进的发展,显现在地质科学的学术刊物上最为明显,新中国诞生之前主要两个学术刊物上发表构造地质学、大地构造学论文零星可数,而解放后,则急剧增多,以《地质论评》在1957年第17卷上就发表有关构造地质学与大地构造学论文23篇,随着《中国科学翻了身的中国地质学》在这一领域有明显的反响,其中有:
黄汲清的《中国西北部新构造运动几种类型》;
陈国达的《论中国东南沿海区大地构造性质》;
向鼎璞的《新疆大地构造轮廓》;
王曰伦的《燕山运动之意义》;
马杏垣的《山西五台山区构造特征及深岩历史》;
李春昱的《对于“渭河”地堑的质疑》;
王鸿祯的《中国东部元古代褶皱带》;
冯景兰的《我国新构造运动在地貌及其有关方面的证据》;
金伯良的《甘肃走廓新构造运动的特征与意义》;
王建章的《河西走廓一带地质力学的探讨》;
王钟堂的《山西大同煤田地层及构造》;
袁捷的《贺兰山北段地质构造》;
谌义睿的《新疆大地构造与矿床关系》等。
这些论文基本代表了当时不同论点的大地构造和构造地质学的观点,起到了相互交流,博采众长,有力地推动了百家争鸣的学术气氛,为后来的学派的林立,奠定了基础。
从1949—1959年间,在《中国地质学会会志》后改名为《地质学报》上发表的有关大地构造论文共30余篇,不包括前述苏联著名大地构造学家的专文8篇,诸如沙茨基、杨申、霍姆多夫斯基,其中别洛乌索夫就有5篇专文发表,我国学者的论文题目如下:
李春昱的《四川运动及其在中国的分布》(30卷1,1950年)
潘钟祥的《东亚造山运动及花岗岩侵入之规程》(30卷1,1950年)
刘之远的《湖北西南部地质构造》(31卷1,1951年)
李四光的《关于地质构造的三重基本概念》(33卷4,1953年)
黄汲清的《鄂尔多斯地台西沿的大地构造轮廓和寻找石油的方向》(35卷3,1955年)
喻德的《中国大地构造与矿产分布》(34卷3,1954年)
翁文波的《介绍苏联从大地构造研究石油资源的理论》(34卷3,1954年)
张伯声的《“中国东部地质构造基本特征”读后》(34卷3,1954年)
李四光的《施卷构造及其有关中国西北部大地构造体系复合问题》(34卷4,1954年)
张文堂的《几个“诱导”多字型构造》(35卷2,1955年)
王鸿祯的《从中国东部前寒武纪岩层发育论中国东部大地构造分区》(35卷4,1955年)
孙殿卿等的《河北蓟县迁西间山字型构造的商讨》(36卷1,1956年)
周圣生的《湖北东南地质及其构造特征》(36卷1,1956年)
袁复礼的《新疆天山北部前拗陷带及准噶尔盆地陆台地质研讨报告》(36卷2,1956年)
李四光、黄孝葵的《莲花状构造》(37卷4,1957年)
陈国达的《地壳动定转化递进说》(39卷3,1959年)
黄汲清的《中国东部大地构造分区及其特点的新认识》(39卷2,1959年)

煤田钻探论文

  钻探工程施工技术设计002
  第一节 钻孔结构 一、概念
  钻孔结构是指开孔至终孔孔身口径的变化。换径次数愈多,钻孔结构越复杂,反之越简单。钻孔结构的选择,要充分考虑矿区的岩石性质、水文地质条件、终孔口径、钻孔深度、钻进方法、钻孔用途等因素。
  二、确定钻孔结构总的原则
  以终孔直径做为拟定钻孔结构的标准,对照理想岩层剖面自下而上拟定各段的口径和开孔直径。在保证钻孔质量和安全钻进的前提下,尽可能地采用泥浆护孔从而减少或不下套管和少换径,最大限度地简化钻孔结构。
  三、钻孔结构选择示例
  勘探某金属矿床时,设计孔深700米, 采用金刚石钻进,地质剖面包括以下层位:(1)0至100米为可钻性1-7 级的岩石,该段全漏水不循环;(3)100至700米为可钻性9至10级的稳定岩石;(4)地质取样要求以59mm终孔。试确定该钻孔结构。[分析]从已知条件,自160米至终孔适于一径到底,不下套管;分析地质剖面,该钻孔下孔口管和一层套管即可;为封闭漏失层,套管下放深度为120-130米,管鞋伸进稳定层10至20米,套管直径为73mm,因此该孔段须用76mm钻进;孔口管长18至20米。直径89mm,因此开孔取91或110mm。据此可作出如上图的钻孔结构图。
  在矿区钻探技术设计书中,值得注意的是应该将矿区的钻孔结构划分为简单钻孔结构和复杂钻孔结构二种类型加以作图说明,同时作图时应将各要素如直径、换径深度等标明。
  第三节 钻进方法 目前岩心钻探工作中,一般根据各矿区地层岩石力学特性、结构与构造,结合钻探设备与护壁堵漏措施等因素,常采用合金与金刚石分层钻进的方法。一般地,开孔采用合金钻进至完整岩面3至5米,然后扩孔下孔口管隔离上部松散层、覆盖层等不稳定地层,然后改用金刚石钻进至终孔。因此,在此只介绍这二种钻进方法。
  一、硬质合金钻进 1概念 将具有一定强度和形状的硬质合金,按钻进要求固定于钻头上,在一定的技术条件下,作为切削具破碎岩石的一种钻进方法。
  2钻探对硬质合金的要求 合金钻进是靠固定在钻头体上的硬质合金来破碎岩石的,而各种岩石都具有一定的强度和研磨性,钻进时钻头上受力也很复杂,因此,所使用的硬质合金应具有如下性能:
  ①硬度大且耐磨性强。便于钻头能有效地切入或压入岩石,并能抵抗岩石对硬质合金的磨蚀作用。
  ②抗弯强度大且韧性好。便于能承受破碎岩石过程中各种变化的负荷而不至于崩刃和碎裂。
  ③热硬性好而导热性高。钻进中孔底会产生很高的温度,因此要求较高的热硬性,而且在冲洗液中易于释放热量。④成型性好,容易镶焊在钻头体上。
  地质勘探用的硬质合金主要是钨钴合金,这类合金其性能满足上述要求。
  3硬质合金钻头 钻探用的硬质合金钻头的结构合理与否直接影响到钻进效率、钻头寿命、钻孔质量以及材料成本,因此要认真对待合金钻头的结构要素的研究与选择。它一般分为二大类:取心钻头和全面钻头。地质勘探中一般都只采用取心钻头。
  ①钻头体:它是镶嵌切削具的基体,用D35或D45号无缝钢管制成,针状合金钻头的内外出刃应与相应的金刚石钻头一致,钻头体长度不得短于95mm,其中丝扣部分长度40mm,钻头钢体壁厚7至9mm,过厚克取岩石面积大,消耗功率多,过薄影响强度而容易变形。壁厚在保证足够强度与刚度的条件下力求减小,以使克取面积减少以提高钻进效率。
  ②合金镶焊数目和排列形式:应根据岩石性质、钻头直径、合金质量、钻具强度和设备功率等因素来确定。钻头直径大、孔较深、岩石硬度大和研磨性较高时,合金数量要适当增加。地质勘探中常用的数量如下表所示。
  钻头规格(mm)

