房地产专升本毕业论文
1.房地产经济走向:目前重庆,武汉,杭州等经济受到国家政策的打压房产的价格开始回落。
2.房地产上市公司业绩的影响因素实证研究:房地产企业业绩影响因素研究现状
运用线性回归的方法,选取流动负债率和长期负债率、有息融资率和无息融资率、长期借款率和短期借款率分别作为资本结构的衡量指标,而将总资产贡献率和总资产利润率分别作为公司业绩的衡量指标。研究结果表明:总体来看,各项指标相关性不显著,但是就所有指标而言,正负相关的倾向还是比较明显的。就这一实证结果,本文结合我国房地产行业的实际情况,分别从房地产行业所处的阶段特征、政策面的影响以及公司治理结构方面进行了分析。运用数据包络分析(DEA)模型评价房地产上市公司绩效,关注房地产上市公司的经营效率、管理效率及资本配置总体效率的价值评判标准,以我国房地产业23家具有代表性的房地产上市公司为研究对象,通过设立多输入和多输出的指标进行综合评价,找出相对有效的行业标杆,同时分析行业整体和单个公司的资源配置效率,并提出了优化资源配置和提高房地产上市公司绩效的途径。从我国上市公司绩效影响因素及货币政策、物价变动与绩效相关性的一般理论思考出发,揭示出了我国上市公司绩效受国家宏观政策影响的理论依据。(严格意义上来说绩效评价体系包括业绩目标、业绩辅导和业绩评价。但是现在一般都模糊了这种概念,把两者视为一样)从MM理论出发,引进货币传导机制理论和两权分离的相关理论,得出房地产这个行业的所有绩效指标都与货币政策、CP工存在一定相关性。得到物价上涨会对房地产这个行业的经济绩效产生一定的负面影响,国家的宏观政策对地产行业影响甚微的结论。分析比较了目前上市公司经营业绩评价的主要方法,并剖析其存在的不足之处,在此基础上引入因子分析模型,并构建评价上市公司经营业绩的指标体系,然后应用该模型对我国房地产上市公司经营业绩做实证研究,最后得出研究结论,并指出了由于会计信息失真等因素的存在,使得该研究方法存在一些局限性,从而在一定程度上影响了研究结果的现实指导意义。《我国房地产上市公司经营业绩实证研究》选取GDP作为衡量经济发展的数据支持,以房地产开发投资完成额作为房地产行业发展的适合量度,运用协整分析方法对我国房地产行业与经济增长之间的动态均衡关系作相关研究。结论是:房地产行业发展状况对当前GDP变动的影响并不是很显著,我国房地产行业的发展与经济增长之间不存在明显的因果关系。认为人民币升值通过两种途径对不同行业产生影响。一是因人民币升值所导致的资本成本和收入的提升,将在长时期内改变我国的经济结构,重新赋予行业不同的成长速度,并使不同行业的企业业绩出现分化。二是人民币升值在短期内改变行业内企业的资产、负债、收入、成本等账面价值,通过外汇折算差异影响其经营业绩。最后认为人民币升值将使房地产行业受益。而从理论分析的角度得出人民币升值对房地产行业的影响有利好、利空两方面。利空影响:货币持续过度升值会导致经济减速(因为FDI下降、净出口下降),外资需要下降,从而使房地产需求下降并会导致通胀水平下降,从而使房地产价格涨速下降。利好影响:第一,升值预期导致外资对房地产的投资需求加大。货币升值预期会导致外资的涌入,并大量投资到房地产上。从而增加房地产投资需求,推高房价,这是货币升值过程中必然发生的;第二,收入效应及财富效应导致国内房地产需求增加。张敏利用理论结合模型回归分析研究了股权结构的三个关键因素(股权集中度、股权属性及股权流通性)与公司治理绩效的关系。得到结论(1)房地产行业的股权集中度低于市场平均水平,而且股东之间的力量比较均衡,大多数公司的股权结构都呈现出多元共治的局面,并且第一大股东控股比例与公司绩效没有明显关系。(2)分析股权控制类型时,发现国有控股企业与法人控股企业、流通股主导型企业的公司绩效都没有明显的差别。(3)国有股比重、流通股比重与经营绩效没有显著相关关系。而法人股比重与公司绩效有着显著负相关关系。(4)控股股东相对控制权越大,公司绩效越差。采用单位根检验、协整分析、误差修正模型以及Granger因果关系检验等现代经济学计量方法,对湖北省房地产业的发展与经济增长的关系进行实证研究。发现湖北省经济增长是房地产业发展的Granger原因,经济的快速增长带动了房地产经济的发展,反之房地产投资对经济拉动作用却不显著。介绍房地产开发投资与GDP关系的研究方法,并通过近十年来浙江省房地产开发投资对GDP增长的贡献和贡献率进行分析,以反映房地产市场发育程度及经济增长的稳定性和风险性。应用协整分析、误差修正模型技术以及Granger因果分析对我国房地产价格与GDP之间的关系进行了实证分析。实证结果表明:我国的房地产价格与GDP之间存在长期稳定的动态均衡关系;无论长期还是短期,我国的GDP波动都是房地产价格波动的Granger原因,GDP的走势对于房地产价格的涨跌起着决定性的影响,GDP的波动有助于预测房地产价格的走势;短期内经济的过热容易引起房地产价格的过快增长。利用误差修正模型对三者关系进行计量分析,得出协整关系的结论。定量结果表明,GDP、FDI对房地产价格有正向的推动作用,但GDP是主要影响因素。这个结果基本排除了境外“热钱”对房地产市场的冲击威胁假说。