  合金数量(个)
  岩石性质 36 46 59 76 91 110 130 150
  研磨性较强的岩层 3-4 3-4 4-6 6 6-8 8-10 10-14 12-14
  弱研磨性岩层 3-4 3-4 4 4-6 6 6-8 8 10
  在排列形式上一般采用均匀单环排列。
  ③切削具的出刃:主要是底、内、外三种出刃。其中底出刃起切入并破碎岩石的任务,大出刃利于破碎岩石和冲洗液流通,但过大容易造成崩刃与折断;内外出刃主要是形成环状间隙,以保证冲洗液流通,较大的内外出刃会导致钻头回转阻力增大,容易崩刃折断,但有利于排粉和减少岩心堵塞的机会,太小了则容易造成岩心堵塞和影响排粉效果甚至会造成糊钻等不良现象。因此,出刃的大小应根据岩石性质来考虑,实际工作中可参考下表进行选择。
  岩石性质 内刃(mm) 外刃(mm) 底刃(mm)
  松软、弱至中等研磨性岩石 1.5-2.5 2.5-3 2-3
  中硬、强研磨性岩石 1-2 1-2 1.5-2.5
  ④镶焊角:合金颗粒与钻头唇面的夹角,一般采用正前角镶焊,这种镶焊切削具有自磨作用也有利于排粉,但所需轴向压力要较其他方法大些。
  ⑤水口及水槽:起到冲洗液流通冷却钻头和携带岩粉的作用,其形状与大小应根据岩层性质、钻头结构形式、冲洗液种类的不同而考虑。一般地,水口面积的总和要大于钻头与岩心之间或钻头与孔壁之间的环状面积,以减少循环阻力。
  4合金钻进技术参数
  合金钻进的技术参数主要包括钻压、转速和冲洗液量。它们对钻进效率、钻孔质量、磨料消耗、施工安全等直接有关系。在操作过程中,应根据岩石的物理机械性质、钻头结构、钻探设备和钻具的可能性以及钻孔质量要求等条件来合理掌握,并通过实践当中进行修正、总结出适合矿区的最优钻进技术参数。
  ①钻压:合理的钻压应该既保证钻头耐久性又获得最大的平均机械钻速。在其它条件不变的情况下,在一定范围内,钻速随着钻压的增加而成比例地增加。实践证明:钻速的提高主要是依靠钻头压力的增加来实现。但压力过大会导致崩刃、钻具折断、钻孔弯曲、软岩层中容易烧钻等事故。钻压可通过下式进行计算:
  钻头总压力 = 每颗切削具上应加的压力(如柱状合金70-120kgf/颗) X 钻头上切削具的颗数
  实际工作中应该根据所钻的岩层性质而选择的合金切削具型式和钻头的排列与数目进行初步计算,同时在施工中不断总结出最优的钻压。
  ②转速:钻具转速有二种表示方法,一是钻头每分钟的回转数(转/分),另一个是用钻头的圆周速度V(米/秒)来表示。 V = [π(D + D1)n ]/(2X60)
  生产实践表明:在一定条件下,提高钻头转速可增大钻速,但超过最优值后反而随转速的增高而使钻速降低。一般情况下,在软至中硬岩中钻进时,可采用较高的转速;在坚硬和强研磨性岩石或非均质和裂隙发育的岩石中钻进,则应降低转速;深孔或大口径钻进也应降低转速。
  ③冲洗液量:冲洗液量的大小应根据岩石性质和钻孔直径等因素而定。一般地,在软岩层中钻进因进尺快所产生的岩粉多而选择较大的冲洗液量;在岩石颗粒粗比重大的岩层钻进也应相应加大冲洗液量;在大直径孔、深孔钻进时,钻杆和孔壁渗漏多也应加大冲洗液量;而在松散、破碎地层钻进,为防止冲蚀岩心和冲垮孔壁,应选择较小的冲洗液量。冲洗液量Q的大小一般用经验公式进行计算:Q = KD K—经验系数(6—15l/cm.min)D—钻头直径(cm)
  实际钻进工作当中,各参数之间有着密切的联系,要达到合理的配合,其配合关系大致如下:
  岩石 钻压 转速 冲洗液量
  研磨性大的硬岩石 大 小 小
  裂隙岩层 小 小 相应地小
  软岩 小 大 相应地大
  设计中可根据下面的技术参数表的数据范围内根据矿区地层岩性特点加以选择,同时应在实际工作中摸索出适合矿区地层的最优技术参数。
  不同岩层钻进技术参数范围表
  岩石级别 钻进技术参数
  钻头压力 转速
  (rpm/min) 泵量
  (L/min)
  取心钻头
  (kg/粒) 刮刀钻头
  (kg/cm)
  1~4级 50~60 100~120 200~350 >80
  5~6部分7级 80~120 120~150 150~250 >80
  注:(1)针状硬质合金块每块能承受的压力为150~200kg;
  (2)100型钻机的泵量,以水泵最大有效排水量送给。
  (3)刮刀钻头单位压力(kg/cm)中的cm,系指钻头直径。
  5 合金钻进注意事项
  采用合金钻进,除了合理选用钻头结构和钻进技术参数外,还必须有正确的操作方法,才能达到提高钻进效率和钻头使用寿命的目标。因此,应注意以下几方面:
  ①新钻头入孔内,应离孔底0.5米以上并轻压慢转扫至孔底,以防止新钻头被挤夹住。扫孔时速度要慢,以防止合金崩刃或因孔底有残留岩心而堵塞。
  ②要经常保持孔底清洁。孔内的岩粉、崩落的合金须及时捞取,孔内有残留岩心在0.5米以上或有脱落岩心时不得下入新钻头。
  ③为保持孔径一致,钻头应排队使用。原则是先用外径大内径小,后用外径小内径大的。
  ④正常钻进压力要均匀,不得无故提动钻具,并随着合金的磨钝逐步加大压力。发现岩心堵塞时要及时处理,无效时立即提钻以防止孔内事故。
  ⑤合理掌握好回次进尺时间。合金钻进时因磨料逐渐磨钝而出现钻孔缩径和钻速逐步下降,因此,为避免下一回次的扩孔、起下钻时间和提高回次效率,应当确定合理的回次进尺时间,这是提高钻速的有效措施之一。可通过计算法或作图法进行现场确定,各矿区地层情况不一,在此无法具体给出数据。
  回次钻速= (回次累计进尺)/(钻进时间累计 + 起下钻时间)
  二、金刚石钻进
  1 金刚石钻进的优点:与其它方法相比具有如下优点:
  ①钻进效率高;②钻孔质量好(采取率可达90%以上,岩矿心代表性好,岩矿心光滑完整、无选择性磨损和富矿流失、污染等现象,钻孔弯曲小);③事故少;④劳动强度低;⑤成本低;⑥应用范围广。
  2 金刚石钻头
  在这里我们要了解和掌握金刚石钻头的组成、类型和规格及其结构等知识,才能在进行设计或审查设计时对矿区所选择使用的钻头是否合理做出一个评价。
  ①钻头的组成:由三个部分组成,即金刚石、胎体、钻头体。
  金刚石:分底刃、边刃、侧刃金刚石。底刃用于克取岩石,要选择晶形较好的金刚石;边刃主要用于克取岩石并要保内外径。因此要选择质量最好的金刚石;侧刃仅用于保内外径,可选择较次质量的金刚石。
  胎体:是钻头底部包镶金刚石的一圈假合金,采用粉末冶金法或电镀法制成各种需要的形状,用来包镶金刚石颗粒并牢固地与钻头体焊接在一起。胎体部分开有水口,供冲洗液流通之用。金刚石钻头胎体硬度一般在HRC20—50之间,要根据矿区岩性研磨性、破碎程度等因素来合理选择钻头胎体硬度。
  钻头体:钻头钢体部分,用中碳钢制作,上部车有丝扣,用来与扩孔器连接。
  3、合理选择金刚石钻头与磨料
  生产实践证明,金刚石钻头并非能全部顺利钻进各类岩石,在某些岩层中钻进钻速非常低甚至不进尺(如俗称的“打滑地层”)。因此,必须根据岩石的硬度、强度、研磨性、完整度进行合理的选择,做到钻头分层选用“对号入座”,以充分发挥金刚石钻进的优越性。如果选择不当,不但不能发挥其效能,相反会增加金刚石的消耗量使钻探成本增加、事故增多、效率低、质量差,因此必须在设计与实际工作中重视这项工作。
  3.1分层钻进的选择原则
  ①在中硬至坚硬岩层以及中、强研磨性岩层、破碎岩层中宜采用孕镶钻头钻进。
  3.2金刚石钻头选择的基本原则
  3.2.1钻头型式的选择原则
  应根据岩石研磨性、完整度和可钻性进行选择。表镶钻头适用于软的、中硬完整岩层钻进;孕镶钻头适用于硬的、坚硬的、破碎的和软硬不均的、裂隙性的岩层钻进。
  3.2.2钻头胎体的选择原则:在研磨性强,很破碎、较软、颗粒度粗的岩层钻进所选择的胎体硬度应大;反之,研磨性弱、均质完整、硬度大、颗粒度细的岩层所选用的胎体硬度应偏软;而在研磨性强、硬度特硬的岩层不应选用偏软胎体,而是要选择特硬的胎体,否则胎体很快被岩层磨损使钻头失去工作能力。
  3.3.3具体选择条件:根据上述原则,目前常用的人造孕镶金刚石钻头的金刚石浓度、粒度和胎体硬度的具体设计和使用时可按下表从不同厂家生产的钻头中选择适合矿区地层的钻头。
  岩石性质 坚硬 中硬 软
  金刚石粒度 细
  100目 80—46目 粗
  46目
  金刚石浓度 低
  50% 50—75% 高
  100%