选取一系列房地产价格指标与宏观经济指标进行研究分析,总体看,我国房地产价格趋于合理,居民的住房购买能力逐渐加强。房地产价格的增长速度已经受到来自其他价格指数增长缓慢的压力,开始进入调整阶段;随着城镇居民可支配收入的逐渐提高,房价收入比不断降低,居民的购房能力逐步提高。在相当长的一段时间内,对房地产的需求仍将维持在一个较高的水平。房地产价格是基于宏观经济发展水平的平台上的,一旦价格增长过快,超过国民经济和社会发展的承受能力和消化能力,将带来非常严重的后果;但价格下降,也会对国民经济的发展带来一定的负面影响,并不是越低越好。从资本结构、股权结构、公司规模和公司风险等四个方面选取了可能影响企业盈利能力的多个指标变量运用因子模型进行了实证分析,但在财务指标的选取上,只是建立在规范研究的基础上,对影响经营业绩的变量只局限于财务指标本身,一些与经营业绩有重大因果关系的变量未选人,比如说国家的产业政策、宏观经济条件、公司管理者的能力、职工的技能水平等等因此此文使用因子分析方法对我国房地产上市公司经营业绩的分析在实际指导方面的作用有所下降。从房地产市场的过度需求、产业结构不合理、法律法规不完善、政府的执行效率有待完善、地产信息不对称、人民币升值等方面进行了理论分析,并提出一些建议。建立我国近年来房地产价格宏观经济影响因素的线性模型,选取6个宏观经济指标作为方程初始导入自变量,与房地产价格进行初步多元线性回归分析,以解决自变量之间多重共线性问题;进而选取出两个自变量与房地产价格建立多元线性回归方程,并对回归结果进行分析在一个简单的局部均衡模型基础上,利用1999一2003年全国31个省市的房地产市场的面板数据分析了中国房地产市场结构和价格问题。从房地产价值的自然增长、市场供求关系和心理预期三个方面探讨了房价波动的构成、机制和影响因素,并提出了相应的房价调控对策。运用2001一2003年中国上市公司年报中披露的分行业信息,研究了房地产类上市公司多元化水平与财务绩效和企业价值之间的关系。实证结果表明,多元化水平与财务绩效之间存在显著的负相关,但是与用托宾Q衡量的公司价值之间不存在显著的相关性。针对我国目前房地产泡沫膨胀可能波及金融安全的现状,提出了如何优化房地产业资本结构的问题,并根据2000一2002年深沪两地A股房地产上市公司资料,对我国房地产企业上市公司的资产负债率与公司规模、经营业绩之间的相关关系以及资本结构效应进行了实证分析,并提出相关的建议。论文从影响企业的绪论硕一七论文外部因素入手,分析外部因素对公司绩效的影响程度。结合我国的物价变动、货币政策与对上市公司的绩效的相关性进行实证性分析。并运用了实证分析法中的OSL分析法,得到上面的结论。这些结论可以帮助企业在我国当前的形势下如何提高自身的绩效与价值。可以为上市公司在物价变动时和当前货币政策条件如何利用财务杠杆来提高企业的绩效的目的提供帮助。通过聚类分析找出我国房地产上市公司的差距大小,并将其归为几类,以此总结出影响房地产上市公司盈利能力的因素所在,并提出企业发展对策和政策建议。论文由六章组成,本研究所采用聚类分析方法,具体分为两个步骤,首先,在不明确房地产上市公司能够分为几类的情况下,为避免主观误差,采用系统聚类的方式,从SPSS输出的树状图直观的看出不同公司之间的距离;在此基础上,确定分为几类,然后采用快速聚类的方式,将房地产上市公司分类,找出房地产上市公司的特点和共性。从房地产价格的相关理论出发,主要从房地产需求、房地产供给、房地产金融和房地产宏观调控等角度对影响房价的因素展开分析。以房地产统计数据为基础,采用计量经济学方法和统计分析方法,主要从实证角度分析各因素对房价的影响。首先,分析房地产需求各因素对房价的影响,明确了城镇住房制度改革、居民可支配收入增加、城市化、房地产投机和人民币升值预期等因素导致的房地产需求扩张是房价上涨的首要因素。随后,从房屋建造成本、土地价格等角度分析供给因素对房价的影响,并以北京、上海和武汉三城市为例分析了房价和地价的关系。接下来,以房地产开发投资来源及构成为基础,分析了房地产金融对房价的影响,指出个人住房贷款推动了房价的上涨。未完……
金融类毕业论文参考文献