  胎体硬度 较软
  HRC30± HRC40 较硬
  HRC40—50
  4合理使用金刚石钻头与扩孔器
  目的在于以最小的金刚石消耗量,取得最高的机械钻速和最长的钻头使用寿命,达到降低成本。其原则是:先用外径大的,后用外径小的。同时也应考虑先用内径小的,后用内径大的。这样做的好处在于:
  4.1使钻头的外径与孔底部位的孔径尽量吻合,避免扫孔;
  4.2使钻头内径与卡簧内径和残留岩心外径尽量吻合,防止扫岩心而造成岩心堵塞或损坏钻头;
  4.3防止钻头、扩孔器下不到底被挤卡造成事故;
  4.4可防止单个钻头连续进行多回次钻进而形成“喇叭形“钻孔,造成长距离扫孔;
  4.5可使钻头与扩孔器均匀磨损以延长寿命,降低成本。
  5钻头与扩孔器、卡簧的配合
  5.1扩孔器外径与钻头外径的配合
  扩孔器外径过大,形成“台阶式”钻进,扩孔器易崩刃或过早磨损,导致钻进效率低;而扩孔器外径过小就起不到扩孔的作用导致钻头过早磨损。因此,扩孔器的外径与钻头外径的合理配合尺寸为:扩孔器外径比钻头外径大0.3—0.5mm,在坚硬岩层中不得大于0.3mm。
  5.2钻头内径与卡簧自由内径的合理配合
  卡簧内径是岩心进入内管的第一道“关口”,若卡簧内径过大,则取不上或卡不住岩心而造成岩心脱落或残留孔底过长;而卡簧内径过小,则会造成岩心堵塞或岩心顶死卡簧被迫提钻。因此,它们间的配合尺寸是:卡簧自由内径比钻头内径小0.3—0.4mm。现场机台使用时应有2至3种规格的卡簧供机台选择,在使用时先用内径小的后用大的。值得注意的是短节与卡簧座为过渡配合,卡簧座的下端与钻头内台阶应有4—5mm的间隙(防止岩心堵塞)。
  6金刚石钻进常见事故的预防措施
  6.1如何防止岩心堵塞
  实际钻进中,当岩层节理发育、岩石破碎或因工艺规程不合理及操作不当,钻具配合不好等因素存在时,将容易导致岩心堵塞。采取单动双管钻具钻进或专门的取心工具来进行预防。单动双管的内管有扶正岩心、减少钻具旷动和容纳岩心的作用,同时卡簧座与钻头内台阶必须有3至4mm的间隙,以保证内管自由扶正岩心从而防止堵塞;而在节理发育、破碎倾角大的岩矿层中应设计带容纳管的或活塞式的等专门取心工具。另外要保证岩心顺利进入内管,主要的措施有:内管光滑平直;双管内设减振机构或加半合管;良好的卡簧自由内径和钻头内径的配合;精心操作,技术参数稳定,不无故提动钻具等。
  6.2如何防止烧钻事故
  当井底钻头得不到充分冷却时将会发生烧钻,烧钻事故严重时会伴随恶性卡钻和断钻杆等孔内事故,因此应该做好预防工作。
  烧钻事故主要原因:钻杆中途渗漏,到达孔底冲洗液量不足;水泵工作不正常;岩心堵塞不及时提钻;孔底岩层漏水;钻速过快岩粉没及时排清等方面的原因都会引起烧钻事故。
  事故征兆:泵压突然增高,返水变小;回转阻力增加,进尺变慢或不进尺;机械运转不正常;柴油机声音异常或电动机电流表值增高等均是发生烧钻事故的征兆。
  预防措施:①要防止冲洗液从钻杆漏失。可在提钻时认真检查钻杆磨损情况,不合格都及时更换;下钻时钻杆接头丝扣缠棉纱等措施。
  ②要防止泵量不足。可通过经常检查水泵、使用变量泵和抗震性能好的抗震压力表和随时检查水眼、水路是否畅通来实现;
  ③较软地层控制钻速,不得盲目加压追求进尺。地层由硬变软时,压力要随之改小。
  ④经常修磨水口、水槽。要求水口高度不小于3mm,水槽深不小于1.5mm。
  ⑤精心操作。操作者随时观察泵压表、孔底压力表、电流表(使用电动机时),孔内返水情况,观察进尺速度和动力机的负荷变化,发现异常立即提钻。
  ⑥下钻不能一次到孔底,必须离孔底0.5m以上开泵送水待循环畅通后再慢速回转下放钻具到孔底。
  ⑦发现岩心堵塞或蹩泵时,应立即提钻。不得用加大压力或加快转速的办法来处理。
  ⑧保持孔内清洁,残留孔底岩粉不得超过0.3m。同时也要经常清除清除冲洗液净化系统内的杂物异物和沉渣。
  8金刚石钻进技术参数
  在正确选择金刚石钻头的情况下,金刚石钻进效率取决于钻进规程参数的合理调节,即钻头轴向载荷、钻头转速和冲洗液量。许多可变因素对规程参数均有直接影响,如岩石物理机械性质、钻头类型、钻孔直径和深度、所用设备与钻具等。金刚石钻进所采用的是以高转速为主体的钻进规程,转速参数的变化影响钻进效果非常明显。评价所选择的钻进规程的合理性,主要是根据钻速、钻头进尺和单位进尺金刚石的消耗量(克拉/米),其中以单位进尺金刚石消耗量和钻头进尺尤为重要。在实际工作中应结合以下的分别论述根据矿区地层岩性特点和选择的设备、孔径和深度等因素,综合选定出自己所在矿区施工的技术参数范围,而不是盲目在设计中套用规程参数。
  8.1钻压
  是指钻进过程中直接加在钻头上的轴向压力。合适的钻压可保证金刚石钻头有效地破碎岩石,效率高、进尺多、金刚石消耗量少。钻压低于岩石抗压强度时,金刚石无法克取岩石而在岩石上滑动并迅速被抛光;钻压过大会造成孔底岩屑聚集而使钻头胎体磨损过快,金刚石消耗量大,导致钻速不高甚至糊钻和烧钻。
  选择压力时要根据岩石的可钻性、研磨性、完整程度、钻头类型、金刚石的质量、数量和粒度以及钻头克取岩石的环状面积等,笼统地按钻头直径推荐钻压是不够全面的。一般地,从岩石性质的角度在软或弱研磨性岩层中用较小的钻压;在完整、中硬到坚硬或中等研磨性的岩层中适当加大钻压;在破碎裂隙和非均质的岩层中应视裂隙程度适当减小钻压(减少25—50%)。从钻头类型上看,口径大、壁厚、胎体较硬时,用较大的钻压,反之用较小的钻压,值得注意的是如果用表镶钻头时所采用的钻压要较孕镶钻头大,以利于金刚石能压入所钻岩石产生体积破碎。从钻头的成份看,当所有的钻头金刚石品级高、质量好,量多、粒度大时,钻压应大些,反之应小些。同时,在实际工作中,确定钻压时也应考虑钻头的新旧程度和估计好钻压在孔底的损失,新钻头在初磨阶段应用较小的钻压(200—300kgf)等正常出刃后方可用正常钻进压力;孔底损失主要是受孔深与泵压的影响,随着孔深的增加,钻柱与孔壁间的磨擦及泵压的增大抵消了部分钻压,因此也要相应地加大钻压以保证钻头有效地破碎岩石。
  设计时,可根据下列公式进行计算:
  表镶钻头的压力:P = (0.66—0.76)g m p
  式中P—表镶钻头总压力(kgf);
  g—钻头上的金刚石的克拉数;
  m—金刚石粒度(粒/克拉);
  p—经验单位压力(1.5—2.5kgf/粒);
  0.66—0.76是系数,表示实际克取岩石的金刚石数量为钻头总克拉数的66—76%。孕镶钻头压力的计算:P = F p 式中:P——钻头总压力(kgf); F——钻头环状克取面积(cm2),F=π/4 (D2 – d2)
  D——钻头外径(cm)d——钻头内径(cm)
  8.2转速
  转速是主要技术参数之一,金刚石钻进破碎岩石时切入深度小(百分之一到千分之一毫米),想获得高的钻速就必须采用较高的转速。生产试验研究表明,在一定范围内,转速越高,钻速也越高。因此,在实际工作当中,当岩层比较完整、管材有足够的强度和稳定性、配有润滑剂、设备能力允许的情况下,应该选用较高的转速。值得注意的是,当转速超过一定的限度时钻速会下降且严重影响钻头寿命,国内长寿命钻头一般均在800rpm/min下获得。一般地,孕镶钻头出刃很小,切入岩石的深度更小,为获得较高钻速,要求线速度达到1.5—3.0m/s;表镶钻头的出刃较孕镶钻头大,转速过高时容易引起振动而损伤金刚石,因此表镶钻头的线速度要求在1.0—2.0m/s。
  转速的选择应从钻孔深度、设备能力、钻孔结构及岩石性质等方面综合考虑。深孔钻进时,钻具重量大受力情况复杂,钻具回转所消耗的功率也大,受功率和钻具强度的限制以及在泵压和泵量不足时,转速应该降低;浅孔钻进可选用较高的转速;钻孔结构简单,钻具级配合理时,适当采用高转速;反之,钻孔结构复杂,钻杆与孔壁间隙大时,钻具稳定性差,则不宜开高转速。在完整岩层应采用高转速;在岩层破碎、裂隙发育、软硬不均时钻具振动大,容易损坏金刚石,应降低转速。转速的划分为高、中、低三个范围,高转速一般在700—800rpm/min甚至1000rpm/min以上;中转速一般在400—600rpm/min;低转速一般在200—300rpm/min,最低速100rpm/min左右。那么在设计和实际工作中,可根据上面的这些选择原则,先确定采用多大的线速度,通过V = πDn/60 进行换算出转速n,式中:V是线速度(m/s)、D钻头平均直径(m)、n是钻头转数(rpm/min)。同时根据钻孔深度、设备能力和岩石性质等因素综合考虑后确定合理的转速。