参考文献就是写论文的时候参考过的书籍或网站,直接关系到论文的分数和质量高低。以下是我为您整理的金融类毕业论文参考文献,希望能提供帮助。
篇一 :参考文献
[1] 母宇.中国股票市场与全球主要股票市场联动性研究,[C].西南民族大学:2011.
[2] 于会鹏.中国股票市场板块及其与国外主要市场间的联动性实证研究,[C].理工大学:2009
[3] 陈志宁.中外股票市场的联动分析,[C].农业大学:2009.
[4] 汪波.股票市场波动性网络及其应用[C]华南理工,2012
[5] 徐晓萍. 金融危机下证券网络的复杂性特征研究[C]华东师范大学,2013
[6] 陈俊华.中国股票市场网络模型动态研究[C]浙江工业大学,2012
[7] 兰旺森,赵国浩. 应用复杂网络研究板块内股票的强相关性,[J].中山大学学报:2010(6).20-23
[8] 李耀华,姚洪兴.股票市场网络的稳定性研究,[M].江苏省系统工程学会第十一届学会:2012.
[9] 陈花.基于复杂网络的股票之间有向相关性研究,[C].北京邮电大学:2012.
[10] 陈辉煌,高岩,基于复杂网络理论的证券市场网抗毁性分析[J],金融理论与实:2008(6)154-156
[11] 万阳松,陈忠基. 加权股票网络模型[J].复杂系统与复杂性科学,2005,1(5) :21-27
[12] 李平,汪秉宏.证券指数的网络动力学模型[J].系统工程,2006,24(3):73-77
[13] TianQiu, Bo Zheng,Guang Chen. Financial networks with static anddynamic thresholds,[J]. New Journal of Physics:2010(12).136-138
[14] Nicola Cetorelli, Stavros Peristiani. Prestigious stock exchanges: A network analysis of international financial centers,[J]. Journal of Banking & Finance:2013(37).21-24
[15] Ram Babu Roy, Uttam Kumar Sarkar. Identifying influential stock indices from global stockmarkets: A social network analysis approach,[J].Procedia Computer Science:2011(5).10-13
[16] Xiao fan Liu, Chi k. Tse.A Complex Network Perspective to Volatility in Stock Markets [J]. International Symposium on Nonlinear Theory and its Applications:2010(9).12-15
[17] Simutis R, MasteikaS.Intelligent stock trading systems using fuzzy-neural networks andevolutionary programming methods[J]. Self Formation Theory And Applications.2004,(97).59-63
[18] Dong-Ming Song, Michele Tumminello, Wei-Xing Zhou, Rosario N. Mantegna. Evolution of worldwide stock markets, correlation structure and correlation basedgraphs,[J]. PACS:2011(3).90-92
[19] Xiangyun Gao, Haizhong An, Weiqiong Zhong. Features of the Correlation Structure of Price Indices,[J]. PLOS ONE:2013(4).34-36
[20] MarekGa??zka. Characteristics of the Polish Stock Market correlations,[J]. International Review of Financial Analysis:2011(1-5).
[21] 杨治辉,贾寒梅.股票收益率相关性的网络结构分析,[M].中国控制学会:2011.