  8.3冲洗液量
  一般地说,金刚石钻进要求不大的泵量和较高的泵压,同时也要求泵量均匀连续,有较高的流速。其原因在于孔底与孔壁间隙小加之岩粉颗粒细,必须要有较高的上返流速和较大的冲洗液压力才能克服流动阻力。因此,钻探工作中要求使用变量泵作为冲洗液的输送设备。确定泵量时考虑因素是岩石性质、钻杆与钻孔的环状间隙、钻头类型、金刚石粒度、胎体性能等主要因素。泵量的确定原则如下:
  从岩石性质角度看:钻进坚硬、颗粒细的岩层时,因钻速低、颗粒细岩粉少,可用较小的冲洗液量;软的、中硬、颗粒粗的岩层。因钻速较高,冲洗液早应用大些;在裂隙、轻微漏失的岩层中钻进,为补偿一些漏失应用较大的冲洗液量;钻进研磨性高的岩层摩擦产生的热量多,用较大的冲洗液量,但注意如果太大会在强烈的液流作用下冲蚀钻头胎体而使金刚石颗粒过早暴露导致崩刃脱落。
  从钻头类型看:孕镶钻头钻进时用大的冲洗液量,原因是转速高需要及时冷却胎体避免金刚石损伤和防止胎体磨损过快。表镶钻头出刃量较孕镶钻头大,排粉和冷却条件好,冲洗液量较孕镶钻头小。
  从环状间隙看:钻孔环状间隙内岩粉的下沉速度一般在0.1m/s,冲洗液的上返流速超过下沉速度时方可携带岩粉至孔口。因此,金刚石钻进时要求冲洗液上返流速在0.3—0.5m/s。当冲洗液上返流速超过0.5m/s时,会冲刷岩石和孔壁上不稳固的岩石,容易导致事故的发生。
  从钻孔深度看:孔深的增加,钻杆接头处的渗漏也增加,泵量应适当增加。
  泵量的计算可用经验公式:Q = K D
  式中:Q——泵量(l/min);D——钻头直径(cm);K——经验系数,取5至8。
  根据上述,在设计或实际工作中,可先从直径大小初步计算出冲洗液量,再结合所在矿区的钻进岩石性质、钻孔深度、采用的钻头类型、钻具级配等方面综合考虑确定合理的冲洗液量。
  关于泵压问题:金刚石钻进钻孔环状间隙小,钻头水口窄,过水断面小,因此流动阻力大从而泵压较高。泵压的损失包括地表管路、钻杆内孔、双管、钻头和环状间隙几部分,其中地表管路(包括高压胶管、水龙头、主动钻杆等)、双管和钻头的压力损失大约8个大气压;每百米钻杆约损失2个大气压。设计时在设备选择中应该将这些因素考虑在内。同时,在实际工作中,可根据泵压的变化来判断孔内情况作出相应的处理对策。一般地,钻进过程中泵压发生小幅度的上升或下降现象,是孔底换层的征兆,这时要注意进尺情况和钻具响声,必要时可调整钻进参数(包括三个参数),以防岩心堵塞;泵压如果大幅度增高,是发生严重堵塞的反映,要尽快将钻具提高孔底以防止发生烧钻;如果泵压大幅度下降,多半是钻杆折断或脱扣,应立即停车检查。因此,钻进过程中经经常观察泵压的变化,严防送水中断和中途泄漏,同时也要配备性能良好的泵压表,以便帮助迅速地判断孔内情况。
  8.4技术参数的合理配合
  钻压、转速、泵量三者间是相互配合与相互制约的一种关系。在一定条件下存在最优的配合关系,这种最优关系称最优钻进规程。只有在最优的规程下钻进。才能在以最小的金刚石消耗量获得最高和钻速和较长的钻头寿命,达到优质、高效、低成本和安全的目的。
  一般地,在较软地层钻进,采用高转速、大泵量和适当的压力;在坚硬的研磨性强的岩层钻进,则采用大钻压和适当的转速和泵量;在裂隙发育的破碎岩层和研磨性强的岩层钻进,则采用最小限度的钻压、转速中低和适当的泵量;在“打滑层”中钻进,应用大钻压、中低转速和适当的泵量。
  总之,各参数的合理配合要结合实际情况加以摸索、总结,不断积累经验,逐步丰富和完善矿区的钻进工艺规程。
  绳索取心钻进规程参数较普通金刚石钻进参数大些,这主要取决于钻头唇面的不同而引起的,其钻压较普通外头大些,转速在动力条件允许情况下宜选择高转速,而水量因环状间隙很小应采用比普通双管要小(一般35—35升/分),具体在此就不讲了。
  9钻具的的选择
  目前我区钻探中除了开孔使用单管外,换径后一般均采用双管钻具进行钻进,双管钻具分单动双管和双动双管钻具,各矿区可根据所钻地层岩性特点与取心难易来灵活选择。
  ………… 写个设计吧 ——余下一点写不下了!

织纳煤田煤层含气量分布规律及其地质控制因素研究

李 腾 吴财芳 潘 磊

( 中国矿业大学 资源与地球科学学院 江苏徐州 221116)

摘 要: 织纳煤田煤层多,厚度大,煤质较好,煤层含气量较高,是贵州煤层气富集的主要区域之一。本区含气量平面上具有从边缘向中心逐渐增大的趋势,西部地区含气量普遍高于东部地区。含气量最高、煤层气最富集的区域主要位于中部的阿弓向斜及西部的比德 三塘盆地。研究认为: 织纳煤田煤层气富集主要受控于构造分布特征、煤级、煤厚以及沉积体系等地质因素。构造复杂程度越高、煤级越高以及煤层厚度越大的区域,含气量越高; 沉积作用主要通过控制围岩岩性,决定围岩的封盖能力,从而控制含气量。

关键词: 织纳煤田 煤层气 含气量 控气因素

项目资助: 国家 “973”项目 ( 2009CB219605) 、国家科技重大专项课题 34 ( 2008ZX05034) 、国家自然科学基金重点项目 ( 40730422) 、青年科学基金项目 ( 40802032) 及国家大学生创新性实验计划项目 ( 091029016) 资助。

作者简介: 李腾,1989 年生,男,河南洛阳人,主要从事煤层气地质、煤田资源勘探等方面的研究工作,地址: 江苏徐州中国矿业大学南湖校区杏苑二号楼 B5172 ( 221116) ,Email: litenghappy2008 @ yahoo. cn,Tel:

A Research of the Zhina Coalfield on Its Methane Distribution Pattern and Controlling Geological Factors

LI Teng WU Caifang PAN Lei

( The School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221116,china)

Abstract: Zhina coalfield is characterized with more and thicker coal seam,higher coal quality with denser content of coalbed methane. Its CBM reserves is the richest in Guizhou province. Horizontally,the coalbed meth- ane in this area has the trend of increase from the edge to its center and the content of gas in the western region is higher than east,with the richest reserving spot lying in the Agong syncline in the middle and the Bide-Santang basin in the west. A conclusion is made that the main geological factors that affect the reserve of the CBM are the distribution character of the geological structure ,the coal rank,the coal seam and the depositional system . The content of gas will be greater at places where the structure is more complicate ,the coal rank is higher and the coal seam thicker. As for the factor of sendimentation,it exerts an effect on the content of coalbed methane via control- ling the pattern of surrounding rock,thus deter thus determining the capability of bedding faults.

Keywords: Zhina coalfield; CBM; content of gas; factors of controlling gas

引言

织纳煤田位于贵州省中西部贵阳市和六盘水市之间,东以小箐、林歹、平坝一线为界,南以安顺、普定、播洞、郎树根一线为界,西以董地、治昆一线为界,北以马场、安化、沙窝、治昆一线为界,面积8891km2。该煤田煤炭资源丰富,煤变质程度较高,煤层含气性较好,是贵州煤层气主要富集区之一。查清织纳煤田煤层含气量的分布特征,阐明影响煤层气富集的主要地质因素,可以为该煤田煤层气的勘探开发提供决策依据。

1 主要煤层含气量分布规律

织纳煤田主要含煤地层为晚二叠世长兴组和龙潭组,主要分布于以支塘、水公河、百兴、岩脚、三塘、阿弓、珠藏、补郎、猫场、牛场、蔡官、莫老坝等十余个向斜内。织纳煤田主要煤层含气量多数超过18m3/t,最高达27m3/t。整个织纳煤田的煤层气含量在边界附近普遍较低,从边缘向中部呈现出逐渐增高的趋势,西部地区含气量普遍高于东部地区,一般在煤田的中部达到最高,东部煤层气含量迅速降低。如六号煤层的含气量分布便具有这种典型的特征(图1),最高值位于中部的阿弓向斜,达到19m3/t;其次为西部的水公河向斜。另外主要煤层16号和27号煤也普遍具有这种规律。织纳煤田这种煤层气含量的分布规律与煤田内的地质构造、煤级、煤厚以及沉积体系等地质因素具有重要的关系。

图1 织纳煤田6号煤层甲烷含量等值线图

2 控气地质因素

2.1 构造控气

织纳煤田属晚二叠世上扬子聚煤沉积盆地的一部分,坐落于扬子陆块的西段。早二叠世后期的东吴运动使上扬子沉积盆地整体抬升为陆地,伴随古特提斯洋的扩张,地幔物质上涌,加速了上扬子盆地的地裂作用,并发生有大规模的岩浆喷溢(桂宝林,2000)。在晚古生代以后,经历了印支运动、燕山运动和喜马拉雅运动等多期后期构造运动的改造作用,使织纳煤田地区形成了复杂的褶皱和断裂体系(图2,金军等,2010)。

图2 织纳煤田构造略图

煤田内褶皱相当发育,织金复背斜是黔中隆起的主要部分,是早古生代形成的凸起(刘特民,1990)。向斜褶皱的控气主要体现在两翼的产状,即煤层的倾斜程度。例如,在1000m埋深内,乐治向斜北西翼西段煤层倾角达到72.25°,平均煤层甲烷含量为10m3/t;而乐治向斜南东翼西段煤层倾角为29.05°,平均煤层甲烷含量则达到了15m3/t。造成这种向斜两翼煤层甲烷含量不同的原因,主要是由于乐治向斜的北西翼煤层倾角较大,导致张性裂隙大量发育,使煤层气沿着这些裂隙逸散而不利于煤层气的保存;由于乐治向斜的南东翼煤层倾角较小,张性裂隙不发育且在构造挤压的作用下发育一些封闭性的断裂,形成良好的“圈闭”使煤层气得以保存。

织纳煤田边界大断裂发育,南部有NEE向贵阳—镇远断裂,西部有NW向垭都—紫云断裂,东部有NS向遵义断裂,北部地区EW向的马场断层和纳雍断层相伴而行(徐彬彬等,2003)。断层对煤层气的控制作用主要体现在:开放性的正断层容易形成煤层气逸散的良好通道,不利于煤层气的保存;封闭性的逆断层常形成较好的构造封闭条件,使煤层气得以富集。例如,在1000m埋深内,以支塘向斜北翼平均煤层甲烷含量达到16m3/t,而在其南部不远的勺坐背斜的南翼,由于受到纳雍断层的影响,平均煤层甲烷含量仅为12m3/t。