[22] 周艳波,蔡世民,周佩玲.金融市场的无标度特征研究,[J].中国科学技术大学学报:2009(8).19-22
[23] Barabasia L, Albert R, Jeong H. Mean-field theory for scale-freerandom networks[J].Physica A, 1999( 272).173-187
[24] 李辉,赵海,徐久强,李博,李鹏,王家亮. 基于k-核的大规模软件核心框架结构抽取与度量,[J].东北大学学报:2010(11).345-347
[25] 李辉,赵海.基于k-核的大规模软件宏观拓扑结构层次性研究,[J].电子学报:2010(6).134-136
[26] 李备友,刘思峰. 网络化市场结构下证券市场传闻的扩散规律研究,[J].华东经济管理:2012(12).90-92
篇二:参考文献:
[1]袁申国,陈平,刘兰凤,. 汇率制度、金融加速器和经济波动[J]. 经济研究,2011,(1).
[2]黄志刚,. 货币政策与贸易不平衡的调整[J]. 经济研究,2011,(3).
[3]George J. Gilboy,钟宁桦,. 度量中国经济:购买力平价的适当应用[J]. 经济研究,2010,(1).
[4]万晓莉,霍德明,陈斌开,. 中国货币需求长期是否稳定?[J]. 经济研究,2010,(1).
[5]裘骏峰,. 投机资本流入、升值预期和最优升值路径[J]. 经济研究,2010,(2).
[6]张屹山,孔灵柱,. 基于权力范式的汇率决定研究[J]. 经济研究,2010,(3).
[7]李成,王彬,马文涛,. 资产价格、汇率波动与最优利率规则[J]. 经济研究,2010,(3).
[8]刘尧成,周继忠,徐晓萍,. 人民币汇率变动对我国贸易差额的动态影响[J]. 经济研究,2010,(5).
[9]黄志刚,陈晓杰,. 人民币汇率波动弹性空间评估[J]. 经济研究,2010,(5).
[10]路继业,杜两省,. 货币政策可信性与汇率制度选择:基于新政治经济学的分析[J]. 经济研究,2010,(8).
[11]卞世博,贾德奎,. 后金融危机背景下的中国经济运行风险管理——第四届中国立信风险管理论坛综述[J]. 经济研究,2010,(12).
[12]赵志君,陈增敬,. 大国模型与人民币对美元汇率的评估[J]. 经济研究,2009,(3).
[13]伍戈,. 中国的货币需求与资产替代:1994—2008[J]. 经济研究,2009,(3).
[14]王晋斌,李南,. 中国汇率传递效应的实证分析[J]. 经济研究,2009,(4).
[15]张瀛,. 汇率制度、经济开放度与中国需求政策的有效性[J]. 经济研究,2008,(3).
[16]中国经济增长与宏观稳定课题组,张平,刘霞辉,张晓晶,汪红驹,. 外部冲击与中国的通货膨胀[J]. 经济研究,2008,(5).
[17]唐翔,. “富人社区效应”还是巴拉萨-萨缪尔森效应?——一个基于外生收入的实际汇率理论[J]. 经济研究,2008,(5).
[18]龚刚,高坚,何学中,. 汇率制度与货币政策——发展中国家和小国经济的思考[J]. 经济研究,2008,(6).
[19]管汉晖,. 浮动本位兑换、双重汇率与中国经济:1870—1900[J]. 经济研究,2008,(8).
[20]施建淮,傅雄广,许伟,. 人民币汇率变动对我国价格水平的传递[J]. 经济研究,2008,(7).
篇三:参考文献:
[1] 方毅,桂鹏. 亚太地区股票市场的联动程度—基于次级贷冲击的`研究[J]世界经济研究,2010(8).27-30
[2] BarabásiA L, Albert R. Emergence of scaling in random networks[J].Science, 1999(286). 509-512
[3] Kim H J.Kim I M.Scale-free network in stock market[J].J KorPhys Soc,2002,40(6):105-108.
[4] Newman M E J.The structure and function of complex networks[J].SIAM Review,2003(3).167-256
[5] Jukka-Pekka Onnela, Jari Saram?ki, Kimmo Kaski. A comparative study of social network models: Network evolution models and nodal attribute models[J]. Social Networks:2009(4)13-16
[6] 汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006(1).9-14.
[7] 任卓明,刘建国,邵凤,胡兆龙,郭强. 复杂网络中最小K-核节点的传播能力分析,[J].物理学报:2011(7).90-93
[8] 韩定定,复杂网络的拓扑、动力学行为及其实证研究,华东师范大学无线电物理博士论文[C],2007
[9] Simutis R, MasteikaS.Intelligent stock trading systems using fuzzy-neural networks andevolutionary programming methods[J].Self Formation Theory And Applications.2004(97)59-63
[10] Xiao fan Liu, Chi k. Tse.AComplex Network Perspective of World Stock Markets:synchronization and volatility,[J]. International Journal of Bifurcation and Chaos:2012(6).62-66
[11] Ram Babu Roy, Uttam Kumar Sarkar. Capturing Early Warning Signal for Financial Crisis from the Dynamics of Stock Market Networks: Evidence from North American and Asian Stock Markets[J].Journal of Indian Institute of Management Calcutta:2009(8).57-59
[12] 李耀华,姚洪兴.金融危机下股票市场网络的结构特性研究[J].信息工程学院学报,2010(1).23-26
[13] Benjamin M. Tabak, Thiago R. Serra, Daniel O. Cajueiro. Topological properties of stockmarket networks:The case of Brazil[J]. Physica ,2010(389).3240-3249
[14] Chi K.Tse,JingLiu,Francis C, M. Lau. A network perspective of stock market[J].Journal ofEmpirica Finance.2010,4(17).659-667
[15] 闵志锋.上海证券市场的复杂网络特性分析 [J].东北大学学报 (自然科学版).2007 (7).1053-1056
[16] 黄玮强,姚爽,中国股票关联网络拓扑性质与聚类结构分析[J],管理科学:2008(3).92-95
[17] 高雅纯,魏宗文,汪秉宏.Dynamic Evolution of Financial Network and Its Relation to Economic Crises,[J].World Scientific:2013(2).142-141
[18] 陈守东,韩广哲,荆伟.主要股票市场指数与我国股票市场指数间的协整分析,[J].数量经济技术经济研究:2003(5).35-37
[19] 文圭炫,洪正孝.太平洋地区国家的联动性,[J].商务管理研究:2003(2).111-113
[20] RosylinMohd.Yusof&M.ShabriAbd.Majid,Who moves the Malaysian stock market-the U.S.or Japan[J],International Journal of Business,2006(8)367-406
[21]Terence,Tai-Leung Chong,Ying-Chiu Wong,Isabel,Kit-Ming Yan,Internationallinkagesof the Japanese stock market,Japan and the World Economy,2007(20)773-786
[22] 周珺. 我国大陆股票市场与周边主要股票市场的联动分析[J]企业经济,2007(1).77-79
[23] Woo-Sung Jung ,SeungbyungChae, Jae-Suk Yang,Hie-Tae Moon. Characteristics of the Korean stock marketcorrelations,[J]. Elsevier Science:2008(2).90-93
[24] Sunil Kumar, NiveditaDeo. Correlation and network analysis of global financial indices,[J]. American Physical Society:2012(8).21-23
篇四:参考文献
[1] Michael Grahama,JarnoKiviahob,JussiNikkinenb, Mohammed Omranc. Global and regional co-movement of the MENA stockmarkets,[J]. Journal of Economics and Business:2013(1). 165-167
[2] 高莹,靳莉莉.沪深300指数与世界主要股票指数的关联性分析[J].金融管理,2008(2). 3-8.
[3] Hwahsin Cheng, John L. Glascock. Stock Market Linkages Before and After the AsianFinancial Crisis: Evidence from Three Greater ChinaEconomic Area Stock Markets and the US,[J]. Pacific Basin Financial Markets and Policies:2006(2).125-127
[4] Ma.BelindaS.Mandigma.Stock market linkages and the global financial crisis,[J].Journal of University of Santo Tomas:2009(8).278-280
[5] Ugur Ergun. How does Turkish stock market respond to the externalshocks Pre- and post- crises analyses,[J]. African Journal of Business Management:2012(2).34-37
[6] 赵勇. 金融危机背景下中美欧股票市场联动性研究[C]上海社会科学院,2012(5).76-79
[7] 洪天国. 欧洲股票市场与中国股票市场之间的波动溢出效应研究[C]江西财经大学,2013(1).29-34
[8] 金融市场稳定性的判别与度量[C]山西大学,2012(2).192-196
[9] 陈守东,陈雷,刘艳武.中国沪深股票市场收益率及波动性相关分析,[J].金融研究:2003(7).230-235
[10] 刘存绪.论中国股票市场的国际化,[J].资本市场:2000(4).30-32
数学应该是多做多练习,练习足够了自然而然就会了,依靠别人解答是不明智的做法,别人做的终究是别人会,而你还是不会。好好加油吧!