2.2 煤级控气

织纳煤田的煤层主要为高变质的无烟煤,无烟煤以亮煤为主,暗煤次之,含有少量的镜煤和丝炭。一般认为高煤阶煤煤层气含量高于低煤阶煤煤层气含量,煤阶越高,产生的煤层气也就越多(王勃等,2008,表1)。织纳煤田大部分为无烟煤,仅在西部的比德向斜存在贫煤和瘦煤,呈北北西向的条带状分布。比德向斜在1000m埋深,煤层气含量平均达到19m3/t,而在煤级较高的青利和张维地区,煤层气含量平均达到21m3/t和22m3/t。另外煤级的变化,煤层的孔隙度和渗透性以及吸附能力都发生较大的改变(唐书恒等,2008)。高煤阶时,孔隙体积小,微孔占主要地位。孔隙的大小、连通性以及孔喉直径在很大程度上影响煤层气的运移和富集。

表1 不同煤类的产气量和吸附能力

(傅学海等;2007)

2.3 煤厚控气

织纳煤田含煤地层主要为上二叠统长兴组和龙潭组,系海陆交互相含煤建造,含煤地层厚76~424m,含煤3~69层,一般30余层,西部一般大于40层。含煤总厚1.33~54.68m,含煤系数1.4%~13.6%。从西到东,煤层总厚、含煤层数、可采总厚、可采层、数逐渐减少。对比煤层含气量分布图,可以发现:在西部煤层厚度大的地区,煤层气含量普遍比较高,而到了东部随着煤层的变薄,煤层气含量也呈现出降低的趋势。煤层气含量与煤厚呈近似正比的关系,即煤层厚度大则煤层含气量高,煤层薄则含气量低(图3)。在同一地区不同煤层的煤厚与煤层气含量也呈现出近似正相关的关系。例如,在勺坐背斜南翼,16号煤层厚1.21m,煤层气含量为12m3/t,17号煤层厚1.3m,煤层气含量为18m3/t。

2.4 沉积控气

织纳煤田主要为海陆过渡相的沉积体系:龙潭组下段以海湾—潟湖沉积体系为主,广泛发育潮坪及浅滩沉积,潮道也较为发育;龙潭组的中段和上段以三角洲沉积体系和障壁岛—潟湖沉积体系为主;长兴组和大隆组以碎屑海岸沉积体系为主(解习农等,1992)。这样形成的煤层的顶板岩性主要为细砂岩、粉砂岩以及泥岩等,这些岩层都具有极强的封盖能力,为煤层气的聚集和赋存提供了良好的条件。例如,肥田三号井田6号煤层的顶板为泥岩,143号钻孔的煤层气含量达到了13.79m3/t;开田冲13号煤层的顶板为粉砂质泥岩,4043号钻孔的含气量达到了14.86m3/t,而4027号钻孔的煤层气含量更是高达16.16m3/t。

图3 织纳煤田煤层厚度与含气量关系图

2.5 其他地质因素

织纳煤田的西部发育有较多的峨眉山玄武岩沉积,岩浆侵入活动产生的高温环境,一方面,增大了煤层中微观孔隙和宏观孔隙的数量,增强了煤储层的吸附能力;另一方面,当煤层生气量大于吸附能力时,会在煤层基质中产生由里向外突破的压力,促进了裂隙的形成,促进基质中原始裂隙的继续发展,从而提高了煤层的导流能力。另外,织纳煤田的地下水普遍具有高水头,低流量的特点,较高的水压常形成煤层气封闭的良好条件,在水文地质条件良好的地区有利于煤层气的保存。

3 结论

(1)织纳煤田煤层气含量普遍较高,平面上具有从边缘向中心逐渐增大的总体趋势,西部地区含气量普遍高于东部地区。含气量最高、煤层气最富集的区域主要位于中部的阿弓向斜及西部的比德三塘盆地。

(2)织纳煤田煤层含气量主要受到构造条件、煤级、煤厚以及沉积体系等地质因素的控制。在煤级高、煤厚大、构造配置有利、沉积封闭条件好的地区容易形成煤层气的富集区,分析煤层含气量的主控地质因素,有利于寻找煤层气的富集区域。

参考文献

傅雪海,秦勇,韦重韬.2007.煤层气地质学[M].徐州:中国矿业大学出版社,13~14

桂宝林.2000.黔西滇东煤层气地质与勘探[M].昆明:云南科技出版社,9~11

解习农,程守田.1992.贵州织纳煤田晚二叠世海进海退旋回及聚煤规律[J].煤田地质与勘探,20(5):1~6金军,唐显贵.2010.贵州省织金—纳雍煤田构造特征及其成因[J].中国煤炭地质,22(3):8~12

刘特民.1990.再论“黔中隆起”[J].贵州工学院学报,19(1):93~94

唐书恒,蔡超,朱宝存等.2008.煤变质程度对煤储层物性的控制作用[J].天然气工业,28(12):30~35

王勃,巢海燕,郑贵强等.2008.高、低煤阶煤层气藏地质特征及空气作用差异性研究[J].地质学报,82(10):1396~1401

徐彬彬,何明德.2003.贵州煤田地质[M].徐州:中国矿业大学出版社,209

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页